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ABSTRACT
Myeloid immune cells are frequently present in the 
tumor environment, and although they can positively 
contribute to tumor control they often negatively impact 
anticancer immune responses. One way of inhibiting the 
positive contributions of myeloid cells is by signaling 
through the cluster of differentiation 47 (CD47)/signal 
regulatory protein alpha (SIRPα) axis. The SIRPα receptor 
is expressed on myeloid cells and is an inhibitory immune 
receptor that, upon binding to CD47 protein, delivers a 
‘don’t eat me’ signal. As CD47 is often overexpressed on 
cancer cells, treatments targeting CD47/SIRPα have been 
under active investigation and are currently being tested 
in clinical settings. Interestingly, the CD47/SIRPα axis 
is also involved in T cell-mediated antitumor responses. 
In this perspective we provide an overview of recent 
studies showing how therapeutic blockade of the CD47/
SIRPα axis improves the adaptive immune response. 
Furthermore, we discuss the interconnection between the 
myeloid CD47/SIRPα axis and adaptive T cell responses as 
well as the potential therapeutic role of the CD47/SIRPα 
axis in tumors with acquired resistance to the classic 
immunotherapy through major histocompatibility complex 
downregulation. Altogether this review provides a profound 
insight for the optimal exploitation of CD47/SIRPα immune 
checkpoint therapy.

INTRODUCTION
The cancer immunity cycle refers to the 
sequence of immune-related events that must 
be initiated to efficiently kill tumor cells in 
patients with cancer. First, cancer-specific 
antigens are released by (necrotic) cancer 
cells, which are subsequently engulfed and 
processed by dendritic cells (DCs). T cells that 
have been primed and activated by DCs in the 
lymph nodes will recognize and bind to these 
neoantigens presented on major histocom-
patibility complex (MHC) class I molecules 
with their complementary T cell receptor 
(TCR). Activated cytotoxic T cells will locate 
to the tumor site, recognize the tumor cells 
as foreign and kill the tumor cells.1 However, 
in patients with cancer, the immunity cycle is 
not adequately equipped to eliminate cancer 
cells.1 2

The upregulation of immune checkpoints 
is one mechanism of suppressing the anti-
cancer immune response. Programmed 

death receptor 1 (PD-1)/programmed death 
ligand 1 (PD-L1) is one of the most well-
studied immune checkpoints on T cells, 
and signaling through PD-1 on T cells nega-
tively affects T cell function, such as T cell 
activation, cytokine production, division and 
survival.3 Other immune checkpoints have 
been identified, such as cytotoxic T-lympho-
cyte antigen 4 (CTLA-4), T-cell immuno-
globulin and mucin-domain containing-3 
(TIM3), lymphocyte activating 3 (LAG3) and 
T cell immunoreceptor with Ig and ITIM 
domains (TIGIT),4 and their role in adap-
tive immunity has been described extensively 
and is a topic of active investigation. Impor-
tantly, myeloid cells are also negatively regu-
lated within the anticancer immunity cycle, 
for example through the cluster of differen-
tiation 47/signal regulatory protein alpha 
(CD47/SIRPα) axis.

CD47 is a glycoprotein that was first identi-
fied in 1990 as a protein that associates with 
integrins, hence its original name integrin-
associated protein.5 CD47 is a member of 
the immunoglobulin superfamily consisting 
of an extracellular N-terminal single immu-
noglobulin V-like domain that contains 
multiple glycosylation sites, five membrane-
spanning regions and a C-terminal intracel-
lular domain.6 Among other proteins, such 
as SIRPy, thrombospondin-1 (TSP-1) and 
integrins, CD47 interacts with SIRPα.7–10 
SIRPα consists of three extracellular 
immunoglobulin-like domains, followed by a 
single transmembrane segment and intracel-
lular signaling domain with immunoreceptor 
tyrosine-based inhibition motifs (ITIM).11 12

While CD47 is expressed on virtu-
ally every cell type (see Protein Atlas 
ENSG00000196776-CD47),5 13 SIRPα is 
primarily expressed on the myeloid cell 
compartment, including monocytes, macro-
phages, granulocytes and subsets of DCs. 
Moreover, SIRPα can be found on T cells, 
intestinal epithelial cells, CD34 and CD133 
positive hematopoietic progenitor cells and 
neurons.14–19 Interestingly, during progres-
sion from normal colon epithelium to colon 
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carcinoma, SIRPα expression is upregulated on stromal 
cells.20

For SIRPα engagement to occur, the N-terminal 
SIRPα binding site of CD47 needs to undergo a post-
transcriptional modification induced by glutaminyl-
peptide cyclotransferase-like protein (QPCTL).21 22 
Specifically, the glutamine residues located at the N-ter-
minal part of the CD47 protein will be modified by 
QPCTL into a pyroglutamate group (pGlu-CD47), and 
this modification is required for CD47 to bind to SIRPα.21 
Upon CD47 interacting with SIRPα, the intracellular 
ITIM domain of SIRPα becomes phosphorylated, leading 
to recruitment and activation of src homology region 2 
domain-containing phosphatases, which negatively affect 
signal transduction pathways,23 such as inhibiting the 
phagocytosis of ‘self’ cells by cross-linking actin filaments, 
which prevents the phagocytic synapse formation on 
myeloid cells.24–26

Phagocytosis is a process in which a target cell is recog-
nized, engulfed, processed and digested by a phagocyte, 
such as a macrophage. Phagocytosis depends on the 
balance of prophagocytic interactions, such as calretic-
ulin/low density lipoprotein receptor-related protein 
1(LRP1), self-ligand receptor of the signaling lympho-
cytic activation molecule family member 7 (SLAMF7), 
antibody/Fc receptor and inhibitory interactions (CD47/
SIRPα, PD-1/PD-L1, MHC/leukocyte immunoglobulin-
like receptor subfamily B member 1 (LILRB1)) (reviewed 
in Feng et al27). Often, only removing the CD47/SIRPα 
‘don’t eat me’ signal is not sufficient to induce phago-
cytose of the (cancer) target cell.28 Therefore, tumor-
opsonizing antibodies have been combined with CD47/
SIRPα blocking agents to provide a strong ‘eat me’ signal. 
Using this two-hit approach, the cells that highly express 
CD47 as well as the tumor-associated antigen will be pref-
erentially targeted.28

Signaling through the CD47/SIRPα axis plays a role 
in various homeostatic processes, such as maintenance 
of erythrocytes,24 29 innate immune cells30 31 and T 
cells.32 33 Moreover, cancer cells28 34–36 and virus-infected 
and bacteria-infected cells can upregulate CD47 protein 
expression to prevent immune-mediated elimina-
tion.37 38 For example, during the progression of healthy 
colon epithelium to colon carcinoma, CD47 expression 
is upregulated on the epithelial cell compartment.20 
CD47 blockade promotes myeloid-mediated elimina-
tion of cancer cells in preclinical models.34–36 Further-
more, blocking the interaction between CD47 and 
SIRPα promotes cancer cell elimination in vitro and in 
vivo28 34 36 39 40 as a monotreatment modality or in combi-
nation with immune-activating, tumor-opsonizing anti-
bodies, such as rituximab or trastuzumab.21 40–44

Early clinical trials of anti-CD47 Hu5F9-G4 alone or in 
combination with rituximab showed promising results 
in patients with non-Hodgkin’s,45 46 with a total of 50% 
of patients with an objective response and 36% with a 
complete response.45 In the phase I ASPEN-01 clinical trial, 

evorpacept (CD47-binding domain of SIRPα fused to an 
inactive IgG Fc domain) was found to be safe as a mono-
therapy and combined with tumor-opsonizing antibodies 
trastuzumab in patients with solid cancer.47 Currently, 
there are multiple treatment modalities targeting the 
CD47/SIRPα axis alone or in combination with tumor 
opsonizers awaiting or undergoing clinical investigations, 
such as antibodies targeting CD47, including Hu5F9-G4 
(magrolimab; NCT03248479, NCT04599634) and recom-
binant SIRPα-Fc (TTI-621; NCT02663518).

Although several clinical trials with CD47-targeting 
agents have shown impressive preliminary results, 
therapy-induced toxicity cannot be neglected, specifically 
anemia.45 48 CD47 antibodies can induce red blood cell 
(RBC) agglutination.43 49 50 This process of hemaggluti-
nation accelerates clearance of RBCs. The phase I eval-
uation of CC-90002, an anti-CD47 antibody, was recently 
published (NCT02641002),48 where the researchers 
performed a dose-escalation and dose-expansion study in 
patients with relapsed/refractory acute myeloid leukemia 
and high-risk myelodysplastic syndromes. CC-9002 
enabled macrophage-specific tumor killing in preclinical 
in vivo models. However, monotherapy activity was not 
observed in the patients, and considerable toxicity was 
found in combination with the presence of antidrug anti-
bodies (ADAs) in all patients, which resulted in discon-
tinuation of the study. For the Hu5F9-G4 CD47 antibody, 
a priming dose was shown to effectively reduce anemia 
in patients with advanced cancer, with ADAs detected in 
9.6% of patients.46 Thus, balancing antitumor efficacy 
with mitigating potential toxicity is a critical concern in 
the clinical application of therapeutic CD47 antibody 
therapy. Alternative strategies to block the CD47/SIRPα 
checkpoint, such as bispecific antibodies, anti-SIRPα 
antibodies and QPCTL inhibitors, may display decreased 
toxicities with high antitumor efficacy.43 50 51

The pioneering studies in the field of CD47/SIRPα were 
often conducted in immunocompromised animal models 
that lack B cells, T cells and natural killer (NK),34 36 40 
posing the question whether there is a role of the adaptive 
immune system in the efficacy of CD47/SIRPα blockade. 
Recently, syngeneic models were implemented to unravel 
the role of the adaptive immune system and revealed that 
the innate checkpoint CD47 also induces T cell-mediated 
adaptive anticancer immune responses.52–55

In this perspective, we will discuss the role of CD47/
SIRPα in relation to adaptive T cell responses and the 
potential therapeutic role of targeting the CD47/SIRPα 
axis in tumors with acquired resistance to classic immu-
notherapy via MHC downregulation.

Effect of CD47/SIRPα (blockade) on adaptive anticancer T cell 
responses
One of the hallmarks of an anticancer immune response 
is the dependency on T cells to recognize and kill tumor 
cells.1 2 It is becoming increasingly clear that upon CD47/
SIRPα pathway inhibition, T cells can contribute to tumor 
control. These observations can either be a direct effect 



3van Duijn A, et al. J Immunother Cancer 2022;10:e004589. doi:10.1136/jitc-2022-004589

Open access

of the CD47/SIRPα pathway on T cells, or an indirect 
effect, for example through the ability of myeloid cells to 
activate and/or recruit CD8+ T cells.

Preclinical research showed that the CD47/SIRPα axis 
is involved in T cell homeostasis and/or activation.15 32 56–60 
One of the first studies demonstrating that T cell immunity 
can be activated upon CD47/SIRPα blocking therapy in 
cancer was published in 2013 by the group of Weissman,52 
who showed that macrophages can prime CD8+ T cell 
responses in mice upon CD47 blockade. The require-
ment of T cells in the efficacy of CD47/SIRPα blocking 
therapy was investigated in syngeneic tumor-bearing mice, 
which were injected subcutaneously with immunogenic 
CD47-expressing mouse B cell lymphoma cell line A20 or 
colon cancer cell line MC38.54 Administration of mouse 
anti-CD47 (MIAP301) or high-affinity SIRPα variant 
Fc fusion protein significantly reduced tumor growth. 
Tumor reduction was absent in BALB/c nude mice 
lacking a thymus upon CD47 blockade, suggesting that 
T cells are required. The use of T cell subset-depleting 
antibodies showed in this tumor model that CD8+ T cells, 
but not CD4+ T cells, were essential for the efficacy of 
CD47 inhibition in tumor-bearing mice.54 Multiple other 
studies have validated that CD8+ T cells are required 
for the efficacy of CD47/SIRPα blockade. Blockade 
of the CD47/SIRPα axis using an anti-SIRPα antibody 
(MY-1, IgG2a) inhibits renal cell carcinoma (RENCA) 
tumor growth in BALB/c mice,61 and an increase of T 
cells, and specifically CD8+ T cell subsets, in the tumor 
microenvironment was observed. Growth inhibition was 
abolished in CD8-depleted BALB/c mice. Furthermore, 
Granzyme B expression by tumor-infiltrating CD8+ T cells 
after radiation was higher in SIRPα-deficient mice when 
compared with SIRPα-proficient mice,62 and cytotoxic 
T cells isolated from SIRPα-deficient tumors were more 
able to kill tumor cells in vitro. Depletion of CD8+ T cells 
in this setting resulted in higher mortality of mice.62 In a 
similar fashion, the antitumor effect of CD47 blockade 
in irradiated melanoma or fibrosarcoma tumors in mice 
was shown to be dependent on CD8+ T cells.63 Further-
more, Manguso et al performed an in vivo screen with a 
clustered regularly interspaced short palindromic repeats 
(CRISPR)-Cas9-mutagenized B16 melanoma cell line in 
mice that were devoid of T cells (Tcra−/−), in wild-type 
(WT) mice vaccinated with GVAX and in mice receiving 
GVAX with PD-1 blockade.64 They found in their model 
that CD47 on the tumors cells is important for T cell-
mediated tumor evasion. Thus, CD8+ T cells contribute 
to tumor control in (cancer) mouse models where the 
CD47/SIRPα axis has been blocked.

CD47/SIRPα inhibition can induce T cell responses indirectly 
via the myeloid cell compartment
CD47/SIRPα pathway inhibition may influence T cell 
responses through myeloid immune cells, including DCs, 
macrophages, neutrophils and NK cells (figure 1). Here 
we describe the effect of CD47/SIRPα blockade on T cell 
responses for each myeloid subset.

Dendritic cells
DCs are professional antigen-presenting cells that can 
prime and activate T cells.65 Therefore, the role of DCs 
was assessed in the context of CD47 and SIRPα.53 54 Deple-
tion of DCs using diphtheria toxin-mediated removal of 
CD11c-DTR bone marrow chimeras abolished the reduc-
tion of MC38 tumor volumes in C57BL/6 mice treated 
with anti-CD47,54 indicating that DCs are important cells 
in the efficacy of CD47/SIRPα blockade. Of note, CD11c 
is a marker that is also present on a subpopulation of 
macrophages and therefore the effects observed may in 
part be due to the loss of macrophages.38

Blocked SIRPα signaling on DCs results in increased 
cross-priming of OT-I CD8+ T cells and autologous T 
cells, as measured by increased interferon-gamma (IFNy) 
Elispot which improved tumor control after anti-CD47 
treatment. Gauttier et al found that the classic DC type 
2, but not type 1, significantly enhanced cross-priming of 
OT-I CD8+ T cells in the presence of P84 and MY1-G1 
anti-SIRPα antibodies,55 indicating that not all DC 
subsets may be equally involved. Mechanistically, DCs can 
regulate the amount of degradation of engulfed tumor 
mitochondrial DNA through NADPH oxidase 2 (NOX2)-
mediated regulation of the acidity levels in their phago-
somes. By preventing SIRPα signaling on DCs, NOX2 is 
no longer inhibited by SIRPα, and higher pH levels are 
maintained through NOX2. Mitochondrial DNA can 
subsequently reside longer inside the phagosomes of 
DCs, increasing the chance that cytosolic DNA-binding 
protein cyclic GMP-AMP synthase (cGAS) will bind to 
the tumor DNA and becomes activated.53 54 66 Activated 
cGAS can then induce the stimulator of interferon genes 
(STING) pathway that leads to a type I IFN response, 
which in turn is required for DCs to cross-prime CD8+ T 
cells in the presence of anti-CD47 therapy.53 54 Although 
macrophages are more potent in their phagocytic abili-
ties, they appear to lack the ability to regulate their pH 
levels in this manner.53

Beyond the fact that SIRPα signaling reduces the cross-
priming capacity of DCs to activate cytotoxic CD8+ T cells,53 54 
SIRPα ligation on activated human DCs using CD47-Fc results 
in a reduced cytokine production (interleukin (IL)-12, 
tumor necrosis factor (TNF)-α, IL-6), as well as reduced 
expression of maturation markers on these DCs.67 Indeed, 
SIRPα engagement on Staphylococcus aureus Cowan I-activated 
human monocyte-derived DCs by CD47-Fc prevents, but 
not fully blocks, their maturation in an IL-10 independent 
manner.68 These SIRPα-engaged, activated semimature DCs 
have a reduced ability to migrate and secrete chemokines, 
such as T cell-attracting chemokines chemokine (C-X-C 
motif) ligand (CXCL)9 and CXCL10, but retain their endo-
cytosis ability. Furthermore, these cells were less capable of 
priming human-naïve CD4+ T cells in an in vitro coculture 
setting.68 Thus, SIRPα downstream signaling on DCs induced 
by CD47 binding may result in semimatured DCs less able to 
migrate to the tumor-draining lymph nodes and less efficient 
to induce T cell responses.68 Therefore, blocking CD47/
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SIRPα interactions may benefit T cell responses indirectly via 
DC maturation, cross-priming and cytokine production.

Macrophages
Macrophages are phagocytic cells with antigen-presenting 
features that have the capacity to activate T cells.69 As 
a high frequency of macrophages may be present in 
tumor microenvironments,70 the effect of CD47/SIRPα 
signaling blockade on macrophage-mediated T cell 
responses was assessed. In vivo depletion of macrophages 
significantly reduced the efficacy on tumor control of 
anti-SIRPα (MY-1) in syngeneic renal cell carcinoma-
bearing BALB/c mice,61 indicating that macrophages are 
one of the effector cells in vivo. Tseng et al52 assessed the 
role of macrophages in the efficacy of CD47 blockade and 
its effects on T cell-mediated immune responses. Macro-
phages were subjected to anti-CD47 B6H12 antibodies 
and ovalbumin (OVA)-expressing cancer cells to induce 
antibody-dependent cellular phagocytosis. These macro-
phages were then cocultured with OVA-specific CD8+ T 
cells, resulting in an increased proliferation rate of T cells 

in the presence of anti-CD47 due to enhanced phagocy-
tosis by the macrophage. Additionally, macrophages were 
subjected to OVA-expressing cancer cells with anti-CD47 
antibody or IgG control and injected into mice that had 
received adoptive transfer of OT-I-specific CD8+ T cells. 
After challenging these mice with an OVA-expressing 
tumor, mice that received anti-CD47-treated macro-
phages were protected from tumor growth, while the 
IgG-treated control tumors grew out.52 Similarly, using 
multiple isotypes of bispecific antibody targeting CD47 
and epidermal growth factor receptor (EGFR), human 
macrophages were capable of cross-presenting EGFR 
overexpressing K562 cells to cytomegalovirus (CMV)-
specific autologous CD8+ T cells.71 Thus, CD47 blockade 
provides a vulnerability in cancer cells that enhances 
antibody-mediated phagocytosis by macrophages, which 
can in turn better cross-prime tumor antigens to T cells 
and thereby promote T cell responses. Blocking SIRPα 
signaling on myeloid cells using anti-SIRPα (MY1-IgG1 or 
P84-IgG1) in 4T1 breast cancer-bearing mice additionally 

Figure 1  CD47/SIRPα blockade indirectly enhances T cell responses through myeloid cells. CD47/SIRPα blockade enhances 
T cell responses through (upper right) the cross-priming and maturation abilities of DCs and production of T cell response 
promoting cytokines and chemokines, and (lower right) the cross-presentation and chemokine production of macrophages. 
While trogoptosis by neutrophils (lower left) and ADCC by NK cells (upper left) is promoted through CD47/SIRPα blockade, it is 
unknown whether this affects T cell responses directly. Figure created with BioRender.com. ADCC, antibody-mediated cellular 
toxicity; CD47, cluster of differentiation 47; DCs, dendritic cells; NK, natural killer; SIRPα, signal regulatory protein alpha.
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resulted in the induction of chemotaxis-related genes 
on myeloid cells. Less secretion of chemokines might 
explain why T cells are less efficiently recruited to the 
tumor site after they have been activated.55 Furthermore, 
it seems that differential expression of SIRPα on human 
monocytes and macrophages isolated from patients 
with follicular lymphoma affects their function. CD14+ 
SIRPα high cells suppressed T cell function, while CD14− 
SIRPα low and negative cells activated T cell function.16 
It thus appears that the CD47/SIRPα axis can influence 
macrophage-mediated anticancer T cell responses, 
potentially through reduced ability to phagocytose and 
cross-prime T cells when CD47 is blocked on a cancer cell 
or by reduced secretion of T cell-attracting chemokines 
when SIRPα signaling is blocked on the myeloid cells.

Neutrophils
Neutrophils are innate immune cells that have antitumori-
genic properties through antibody-mediated cellular toxicity 
(ADCC).72 Matlung and colleagues72 described the specific 
mechanism of action of neutrophil-mediated ADCC, also 
known as trogoptosis. Neutrophils form CD11b/CD18 
integrin-mediated conjugations with the opsonized target 
cell, and signaling downstream of the Fc receptor in neutro-
phils results in the lytic death of the target cells through inter-
nalization and fragmentation of the target cell membrane.72 
Blockade of CD47/SIRPα interaction improves neutrophil-
mediated trogoptosis induced by IgG42 43 71 72 as well as IgA73 
opsonizing antibodies. Mechanistically, in the absence of 
CD47/SIRPα signaling, kidlin3 is no longer inhibited in the 
neutrophil and can therefore positively regulate CD11b/
CD18 activation and strengthen the interaction required 
for trogoptosis induction.74 The question remains whether 
neutrophils that have engulfed target-cell fragments can acti-
vate CD4+ and/or CD8+ T cells. It has been reported that 
neutrophils that phagocytosed IgG-opsonized erythrocytes 
acquire antigen-presenting properties, such as the upregula-
tion of MHC class II and costimulatory molecules, resulting in 
enhanced IFNγ cytokine secretion and proliferation of CD4+ 
T cells.75 However, in this model, the addition of anti-CD47 
did not enhance the antigen-presenting capacity of neutro-
phils. Further research is warranted to determine whether 
neutrophil-mediated trogoptosis can prime T cell responses. 
Interestingly, neutrophils were found to be required to elimi-
nate QPCTL knockout tumor cells and thus form important 
effector cells that are regulated by SIRPα in vivo. This was 
shown when human FcαRI transgenic BALB/c mice were 
injected with a 1:1 ratio of WT and QPCTL knockout murine 
Ba/F3-transformed cells expressing human Her2, after which 
they were subjected to opsonizing Her2 antibodies (IgA1) in 
the presence or absence of neutrophil depletion treatment 
(anti-Ly6G). While the anti-Her2 antibody alone caused a 
significantly lower ratio of QPCTL knockout tumor cells to 
WT tumor cells, when compared with untreated mice, this 
effect was largely abolished in the absence of neutrophils.21 
Similarly, CD47 knockout or pharmacologically depleted 
(anti-CD47 B6H12 F(ab’)2) CD47 enhances the removal of 
Her2-expressing SKBR3 breast cancer cells that are opsonized 

with trastuzumab by neutrophils in vitro.41 Taken together, 
neutrophils are important effector cells that are highly effec-
tive when CD47 is blocked on tumor cells. Further research 
is required to elaborate on the role of these cells in contrib-
uting to T cell responses.

NK cells
NK cells influence T cell responses through secretion of 
cytokines and killing of target cells, resulting in increased 
cross-presentation of tumor cells by DCs and subsequent 
activation of T cell immunity.76 NK cells have inhibitory 
receptors that recognize the peptide-binding region of 
MHC class I molecules and thereby prevent the activation 
of NK cells. Loss of MHC class I on cancer cells results in 
NK cell activation and targeted killing through secretion 
of cytolytic compounds, such as granzymes and perfo-
rins.76 Naïve human and mouse NK cells express little 
to no SIRPα40 77; however, SIRPα expression is induced 
on mouse NK cells and primary human NK cells when 
exposed to IL-2, IL-15 and/or IFNα cytokines.78 Murine-
induced embryonic stem cells that were deficient in 
MHC-I were eliminated by IL-2 or IL-15 activated mouse 
NK cells. However, the overexpression of CD47 protects 
these target cells from being targeted by SIRPα signaling 
on NK cells. The addition of CD47 blockade preventing 
SIRPα signaling on NKs to this setting stimulates activated 
NK-mediated removal of mouse-induced embryonic stem 
cells in vitro. In vivo depletion experiments revealed 
that CD47 blockade, which prevented SIRPα-mediated 
inhibitory functions of immune cells, was largely depen-
dent on the presence of macrophages and not neces-
sarily of NK cells.78 Contrary to this, renal cell carcinoma 
tumor-bearing BALB/c mice treated with anti-SIRPα 
MY-1 showed an increase in tumor-infiltrating NK cells 
compared with the untreated, and these cells were in part 
responsible for the observed reduction in growth of the 
tumor mass.61 The question still remains whether NK cells 
significantly contribute to the CD47 blockade efficacy in 
humans in general and specifically in indirectly inducing 
an adaptive immune response.78

CD47/SIRPα pathway directly affects T cell responses
While CD47/SIRPα blockade can indirectly enhance 
anticancer T cell responses via the myeloid cell compart-
ment, it was shown that T cells themselves can express 
CD4779 and SIRPα.18 This suggests that the CD47/SIRPα 
pathway might also directly influence T cell responses 
and indicates that the situation may be more complex 
than anticipated.

CD47 is transiently expressed by antigen-specific CD4+ T cells
CD47 is expressed on T cells9 56 and the role and expres-
sion of CD47 were examined on CD4+ T cells during an 
immune response. BALB/c mice were immunized with 
complete Freund's adjuvant (CFA)-OVA 1 day after they 
received adoptive transfer of carboxyfluoroscein succin-
imidyl ester (CFSE)-labeled, OVA-specific CD4+ T cells,79 
and the surface expression levels of CD47 on these cells 
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were monitored over time. SIRPα-Fc, which binds to the 
QPCTL-mediated pGlu-CD47, was used to measure CD47 
expression levels and showed that CD47 was transiently 
expressed on antigen-specific CD4+ T cells throughout 
the immune response (figure  2). The majority of cells 
have a high SIRPα-Fc binding capacity, which is lost 
during the first days after immunization and regained 
when the immune response ends.79 The cells that lose 
the ability to bind SIRPα-Fc are referred to as CD47low 
cells. These CD47low cells displayed low expression of 
CD127 and CD62L, indicative of an effector memory 
phenotype. A small proportion of OVA-specific CD4+ T 
cells remained positive for SIRPα-Fc (CD47high). Adoptive 
transfer experiments of effector CD44high T cells showed 
that only the CD47high cells, and not the CD44high CD47low 
or CD44low naïve T cells, were able to mount a memory 
response. This indicates that CD44high CD47high CD4+ T 
cells are precursors of memory T cells.79

A similar transient binding of SIRPα to CD47 was 
observed on human CD4+ T cells. Naïve T cells had a 
high capacity of SIRPα-Fc binding, effector T cells had 
a decreased SIRPα-Fc binding, and memory T cells had a 
high SIRPα-Fc binding capacity, similar to IL-2-stimulated 
T cells. This reduced SIRPα-Fc binding was not detected 
when TCR-activated CD4+ T cells were stained with two 
pan-anti-CD47 mAbs (B6H12, 2D3),80 indicating that 
surface expression of CD47 was not changed. Simi-
larly, others found that SIRPα binding was upregulated 
in Concanavalin A (ConA)-stimulated human T cells, 
whereas surface expression of CD47 was not changed.9 
Logtenberg et al21 showed that QPCTL inhibition reduces 
SIRPα-Fc binding to CD47, but not the overall level 
of CD47 measured by pan-anti-CD47 (B6H12, 2D3). 

Whether QPCTL is responsible for the observed effects 
on altered SIRPα binding on T cells is yet unknown. 
While CD47 expression is preserved on memory CD4+ T 
cells, it has also been implicated in the contraction phase 
of the immune response. Using an adoptive transfer 
model of antigen-specific naïve CD4+ T cells proficient 
or deficient for CD47 in WT mice, it was observed that 
the CD47-deficient CD4+ T cell population showed no 
contraction, unlike the population of CD47-proficient 
cells.80 This suggests that CD47 plays a role in CD4+ T cell 
contraction, potentially through induction of cell death.

Beyond SIRPα, CD47 also binds to integrins, TSP-1 and 
SIRPy, which increases the complexity of analyzing the 
effects of CD47 on T cells. Association of CD47 with β2 
integrin results in a conformational change of adhesion 
molecules on T cells that facilitate their trans-endothelial 
migration.81 TSP-1 can bind to CD47 on CD3-activated T 
cells, resulting in T cell apoptosis in a caspase-independent 
manner33 82 83 and in suppression of T cell activation.84 85 
SIRPy is highly expressed on human T cells (CD4+ as well 
as CD8+ T cells)9 and binds CD47 with approximately 
10× lower affinity than SIRPα.9 86 CD47/SIRPy signaling 
appears to positively influence T cell responses as it 
promotes T cell activation86 87 and trans-endothelial 
migration of T cells.88 Blocking CD47 may therefore also 
impair the binding of other CD47 ligands that potentially 
directly (negatively) impact T cell responses.9 Of note, 
rodents lack SIRPy and are therefore not a good model 
to study the CD47/SIRPy interaction on T cells.9

Together, the data indicate that the capacity of SIRPα 
binding to CD47 is transiently regulated on antigen-
specific CD4+ T cells, and most likely on CD8+ T cells, 
during an immune response and is linked to both 

Figure 2  Expression of pGlu-CD47 and pan-CD47 on CD4+ OVA-specific T cells during an immune response. Pan-CD47 
expression does not alter during the immune response, while pGlu-CD47 surface levels decrease during the proliferation phase. 
Only a small proportion of cells maintain pGlu-CD47, which gives rise to memory T cells. Figure created with BioRender.com. 
CD, cluster of differentiation; OVA, ovalbumin.
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contraction and formation of memory CD4+ T cells. 
However, potential involvement of other CD47 ligands, 
such as integrins, TSP-1 and SIRPy, cannot be excluded. 
Whether QPCTL underlies the conformational change of 
CD47 and whether small molecule inhibition of QPCTL 
positively or negatively affects memory formation and the 
contraction of T cells remains unknown.

CD8+ T cells express CD47 and a subset of CD8+ T cells express 
SIRPα
CD47 is highly expressed on CD8+ T cells located in 
tumorous and adjacent tissue obtained from patients with 
esophageal carcinoma.89 Furthermore, ConA-stimulated 
human peripheral blood mononuclear cells (PBMCs) 
(that activate both CD4+ and CD8+ T cells) showed that 
SIRPα binding was increased, while surface expression 
of CD47 was not changed.9 Whether CD47 expression is 
similarly regulated on CD8+ T cells during the immune 
response and has a function on CD8+ T cells, as was 
observed for antigen-specific CD4+ T cells, is still an unex-
plored field.79 80

It was long believed that SIRPα expression was restricted 
to the myeloid compartment. However, recently a subpop-
ulation of antigen-specific CD8+ T cells were identified 
that express SIRPα.18 38 These SIRPα+ CD8+ T cells were 
found in mice chronically infected with Friend retrovirus 

or lymphocytic choriomeningitis virus (LCMV) Clone 13 
and were also present in hepatitis C-infected humans. 
SIRPα expression highly correlated with PD-1 expres-
sion, and SIRPα+ CD8+ T cells displayed both activating 
and inhibitory receptors. Functionally, antigen-specific 
SIRPα+ CD8+ T cells display an enhanced ability to prolif-
erate, secrete IFNy and show increased cytolytic potential 
compared with their SIRPα− counterparts during acute 
and chronic viral infection. The status and function of 
CD47 on these CD8+ T cells are currently unknown. 
Blockade of CD47 by an antibody or using SIRPα-defi-
cient T cells in this LCMV model did not affect T cell func-
tionality,38 indicating that in this model CD47 blockade 
is not dependent on SIRPα signaling on CD8+ T cells. 
Interestingly, PD-L1 blockade significantly increases the T 
cell granulation marker CD107 on virus-specific SIRPα+ 
cytotoxic T cells.18 It would be interesting to investigate 
whether SIRPα+ T cells are also present and functional 
in patients with cancer, a disease in which chronic anti-
genic stimulation and exhaustion of T cells in the tumor 
microenvironment also occur. One could hypothesize 
that tumor-specific SIRPα+ T cells bind the tumor cells 
via CD47/SIRPα axis and thereby further enable the T 
cell to kill the tumor cell through its enhanced cytotoxic 
potential. On the other hand, like PD-1 expression, SIRPα 

Table 1  Registered clinical trials that investigate the combination of CD47/SIRPα blockade together with T cell immune 
checkpoint PD-1/PD-L1 blockade

Drugs Phase Clinical trial identifier Status Tumor type

HX009; recombinant anti-CD47/PD-
1 bispecific antibody

II NCT04886271 Recruiting Advanced solid tumors

 �  I NCT04097769 Active, not recruiting Advanced solid tumors

PF-07257876; bispecific anti-CD47/
PD-L1 antibody

I NCT04881045 Not yet recruiting Advanced solid tumors

TTI-621 (SIRPα-IgG1 Fc)+nivolumab I NCT02663518 Recruiting Hematological and solid tumors

TTI-621+PD-1/PD-1 blockade I NCT02890368 Terminated Advanced solid tumors and mycosis 
fungoides

Anti-CD47 AO-176+pembrolizumab I/II NCT03834948 Recruiting Solid tumors

IBI322; recombinant anti-CD47/PD-
1 bispecific antibody

I NCT04912466 Not yet recruiting Advanced solid malignancies

 �  I NCT04795128 Recruiting Hematological malignancies

 �  I NCT04338659 Not yet recruiting Advanced solid malignancies

 �  I NCT04328831 Recruiting Advanced malignancies

Magrolimab and pembrolizumab II NCT04788043 Not yet recruiting Advanced classic Hodgkin’s lymphoma

ALX148+pembrolizumab I NCT03013218 Active, not recruiting Advanced hematological and solid 
tumors

ALX148+pembrolizumab II NCT04675294 Recruiting Advanced head and neck squamous cell 
carcinoma

BI-765063 (anti-SIRPα)+BI-754091 
(anti-PD-1)

I NCT03990233 Recruiting Advanced solid tumors

BI-76503 (anti-SIRPα)+BI-75491 
(anti-PD-1)

 �  NCT04653142 Recruiting Advanced solid tumors

CD47, cluster of differentiation 47; PD-1, programmed death receptor 1; PD-L1, programmed death ligand 1; SIRPα, signal regulatory 
protein alpha.
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may be upregulated on activated T cells to limit T cell 
function. It would therefore be worthwhile to explore if 
CD47 or SIRPα blockade has a positive or negative effect 
on these SIRPα+ cytotoxic T cells. In the situation where 
SIRPα expression on T cells facilitates T cell killing, 
CD47/SIRPα blockade may not be beneficial, whereas 
blocking the potential negative regulator SIRPα may be 
advantageous in terms of directly promoting adaptive 
anticancer immune responses.

Together, SIRPα marks a subset of cytotoxic T cells with 
enhanced functionality in chronic virus-infected humans 
and mice. The presence and potential function of these 
CD8+ T cells in patients with cancer remain unknown.

CD47/SIRPα pathway inhibition combined with PD-1/PD-L1 
axis blockade improves tumor phagocytosis and attracting T 
cells
CD47/SIRPα blockade as a monotherapy has shown 
promising results in specific preclinical and clinical 
studies. However, CD47/SIRPα blockade is more effec-
tive when potentiated with additional therapies, such 
as tumor-specific, ADCC-inducing antibody therapy. 
There is also a rationale to combine innate immune 
checkpoint CD47/SIRPα blockade with immune 
checkpoint PD-1/PD-L1 blockade. First, macro-
phages isolated from colorectal cancer-bearing mice 

and humans express PD-1. PD-1 signaling on tumor-
associated macrophages was inversely correlated to 
their ability to phagocytose,90 and PD-L1 deficiency on 
tumors promotes the ability of PD-1+ macrophages to 
phagocytose target cells. Second, both PD-L1 and 
CD47 are induced by oncogene MYC,91 which is a driver 
oncogene in multiple cancer types, and by hypoxia-
inducible factors (HIF)-1/hypoxia.92 Therefore both 
these inhibitory markers may be present in MYC-driven 
or hypoxic tumors. Chemotherapy-induced expression 
of both CD47 and PD-L1 via HIF-1α/2α suppresses 
both innate as well as adaptive immune cells, thereby 
facilitating therapy-induced immune resistance.92 
Third, resistance to vaccination immunotherapy was 
associated with an impaired infiltration of proinflam-
matory myeloid cells in mice and humans,93 indicating 
that myeloid cells are under certain circumstances 
required for optimal (therapy-induced) CD8-mediated 
immune responses. Fourth, SIRPα expression follows 
the expression pattern of PD-1 on virus-specific CD8+ T 
cells isolated from LCMV-infected mice.18 Lastly, PD-L1 
blockade enhances the degranulation of virus-specific 
SIRPα+ cytotoxic T cells,18 which may also be applicable 
in anticancer immunity. Thus, blocking both CD47 and 
PD-1/PD-L1 signaling simultaneously may have syner-
gistic effects in promoting an antitumor response, and 

Figure 3  MHC-I-deficient tumors are sensitized to CD47/SIRPα blockade. The inhibitory receptor LILRB1, which binds surface 
MHC I, shows synergy with other inhibitory receptor pathways, including the CD47/SIRPα axis. Figure created with BioRender.
com. CD47, cluster of differentiation 47; LILRB1, Leukocyte immunoglobulin-like receptor subfamily B member 1; MHC-I, major 
histocompatibility complex I; SIRPα, signal regulatory protein alpha.

BioRender.com
BioRender.com
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therefore studies have focused on the combination of 
both checkpoint blocking agents in cancer-bearing 
mice.

Anti-PD-L1 and anti-SIRPα (MY1-G1) synergistically 
inhibited tumor growth of MC38 in syngeneic mice 
compared with mice treated with each therapy sepa-
rately, and improved survival rates were observed in the 
combination-treated mice compared with untreated 
Hepa1.6 hepatocellular carcinoma-bearing mice.55 Simi-
larly, MC38 tumor growth in C57BL/6 mice was inhibited 
by CD47-targeting CV1-Fc and anti-PD-L1 atezolizumab 
as separate treatments. However, the greatest reductions 
were observed when a bispecific antibody that targets 
both CD47 and PD-L1 was used.94 This effect was partly 
abrogated when either macrophages or CD8+ T cells 
were depleted in this setting.94 Not only cells that are 
sensitive to CD47/SIRPα blockade, but also cells that 
are insensitive to this treatment appear to benefit from 
combination therapy. CT26-bearing mice were subjected 
to anti-SIRPα (My-1), anti-PD-1 or a combination thereof. 
While CT26 is insensitive to anti-SIRPα alone (MY-1), the 
combination with anti-PD-1 led to significant growth inhi-
bition of CT26 cancer cells compared with mice treated 
with anti-PD-1.61 The mechanism that underlies growth 
inhibition was not studied in more detail. In a similar 
fashion, a significant reduction of B16F10 mouse mela-
noma tumor size, a tumor insensitive to both therapies 
separately, improved survival significantly compared with 
PD-L1 therapy alone.95 Thus, it appears tumor-bearing 
mice can benefit from CD47/SIRPα blockade combined 
with PD-1/PD-L1 blockade.

Further assessments were conducted to investigate 
whether T cells may be relevant effector cells induced by 
this form of combination treatment. Depletion of CD8+ 
T cells showed a partial dependency of those cells for the 
observed growth reductions achieved by the CD47/PD-L1 
bispecific antibody.94 Additionally, histochemical analysis 
of the tumor microenvironment of Hepa1.6-bearing mice 
showed a significant increase of tumor-infiltrating T cells 
in mice that were treated with anti-PD-L1 and anti-SIRPα 
compared with anti-PD-L1-treated mice.55 Thus, CD47/
SIRPα blockade combined with PD-1/PD-L1 blockade 
synergistically inhibits tumor growth in vivo, which may 
be in part explained by the enhanced T cell attraction 
and/or recruitment inside the tumor.

Because of the promising preclinical in vitro and in 
vivo data, there are currently multiple clinical trials 
combining CD47/SIRPα blockade together with other 
forms of checkpoint blockade, such as nivolumab or 
pembrolizumab (table 1). Recently, a phase I clinical trial 
was published that showed that the combination of evor-
pacept (CD47-binding domain of SIRPα fused to an inac-
tive IgG Fc domain) with pembrolizumab (anti-PD-1) was 
safe to use in solid tumors.47 It will be very interesting to 
unravel whether the combination of both CD47/SIRPα 
and PD-1/PD-L1 blockade has synergic effects in patients 
with advanced cancer.

CD47/SIRPα blockade in targeting intrinsic immune resistance 
to CD8-mediated immunotherapy
Primary resistance to CD8+ T cell-mediated adaptive 
responses can occur due to the intrinsic properties of 
cancer cells. Cancer cells may also develop acquired resis-
tance under the pressure of (immune)therapy, which will 
together be referred to as intrinsic immune resistance. 
Intrinsic immune resistance is often facilitated by the 
downregulation of MHC class I on the surface of cancer 
cells.1 96 97 Indeed, downregulation of MHC class I and II 
and β2 microglobulin was found in PD-1/PD-L1-resistant 
cancer cells compared with the parental cells98 99 and in 
patients with cancer refractory to PD-1/PD-L1 blockade 
through mutations in IFN receptor signaling and antigen 
processing pathways.97

There is a reverse correlation between the sensitivity 
to phagocytosis induced by anti-CD47 and the expres-
sion levels of MHC class I.100 In other words, tumors that 
highly express MHC class I are more resistant to phago-
cytosis induced by anti-CD47 (figure 3). Further research 
revealed that MHC class I is recognized by LILRB1 on 
human macrophages, which results in a phagocytic inhib-
itory signal.100 Indeed, MHC-deficient, human-induced 
pluripotent stem cells are selectively removed by macro-
phages in vitro and in vivo, and overexpression of CD47 
in these target cells prevents this macrophage-mediated 
elimination.78 This finding may have great implications 
for the treatment of patients who become resistant to 
immunotherapy, such as PD-1/PD-L1 blockade, due to 
loss of MHC class I expression.97 Further investigations 
are warranted to unravel whether CD47/SIRPα may be 
a suitable treatment for patients who acquire resistance 
to other forms of immune checkpoint blockade. Taken 
together, CD47/SIRPα blocking modalities may be a 
suitable therapy for patients who have acquired classic 
immune resistance due to loss of MHC class I expression.

CONCLUSION
Immunotherapies that target the CD47/SIRPα axis have 
shown very promising preclinical outcomes, and results 
from early clinical testing are also highly encouraging. 
Specifically, combination strategies that include blockade 
of the CD47/SIRPα axis are attractive routes to enhance 
the therapeutic efficacy needed for disease elimination 
in patients, as evidenced by the number of clinical trials.

Preclinical data show that T cells can be required for 
the efficacy of CD47/SIRPα blockade, which may be due 
to direct effects on T cells or indirectly through other 
immune cell subsets. Currently, the effects of CD47/
SIRPα checkpoint blockade on T cells are unknown in a 
clinical setting. For optimal exploitation of this myeloid 
checkpoint, it is important to fully understand the role of 
T cells in relation to CD47 and SIRPα checkpoint inhibi-
tion and further investigation is warranted.

Acquired resistance to classic CD8+ T cell-mediated 
immunotherapies is an expanding clinical problem 
directly affecting their success and thus the survival of 
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patients. As these patients have no alternative therapies 
left, targeting acquired resistance is a clear unmet clinical 
need. It is of high interest that therapy-resistant tumors, 
through downregulation of MHC class I, are specifically 
vulnerable to CD47/SIRPα interfering modalities. An 
optimal usage of CD47 or SIRPα checkpoint therapy for 
acquired resistant tumors is therefore likely to increase 
the breadth of clinical application.
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