Table 3.
UAR and UF1 performance of different approaches under LOSO protocol on composite or individual datasets.
| Approach | Composite dataset | CASME II | SMIC | SAMM | ||||
|---|---|---|---|---|---|---|---|---|
| UAR | UF1 | UAR | UF1 | UAR | UF1 | UAR | UF1 | |
| LBP-TOP (Pfister et al., 2011) | 0.5785 | 0.5882 | 0.5429 | 0.5026 | 0.5280 | 0.2000 | 0.4102 | 0.3954 |
| LBP-SIP (Wang et al., 2014) | 0.4681 | 0.4829 | 0.5281 | 0.5369 | 0.5142 | 0.4452 | 0.4169 | 0.4412 |
| HOOF (Chaudhry et al., 2009) | 0.5814 | 0.5982 | 0.5782 | 0.5874 | 0.5696 | 0.5574 | 0.5877 | 0.5639 |
| MDMO (Liu et al., 2015) | 0.5125 | 0.5635 | 0.5382 | 0.5492 | 0.4812 | 0.4926 | 0.5108 | 0.5021 |
| ResNet18 | 0.6682 | 0.6715 | 0.6522 | 0.6428 | 0.6271 | 0.6542 | 0.6632 | 0.6743 |
| CNN-LSTM (Wang et al., 2018) | 0.3942 | 0.3852 | 0.4125 | 0.4113 | 0.4276 | 0.4150 | 0.3086 | 0.3020 |
| DenseNet121 | 0.3414 | 0.4253 | 0.3334 | 0.4604 | 0.3518 | 0.2909 | 0.3374 | 0.5645 |
| RCN-Best (Xia et al., 2020b) | 0.7190 | 0.7466 | 0.6600 | 0.6584 | 0.8131 | 0.8653 | 0.6771 | 0.7647 |
| TSCNN (Song et al., 2019) | 0.5849 | 0.5923 | 0.6009 | 0.6124 | 0.5924 | 0.5839 | 0.6103 | 0.6083 |
| MobileNetV2 (Sandler et al., 2018) | 0.6425 | 0.6652 | 0.6328 | 0.6125 | 0.6368 | 0.6589 | 0.6236 | 0.6614 |
| DeepViT (Zhou et al., 2021) | 0.7025 | 0.7158 | 0.7001 | 0.6982 | 0.7152 | 0.7369 | 0.7114 | 0.6928 |
| DeiT (Touvron et al., 2021) | 0.6879 | 0.6731 | 0.6814 | 0.6994 | 0.6881 | 0.6970 | 0.7052 | 0.7028 |
| MobileViT (Ours) | 0.6981 | 0.7318 | 0.6997 | 0.7251 | 0.7356 | 0.7141 | 0.6781 | 0.7428 |
The bold values indicate the highest values under the particular metrics.