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Background
Advances in single-cell RNA sequencing (scRNA-seq) methods have revolutionized 
biomedical research by allowing the transcriptomes of millions of cells to be stud-
ied at the same time. This has helped to uncover molecular processes that drive cell 
differentiation and complex diseases [1, 2]. Many computational methods have been 
proposed for scRNA-seq data analysis [1, 3], including unsupervised analysis to char-
acterize novel and disease-specific cell sub-populations such as rare stromal and 
immune cells  [4–6] that cannot be detected by other methods. The delineation of 
small panels with marker genes that characterize such sub-populations is of particu-
lar importance for further molecular characterization and validation of the detected 
cells. For example, flow cytometry can be used to physically isolate cells and quantify 
cell populations or the expression of markers for both research and clinical applica-
tions  [7]. However, flow cytometry requires a small panel of antibodies (<  50) that 
target previously characterized cell surface proteins that can be used as markers for 
cell types of interest. Multiplex immunohistochemistry (IHC) imaging allows protein 
abundance to be measured at a cellular level in tissue cross-sections, which allows 
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cell identification in a spatial context. IHC can also be performed on small panels of 
markers (>30) with IHC compatible antibodies [8]. However, there is a lack of com-
putational methods to explore the high gene coverage of scRNA-seq for delineation 
of cell markers from novel cell subtypes, as detected by cluster analysis of scRNA-seq 
data, for further delineation with antibody-based flow cytometry or IHC imaging.

To our knowledge, only a few bioinformatics methods explicitly tackle this prob-
lem [9], i.e. detection and ranking of few cell specific markers from single cell data. 
COMET  [10], Hypergate  [11], CombiROC  [12] and RANKCORR  [13] are based on 
finding an optimal threshold value for a particular gene to split cells into two groups, 
so that true positives and true negatives are maximal and false positives and false neg-
atives are minimal. COMET uses an XL-minimal HyperGeometric (mHG) test to find 
a threshold that maximizes the enrichment of a cell type given a panel with up to four 
genes. COMET also has a database with surface marker genes to guide the selection 
of markers for flow cytometry. A downside of COMET is that it has high execution 
times and cannot cope with data sets with a high number of cells. Hypergate uses a 
purity score statistic to find markers in scRNA-seq data that distinguish different cell 
types, but its current implementation only provides a single marker per cell. RANK-
CORR explores a non-parametric approach, i.e. ranking gene expression, and using 
sparse binomial regression to find the optimal set of markers for distinct cells  [13]. 
Finally, CombiROC explores the area under the ROC curve statistics of marker com-
binations find the best panel combinations [12]. Commonly used scRNA-seq analysis 
frameworks such as Seurat  [3] and MAST  [14] provide parametric models that can 
also be used for marker detection. However, these methods are known to select mark-
ers with low cell specificity; i.e., highly ranked marker genes are highly expressed in 
the target cell, but may also be expressed in other cell types.

Here, we propose sc2marker, which uses a non-parametric feature selection method 
based on maximum margin to search for marker genes in clustered scRNA-seq data. 
sc2marker considers the distance of true positive and true negative cells to the opti-
mal threshold (maximum margin) to score the best marker genes. Competing meth-
ods (COMET, Hypergate, CombiROC and RANKCORR) do not use the distance of 
cells to the classification threshold to rank marker genes. sc2marker has databases 
that contain markers with antibodies tailored for particular applications, including 
IHC (11,488 protein markers) and IHC staining (6176 protein markers), extracted 
from the Human Protein Atlas  [8]. We also build a database that contains proteins 
with antibodies for flow cytometry (1357 protein markers), which were catego-
rized as cell surface or extracellular matrix proteins in either the Cell Surface Pro-
tein Atlas [15], OmmiPath [16], CellChatDB [17], or the HUGO database [18]. These 
databases contain human proteins and antibodies, which have been more broadly 
validated than those in other organisms. sc2marker also provides similar databases 
that have been tailored for mouse by combing both a small set of antibodies vali-
dated in mouse or proteins that share high sequence similarity between mouse and 
human  [19–21]. These databases support the feature selection task because feature 
selection can be restricted to the gene spaces related to these proteins. Regarding the 
competing methods, only COMET has an antibody database, but it is restricted to 
flow cytometry markers.
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sc2marker is implemented in R and compatible with Seurat [3] objects. The results are 
presented as an intuitive graphical representation with plots and interactive tables. The 
tables contain a ranking of all the selected markers and include relevant information such 
as the source of the database, links to vendors, and links to the antibody registry [22]. We 
evaluate the capability of sc2marker and competing methods to detect known flow cytom-
etry and imaging markers of well characterized immune cells  [10]. For this, we used five 
publicly available scRNA-seq data sets of immune cells and evaluated the performances of 
these methods in ranking known marker genes. We also used sc2marker with two scRNA-
seq datasets of mouse bone marrow stromal cells reported previously [4, 5], and evaluated 
its performance in previously validated markers of poorly characterized and similar mesen-
chymal stromal cell populations.

Methods
sc2marker

We developed sc2marker to predict markers for particular cell types. sc2marker uses a 
normalized gene-by-cell matrix as input (X) and cell labels obtained by clustering the cells 
(Fig. 1). Then criteria based on maximum margin are used to find optimal thresholds and 
rank genes according to their power in distinguishing a target cell type from other cells in 
a data set. Moreover, sc2marker can restrict the feature space to consider only genes that 
have validated antibodies for a particular down-stream application: flow cytometry, IHC 
or immunocytochemistry (ICC) imaging, or a user provided human or mouse database. 
sc2marker outputs a list of markers and its respective visual representation for each cell 
type.

Feature selection using a maximum margin model

Let X ∈ R
nxm represent the cell-by-gene matrix, where n is the number of cells and m is the 

number of genes. All genes are brought to a similar scale as follows:

(1)x̂ij =
xij −min(xj)
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Fig. 1  Schematic representation of the sc2marker framework: The input is a clustered single-cell RNA-seq 
data set and a list of antibodies for the selected application; i.e., flow cytometry or imaging. For every 
potential marker and cell type, sc2marker finds an optimal threshold α (or margin) with maximal distances to 
true positives (TP) and true negatives (TN) and low distances to false positives (FP) and false negatives (FN). 
The threshold score is used to rank markers for each cell type
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where xij is the expression of gene j in cell i, and xj is a vector that represents the expres-
sion of gene j for all cells.

For a given cell type p, a class vector yp is defined as follows:

sc2marker uses a univariate maximum margin function to find the best threshold for a 
given gene j as follows:

where αj ∈ (0, 1) is the optimal cutoff to classify gene j as cell type p.
The class label yp is typically highly imbalanced; i.e., the number of cells for a given 

cell type (positives) is usually smaller than the number of other cell types (negatives). 
Also, sparsity of single cell sequencing data, i.e. no expression might be detected for 
lowly expressed genes, asks for a milder penalization of false negative events. There-
fore, we adapted the previous univariate maximum margin function to consider the 
distances of the true predictions, such that the distances to the true positive predic-
tions have a higher weight than the distances to the true negative predictions, that is:

where

where Aj is equal to the set of true positives {X̂ij|y
p
i = 1, X̂ij > α} , and Bj is the set of false 

negatives {X̂ij|y
p
i = 1, X̂ij≤α} . The set of true negatives Dj and false positives Cj is defined 

accordingly. Next, sc2marker performs a grid search to find the optimal α for each gene i 
and cell type p. By default, sc2marker evaluates values from 0 to 1 in increments of 0.01. 
Of note, the previous equation omits the term associated with false negative observa-
tions (B), as these might arise from single cell data sparsity.

Finally, all genes for a given cell type p with optimal α are ranked using the follow-
ing criteria:

where TPR is the true positive rate |Ai|
|Ai Bi|

 and TNR is the true negative rate |Di|
|Di

⋃

Ci|
 

and FC is the log fold change of the gene expression of the positive and negative predic-
tions mean(Ai

⋃

Bi)+σ

mean(Ci
⋃

Di)+σ
 , where σ is a pseudo count (0.01 as default). The Gene.ranking.score 

reinforces the importance of true positive and true negative predictions for marker rank-
ing. The fold change (FC) guarantees a high difference in the expression levels of the 
marker in the two groups. The previous equation detects positive markers; i.e., those 
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with higher expression in the cell type of interest. Negative markers are estimated by 
inverting the expression values.

To filter low-quality candidate markers, sc2marker ignores genes whose expression is 
detected in less than 15% (by default) of the cells in a cluster of choice (positives). It also 
ignores markers with true negatives lower than 0.65 (default value).

Database of antibodies

Another important feature of sc2marker is the database that contains known available 
antibodies. We collected genes that encode proteins with validated antibodies that have 
been used in different kinds of experiments including IHC and ICC from the Human 
Protein Atlas [8]. For flow cytometry, we catalogued antibodies indicated for flow from 
commercial manufacturers. We also collected genes annotated as being clusters of dif-
ferentiation genes (HUGO [18]), cell surface genes (Cell Surface Protein Atlas [15]), and 
extracellular matrix genes (OmniPath  [16], CellchatDB [17]). Proteins from OmniPath 
and the Cell Surface Protein Atlas whose function was computationally predicted were 
not included. Finally, only genes that encode proteins with validated antibodies in at 
least one of these databases were considered as flow cytometry markers.

All previous antibody databases have focused on human proteins. To construct a 
mouse version of these databases for imaging data, we selected the small number of pro-
teins in the Human Protein Atlas that have also been validated in a mouse brain cell line 
(979 genes for IHC and ICC). To expand the number of proteins, we used a strategy 
that is commonly reported in the literature; i.e., we considered only proteins with high 
sequence conservation in the antigen regions between mouse and human (90% ) [19–21, 
23]. Using this strategy, we obtained 7306 and 6477 proteins that had associated IHC 
and ICC data, respectively. For the flow cytometry data, there are only a few antibodies 
that have been reported by vendors to be validated for mouse. To expand the number 
of antibodies, we again considered proteins with high sequence conservation between 
mouse and human (90% ) and constructed a flow cytometry mouse database that con-
tained 528 proteins. Details of the antibody databases used by sc2marker are provided 
in Table 1.

In all cases, we used the gene symbol as the protein identifier. The appropriate data-
base is used by sc2marker to limit the gene search space. Antibody information and a 
link to the antibody register [22] are given in the sc2marker output to provide users with 
the appropriate information for final marker selection. sc2marker also allows a user to 

Table 1  Antibody databases used by sc2marker

 ICC immunocytochemistry, IHC immunohistochemistry, Flow flow cytometry

Category Source Number

ICC Human Protein Atlas 12813

IHC Human Protein Atlas 15320

Flow Antibody vendors, Cell Surface Protein Atlas, HUGO, OmniPath, CellchatDB 1357

ICC_Mouse Human Protein Atlas (antigen conservation or validated in mice ) 6477

IHC_Mouse Human Protein Atlas (antigen conservation or validated in mice) 7306

Flow_Mouse Antibody vendors, Cell Surface Protein Atlas, HUGO (antigen conservation or 
validated in mice)

528
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provide their own marker database, which can be easily input as a csv file. Users can 
execute sc2marker with any database combination. sc2marker provides the database 
and annotation details for a given marker, which allows users to trace the evidence (vali-
dated, homology, or user provided) that supports the marker.

Datasets

We used publicly available scRNA-seq data sets to benchmark sc2marker and compare it 
with competing methods. In particular, we explored data sets of immune cells for which 
flow cytometry markers are known to be well characterized for cell types.

Mouse Cell Atlas scRNA‑seq data for spleen and lung

The Mouse Cell Atlas (MCA) [2] is a database that contains more than 400,000 single-
cell transcriptomics profiles from 51 mouse tissues, organs, and cell cultures constructed 
by Microwell-seq. Cell types in the MCA data have been fully defined by manual anno-
tation and cover more than 800 major cell types and more than 1000 cell subtypes. We 
obtained scRNA-seq data from mouse spleen and lung as a cell-by-gene matrix that was 
normalized using the LogNormalize function in the Seurat package) [3] with scale.factor 
= 10,000 and scaled using the ScaleData function with default settings. Principal compo-
nent analysis was performed on the scaled matrix and the first 30 principal components 
were used to run a UMAP dimension reduction. The spleen data set (MCA-spleen) con-
tained 1970 cells that were characterized in 10 distinct cell types (erythroblast, plasma 
cell, neutrophil, T cell, marginal zone B cell, monocyte, dendritic cell, macrophage, gran-
ulocyte, and natural killer (NK) cell). The lung data set (MCA-lung) contained 6940 cells 
that were characterized in 31 distinct cell types, including B cell, T cell, and NK cells.

We used known cell markers for the well characterized immune cells (B cell, T cell, NK 
cell, and macrophages) as true class labels in both the MCA-spleen and MCA-lung data 
sets [10] (Table 2). The UMAP dimension reduction for the immune cell types and gene 
expression of true labels are shown in Fig. 2.

Human multiome of peripheral blood mononuclear cells

We used a multiome data set (CITE-seq with RNA and protein) of human peripheral 
blood mononuclear cells (human-PBMC) that contains 16,1764 human white blood cells 
with scRNA-seq data of 20,729 genes and 228 surface proteins obtained from  https://​
atlas.​fredh​utch.​org/​nygc/​multi​modal-​pbmc/. Because both protein and RNA data were 
available, we performed an independent selection of true labels on the protein data using 
the standard Seurat protocol. We used the selected true labels to evaluate the marker 
detection methods that consider only scRNA-seq data.

Table 2  Known flow cytometry cell markers for major immune cells

Cell type Markers seta

B cell Ly6d, Cd19, Ms4a1, Cd22, Cd79b

T cell Cd3d, Cd3e, Cd3g

NK cell Ncr1, Klrb1a, Klrb1c

Macrophages Cd14, Adgre1

https://atlas.fredhutch.org/nygc/multimodal-pbmc/
https://atlas.fredhutch.org/nygc/multimodal-pbmc/
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Pre-processing and dimensional reduction were performed independently on both 
the RNA and protein data. Weighted nearest neighbor (WNN) analysis [3] was used 
to calculate the closest neighbors of each cell in the data set based on a weighted 
combination of RNA and protein similarities. UMAP dimension reduction and clus-
tering were performed on the WNN graph. Eight cell types were identified: mono-
cytes, B cells, NK cells, CD4+ T cells, CD8+ T cells, other T cells, dendritic cells, 
and others. Then, we performed a differential abundance analysis of the protein data 
using Seurat (Wilcoxon rank sum test) to derive cell-specific markers (true labels). 
This analysis and cell annotation were obtained by following the Seurat 4 tutorial, 
and therefore serve as an independent method for delineation of true labels [3] (see 
https://​satij​alab.​org/​seurat/​artic​les/​multi​modal_​vigne​tte.​html).

We obtained the following true label markers: CD21, CD72, CD22, IgD, 
CD19, CD268, CD20, CD73, CD275, and IgM (CR2, CD72, CD22, IGHD, CD19, 
TNFRSF13C, MS4A1, NT5E, ICOSLG, and IGHM) for B cells; CD123, CD304, 
and CD271 (IL3RA, NRP1, and NGFR) for dendritic cells ; CD8 (CD8A, CD8B) 
for CD8+ T cells; CD4 for CD4+ T cells; CD64, CD11b, CD155, CD14 (FCGR1A, 
ITGAM, PVR, CD14) for monocytes; and CD16, CD56, CD335, CD122, CD337, and 
CD158B (FCGR3A, NCAM1, NCR1, KIR2DL3, IL2RB, and NCR3) for NK cells.

Human multiome of human bone marrow

We used a human bone marrow CITE-seq data set (human-BM) that contains 30,672 
human bone marrow cells with 17,009 genes and 25 surface proteins [24]. Five major 
cell types were identified: T cells, B cells, progenitor cells, NK cells, and monocyte/ 
dendritic cells. We use the same strategy as for the human-PBMC data for pre-pro-
cessing and delineation of cell-specific markers (true labels). We obtained the fol-
lowing true label markers: CD3C, CD3G, CD3D, CD27, CD28, IL7R, CD8A, and 
CD4 for T cells; CD19 and CD79B for B cells; CD34 for progenitor cells; ITGAX and 
NCAM1 for monocyte/dendritic cells; and FCGR3A, KLRB1, and NCAM1 for NK 
cells.

Fig. 2  UMAP dimension reduction and dotplots of gene expression of markers used as true labels. Five cell 
types and five data sets were used. Mouse Cell Atlas (MCA)-Spleen (A, B), MCA-Lung (C, D), Human-Lung (E, 
F), Human-BM (bone marrow) (G, H), and Human-PBMC (human peripheral blood mononuclear cells) (I, J). 
In the dotplots, the size of the dot indicates the number of cells expressing the gene and the color intensity 
indicates the expression level

https://satijalab.org/seurat/articles/multimodal_vignette.html
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Human multiome of PBMC and lung cells

We also used data from a multiome protocol with PBMC and lung cells (human-
PBMC&lung) that contained 10,470 cells (7108 lung, 3362 PBMC) with 33,514 genes 
and 52 surface proteins  [25] obtained from the  https://​archi​ve.​softw​arehe​ritage.​org/​
browse/​revis​ion/​1c7fc​abb18​a1971​dc4d6​e29bc​3ed4f​6f36b​2361f/link. Nine major cell 
types were identified: CD4+ T cells, CD8+ T cells, B cells, plasmacytoid dendritic 
cells, NK cells, myeloid dendritic cells, epithelial cells, macrophages, and mono-
cytes. We used the same strategy as for the human-PBMC data for pre-processing 
and delineation of cell-specific markers (true labels). The following true label markers 
were obtained: CD8A, CD8B, and ITGAE for CD8+ T cells; CD19 for B cells; CD1A 
and CD1C for myeloid dendritic cells; IL3RA and SELL for plasmacytoid dendritic 
cells; and EPCAM for epithelial cells.

Mouse bone marrow stromal cells

We used a mouse bone marrow stromal cells data set measured by droplet-based 
scRNA-seq that contained common bone marrow cell types and rare cells  [5]. The 
data set contained 7497 cells and 16,701 genes that were grouped in 32 cell types, 
including mesenchymal, immune, neuronal, endothelial, and hematopoietic progeni-
tors cells. We used the pre-processed data as provided by Baccin and colleagues [5]. 
We focused on the characterization of the mesenchymal cell types. Because of the 
lack of known markers for these cell types, we did not used these data for benchmark-
ing, but used the data in a exploratory analysis with sc2marker.

Myelofibrosis mouse bone marrow stromal cells

We used a single cell sequencing data with stromal cells from a myelofibrosis mouse 
model previously described in [4]. In short, we obtained an pre-processed data with 
2294 cells and eight clusters including from https://​doi.​org/​10.​5281/​zenodo.​39790​87. 
We focus on the characterization of mesenchymal stromal cells (MSC), osteolineage 
cells, adventitial fibroblasts and schwann cell progenitors. We have focused on the 
detection of markers of two MSC

Competing methods

We evaluated the performances of competing methods COMET  [10], Hyper-
graph  [11], RANKCORR  [13] and CombiROC  [12], as well as statistical tests used 
for selection of cluster-specific markers in scRNA-seq data, including the student 
t-test, Wilcoxon rank sum test, logistic regression (all implemented in Seurat [3]), and 
MAST [14]. The evaluations also included base line methods such as expression fold 
change (FC) and receiver operating characteristic (ROC)-based feature selection [26].

Seurat marker detection

We evaluated the statistical methods provided by Seurat  [3] to compare the expres-
sion distribution of a gene between two groups of cells; i.e. cells of a target cell type 
p and other cell types. These methods include the student t-test, Wilcoxon rank sum 
test, and logistic regression implemented in the Seurat package. We used the provided 

https://archive.softwareheritage.org/browse/revision/1c7fcabb18a1971dc4d6e29bc3ed4f6f36b2361f/
https://archive.softwareheritage.org/browse/revision/1c7fcabb18a1971dc4d6e29bc3ed4f6f36b2361f/
https://doi.org/10.5281/zenodo.3979087
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statistics (p-values) to rank the candidate marker genes, and explored the simple use 
of expression FC as provided by Seurat.

MAST hurdle model

MAST  [14] explores a hurdle model tailored to scRNA-seq data that assumes the log 
of expression follows a normal distribution to identify genes that are differentially 
expressed between two groups of cells. The fraction of genes that are detected in each 
cell is used as a covariate to fit a logistic regression model. This process helps decrease 
background correlation between genes. We used the p-value to rank the candidate genes 
returned by MAST.

Receiver operating characteristic (ROC) curve

For a given cell type p, ROC takes a single gene as the classifier. For gene j, the ROC 
curve goes through αj ∈ (min(xj),max(xj)) . The set of true positives is equal to 
{X̂ij|y

p
i = 1, X̂ij > αj} and the set of false negatives is {X̂ij|y

p
i = 1, X̂ij ≤ α} . True negatives 

and false positives are defined accordingly. The ROC curve of gene j is built based on the 
true positive rate (TPR) and true negative rate (TNR) of different αj as follows:

The area under the (ROC) curve (AUC) is calculated and the classification power is cal-
culated as (abs(AUC − 0.5)) ∗ 2) . Classification power values range from 0 to 1, where 1 
indicates perfect classification. This score is used to rank the predictions.

COMET

COMET [10] is a framework for combinatorial prediction of single-gene or multi-gene 
marker panels. COMET performs non-parametric exhaustive searches to predict marker 
panels for all combinations for up to four markers. COMET implements a XL-mHG test 
to calculate the best split value of two clusters and ranks the features based on the XL-
mHG p-value and then the log2 FC of mean expression within and outside the cluster of 
interest. For a given cell type p, the mHG test first ranks the class vector yp by the gene 
expression in decreasing order, and then calculates the mHG test Pvalue. The XL-mHG 
test uses two additional parameters X and L, where X indicates the minimum true posi-
tive rate (TPR) and L indicates the maximum of predicted positive cases. COMET has a 
list of 796 surface marker genes; 13 are obsolete gene symbols. Most of these genes (661) 
are common with the sc2marker flow database (135 genes are unique to COMET and 
696 are unique to sc2marker). We evaluated COMET with this gene list (COMET+DB) 
and without a gene list (COMET). sc2marker also allows users to explore the COMET 
database using the option “category=FlowComet”.

(6)TPR =
TruePositive

TruePositive + FalseNegative

(7)TNR =
TrueNegative

TrueNegative + FalsePositive
.
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Hypergate

Hypergate [11] uses a non-parametric score that explores true positives (TP), false posi-
tives (FP), false negatives (FN) and true negatives (FN) (as defined above) in a measure 
that combines both purity (sensitivity) and yield (specificity). The Hypergate F1 score is 
calculated as follows:

where TP is the set of true positives {X̂ij|y
p
i = 1, X̂ij > α} , and FP is the set of false posi-

tives {X̂ij|y
p
i = 1, X̂ij ≤ α} . The set of false negatives (FN) is defined accordingly as TP 

and FP. Hypergate implementation only detects up to four markers per cell type; there-
fore, we reimplemented the Hypergate criteria within our tool to rank all markers as do 
all other evaluated methods.

CombiROC

CombiROC [27] explores ROC curves from a combination of predictors (between 1 and 
5) ranked by specificity, sensitivity and area under the ROC curve (AUC). It was exe-
cuted with default parameters. Of note, due to computational demands, we were only 
able to execute CombiROC after filtering for genes in the antibody database.

RANKCORR

RANKCORR [13] works by creating ranks of mRNA count data and then searches for 
a hyperplane that linearly separates a small number of marker genes (between 4 and 8). 
Moreover, RANKCORR supports multi-class marker selection. For comparative pur-
poses, we set RANKCORR for the two-class classification problem (target cells vs. other 
cells). Otherwise, we used default parameters.

Results
Benchmarking of methods for cell marker detection for flow cytometry data

We used five distinct data sets (MCA-lung, MCA-spleen, human-PBMC, human-BM, 
and human-lung &PBMC) to evaluate the predictive performance of sc2marker and 
competing methods (t-test, Wilcoxon rank sum test, MAST, linear regression, ROC, 
FC, COMET, Hypergate, CombiROC and RANKCORR) for recovery of cell-specific 
marker genes. We evaluated all methods by either considering all genes or only genes 
in sc2marker antibody DB. Due to high computational time, we could only evaluate 
CombiROC with the antibody DB. Their performances with the MCA-lung and MCA-
spleen data were evaluated by ranking true marker genes, which are a collection of well-
known flow markers for immune cells, as was proposed for COMET [10] (see Table 2). 
For the human data sets (PBMC, BM, and Lung &PBMC), we define true labels from an 
independent analysis of the matching protein data using the standard Seurat pipeline 

(8)F1 = 2 ·
Precision · Recall

Precision+ Recall

(9)Precision =
#TP

#TP + #FP
,Recall =

#TP

#TP + #FN
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for CITE-seq data. Marker predictions were performed by providing only scRNA-seq 
data. Visualization of the scRNA-seq clusters and expression values of the markers (true 
labels) are shown in Fig. 2.

The distributions of ranks of all true labels for each method and data set are shown 
in Fig.  3A–E. Marker predictions were performed for each cell type independently, 
but cell type-specific ranks were combined for simplicity. A good performing method 
should have low rank scores; i.e., true marker genes are ranked as 1, 2, 3, and so on. 
sc2marker+DB had the lowest rank distribution in four out of five data sets and was 
third in another data set. Another good performing tool was Hypergate+DB, which was 
among the four top performing methods in all data sets. Among the methods that do 
not use an antibody database, sc2marker had the lowest rank scores in all data sets. The 
statistical methods implemented in Seurat (t-test and linear regression) had poor perfor-
mances in most data sets. The complete results with ranking of all the methods for each 
cell type and data set are provided in Additional files 1, 2, 3, 4, 5 and 6.

The computational times for most of the methods were less than one hour for the 
MCA-lung and MCA-spleen data sets (Table  3). An exception was COMET, which 
required 64 hours for the MCA-spleen and 24 days for the MCA-lung data set and failed 
to execute in the large human-PBMC data set because of the large number of cells. Com-
biROC failed to run without the antibody DB in all data sets. The use of the antibody DB 
reduced the computational time for all methods by at least 10-fold (Fig. 3F; Table 3), with 
the exception of RANKCORR, which had a decrease of five fold. Indeed, sc2marker+DB 
was among the top 4 fastest methods only being outperformed by the statistical 
approaches FC, t-test and Wilcoxon test (Fig.  3F). The maximum computational time 

Table 3  Execution time of methods in seconds. T, student t-test; LR, linear regression; ROC, receiver 
operating characteristic; FC, fold change

Method MCA-Spleen MCA-Lung Human-Lung 
&PBMC

Human-BM Human-PBMC

COMET 233,760.604 2,143,037.250 Failed Failed Failed

COMET + DB 297.737 1,837.851 260.130 383.059 Failed

CombiROC + DB 53.112 385.255 2130.589 2080.815 16854.740

MAST 335.188 2,584.087 418.121 615.921 13,457.332

MAST + DB 24.285 173.521 29.920 46.128 918.817

Wilcoxon 84.161 563.938 260.130 383.059 16,507.774

 Wilcoxon + DB 7.623 32.223 43.817 24.566 938.315

T 59.072 367.252 162.578 243.478 3,634.189

T + DB 7.555 27.483 17.432 16.956 253.804

LR 285.929 3,107.313 464.449 684.169 11,372.861

LR + DB 18.368 174.837 29.061 40.596 701.804

ROC 315.340 1,015.340 491.229 723.092 13,321.247

ROC + DB 26.295 74.471 33.701 47.456 1052.457

FC 57.330 215.132 108.760 176.104 554.331

FC + DB 4.591 14.944 7.633 13.098 40.919

RankCorr 388.149 585.558 448.422 618.094 21654.163

RankCorr + DB 67.956 127.577 125.301 160.225 5398.131

sc2marker 277.122 3,150.673 368.844 240.640 17,570.998

sc2marker + DB 17.031 79.344 35.184 22.283 184.119
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of sc2marker+DB was 3 minutes to detect markers in the large human-PBMC data set. 
This reinforces the idea that using an antibody database improves both ranking accuracy 
and computational time for sc2marker and all evaluated methods.

We investigated the expression patterns of the top two markers per cell of all the meth-
ods for the MCA-lung data set. As an additional benchmarking, we have performed 
clustering analysis by only a gene expression matrix with only the markers selected by a 
given method. Clustering was performed using Seurat’s Louvain algorithm with default 
parameters. We evaluated results by contrasting the clusters with the cell labels using 
the adjusted Rand index. As the use of the antibody DB reduces the marker space (and 
the ARI scores), we only compare methods with and without DB independently. As seen 
in Fig. 4, sc2marker is ranked first followed closely by RANKCORR and Hypergate. This 
results supports the discriminate power of small marker panels selected by sc2marker.

Fig. 3  Ranking of markers and computational time for all the evaluated methods: Distribution of the ranks 
of true markers for the MCA-Spleen (A), MCA-Lung (B), Human-Lung &PBMC (C), Human-BM (bone marrow 
CITE-seq data) (D), and Human-PBMC (human peripheral blood mononuclear cells CITE-seq data) (E) data 
sets for all evaluated methods. For simplicity, the distributions and ranks of all the cell types were combined 
for a given method and data set. The methods that gave lower ranks for the true markers were the best in 
recovering the true cell markers. (F) Distribution of computational time for all the evaluated methods in 
seconds. Methods are ranked by increasing median value and values are shown in log 10 scale. The statistical 
significance of the best overall method (sc2marker + DB) compared with the other computing method is 
indicated as; * p-value < 0.1, ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001 by the Wilcoxon rank 
sum test (adjusted using the Bonferroni correction)
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Fig. 4  Clustering accuracy based on top 2 markers for all the evaluated methods. Clustering performance 
as measured by the adjusted Rand index (ARI) by considering the combination of all top two markers per 
method. Distribution of the ARI for top2 markers without (A) and with the antibody DB (B)

Fig. 5  Top markers per cell type for Mouse Cell Atlas (MCA)-Lung for all the evaluate methods: Dotplots 
with the top two selected markers per cell type as predicted in the MCA-Lung single-cell data set. The size of 
the dot indicates the number of cells expressing the gene and color intensity indicates the expression level. 
Specific markers should be within the red boxes. Bold type indicates markers that are true labels; squares 
indicate cells the markers are associated with
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Finally, we investigate the expression of the top two markers per cell for selected meth-
ods in the MCA-lung data set (Fig.  5). Ideally, markers should have high expression 
specificity; i.e., they are expressed only in the target cells. The top markers selected by 
sc2marker-DB and COMET-DB, the methods that performed well in ranking the MCA-
lung data set (Fig.  5), had the desired cell-specific gene expression. The t-test, which 
performed worst in ranking the MCA-lung data set, selected cell markers that were 
expressed in other cells; i.e., Cd74, which was selected as a B cell marker, also had high 
expression in macrophages (Fig. 5C). Moreover, sc2marker+DB ranked two true label 
markers as the top two for B cells and NK cells. Similar results were observed in other 
data sets.

Detection of imaging markers for rare bone marrow stromal cells

Next, we applied sc2marker and the competing methods for a characterization of mouse 
bone marrow with 32 cell types, including mesenchymal, immune, neuronal, endothelial, 
and hematopoietic progenitors cells [5]. Among others, Baccin and colleagues used the 
ROC method to find cell-specific markers for imaging [5]. They validated several mark-
ers for mesenchymal cell subtypes such as Cxcl12 in Adipo-CAR and Osteo-CAR cells 
and Alpl in Osteo-CAR cells. sc2marker also ranked these two markers: # 2 for Cxcl12 in 
Adipo-CAR and # 5 in Osteo-CAR, and # 4 for Alpl in Osteo-CAR. FC and ROC ranked 
Cxcl12 # 1 in Adipo-CAR, and ROC ranked Cxcl12 # 5 in Osteo-CAR cells. None of the 
other competing method ranked either of these two markers among the top five markers 
(see Additional files 7 and 8 for the complete results).

Next, we consider if sc2marker could detect markers that were more specific for 
Adipo-CAR and Osteo-CAR because the Cxcl12 marker reported in [5] did not differen-
tiate between Adipo-CAR and Oste-CAR cells (Fig. 6); i.e., the expression of Cxcl12 was 
high in both cells (Fig. 6). We found that the markers ranked # 1 and # 3 for Adipo-CAR 
(Adipoq and Lpl) had more specific expression than Cxcl12 in Adipo-CAR cells (Fig. 6). 
sc2marker also detected two markers in Osteo-CAR (Angpt4 and Tnc) that had more 
specific expression than Alpl in Osteo-CAR cells.

In a recent study in Adipoq-Cre reporter mice, Adipoq+ cells were confirmed to 
define a population of mesenchymal cell-derived adipogenic progenitors [28]. This find-
ing supports the potential value of Adipoq as a marker for Adipo-CAR cells. Moreo-
ver, an expression analysis of these cells indicated that they expressed Lpl, suggesting 
that Lpl was an alternative marker for Adipo-CAR cells. Osteo-CAR-specific markers 
include angiopoietin-related protein 4 (Angpt4) and tenascin-C (TnC), which are related 
to angiogenesis and extracellular matrix, respectively, and have been previously shown 
to have protein expression that is specific to bone marrow mesenchymal cells [28, 29]. 
Together, these results support the ability of sc2marker to find imaging markers.

We also evaluate sc2marker and competing methods in the characterization of bone 
marrow stromal cells associated with myelofibrosis in mouse [4]. There, clustering analy-
sis revealed eight clusters: four mesenchymal stromal cells (MSCs), an osteolineage cell 
cluster (OLCs), an adventitial fibroblast cluster (ACs) and two clusters of schwann cell 
progenitors (SCPs). Pathway and cell composition analysis indicated that two of the four 
found MSC clusters are reprogrammed in disease and that these cells function as the 
key cellular drivers of fibrosis [4]. Using a FACS panel consisting of PDGFRA, PDGFRB, 
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Fig. 6  Top five markers predicted by sc2marker in Adipo-CAR and Osteo-CAR cells: Ridge plots of top five 
markers identified in the mouse bone marrow data set in Adipo-CAR (A) and Osteo-CAR (B) cells. Traced 
lines indicate the threshold detected by sc2marker. The hematopoietic, immune, and endothelial cell 
sub-populations are grouped for clarity

Table 4  Top 4 cell markers for MSC-fib in mouse stromal cells and ARI value after clustering the cells 
with the selected markers

Bold indicate validated markers. Methods are sorted by decreasing ARI

Methods Top1 Top2 Top3 Top4 ARI

sc2marker Vcam1 Pdgfrb Pdgfra Cd63 0.1882297
MAST Aplp1 Cldn11 Vcam1 Apod 0.1830788

LR Vcam1 Pdgfrb Aplp1 Cryab 0.1697615

Wilcox Vcam1 Pdgfrb Prnp Pdgfra 0.1685325

ROC Vcam1 Pdgfrb Pdgfra Prnp 0.1674651

Hypergate Vcam1 Pdgfrb Pdgfra Lamp1 0.1491762

RankCorr Pdgfra Pdgfrb Prnp Aplp1 0.1436412

T Vcam1 Pdgfrb Aplp1 Cryab 0.1367963

CombiROC Itgb4 Vcam1 Ly9 Il2rg 0.1296453

Comet Vcam1 Pdgfrb Il1r1 Pdgfra 0.1259644
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CD63 and VCAM1, the difference between these fibrosis-driving MSCs (MSC-Fib) and 
non-fibrosis driving MSCs (MSC-NonFib) could be further characterized in vitro. We 
used this dataset to test sc2marker and competing methods ability to find marker genes 
using the flow cytometry DB. Interestingly, only sc2marker returns the same four mark-
ers validated in [4]. Some of the competing methods, Hypergate, ROC and Wilcox’s test 
could detect three out of the four markers (Table 4). The better predictive performance 
of sc2marker is also confirmed by a higher ARI score after clustering cells by using the 
marker genes (Table 4) This is further supported by the good separation of the MSC-Fib 
cells from other cells by using imputed [30] expression values of these markers (Fig. 7B).

Discussion
We have shown that sc2marker provides a unique framework for selecting gene markers 
from scRNA seq data for subsequent imaging and flow cytometry analysis. sc2marker 
has two major methodological advantages over competing methods: (1) it has a com-
prehensive antibody database for either imaging or flow cytometry analysis, and (2) its 
feature selection method considers the distance of the cells to the threshold value (or 
margin) and favors thresholds that maximize the distance to true positive and true nega-
tive predictions.

Our benchmarking analysis on five scRNA-seq data sets showed the advantage of 
sc2marker over competing methods. Using sc2marker without an antibody database 
showed that sc2marker performed better (lower rankings and best clustering results) 
than the other methods in the majority of evaluated data sets. A comparative analysis 
of the expression patterns of the top ranked markers indicated that sc2marker detected 
markers that were specifically expressed in the target cells, whereas the common statisti-
cal approaches used in Seurat tended to select markers that were also expressed in other 
cell types related to the target cell type. Another methodological advantage is the intro-
duction of a comprehensive antibody data base. Its use reduced the computational time 
and ranking scores for all evaluated methods. Our analysis of imaging markers and flow 
cytometry for rare stromal cells further highlighted the advantage of sc2marker over 
competing methods.

Fig. 7  Marker detection of myelofibrosis associated MSCs UMAP demonstrating the clustering of mouse 
bone marrow stromal cells (A) and scatter plots with the expression of cells for marker genes detected by 
sc2open (Pdgfbra, Pdgfbrb, Cd63 and Vcam1). Expression values were imputed with MAGIC [30] (B)
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sc2marker is implemented in an easy to use R library that can be used with scRNA-
seq data analyzed by Seurat [3]. sc2marker provides graphical and tabular reports that 
include annotation of the selected markers; i.e., source of the antibody annotation and 
link to the antibody register. Furthermore, sc2marker can be expanded with a user pro-
vided antibody database that can be used in combination with existing ones. These fea-
tures provide a simple and direct way for users to derive new markers from single-cell 
data by combing the known expertise of the laboratory.

The relationship between the amount of RNA transcripts, as measured by RNA-seq, 
and the abundance level of protein, as measured in CITE-seq, imaging and flow cytom-
etry, is not one to one. A good example is the discordance of the expression values of 
the PTPRC gene and its two protein isoforms CD45RA and CD45RO (Additional file 9: 
Fig.  S1). Another example is CD4, which is a well established marker for some T cell 
subsets. For the CITE-seq human-BM and human-PBMC data sets, CD4 has a expres-
sion specific to T cells at the protein level (Additional file 9: Figs. S2, S3). However, at the 
RNA level, CD4 has higher expression in monocytes than in T cells . This is a clear limi-
tation of any scRNA-seq based marker detection algorithm, which should be considered 
by its users.

Also, sc2marker (and any competing method) assumes that all the negative cells are 
present in the scRNA-seq data. Therefore, to select imaging markers, users should use 
scRNA-seq data that were obtained from all major cell types of a given tissue. This is 
the case for the stromal cell scRNA-seq data set, which contains data for all major stro-
mal and hematopoietic cells in the bone marrow. To identify flow cytometry markers, 
scRNA-seq data of pre-sorted cell populations can be used; however, the newly detected 
markers need to be combined with the flow scheme that was used before the scRNA-
seq experiment was conducted. An interesting feature of some competing methods, 
e.g. COMET, RANKCORR and CombiROC, is the fact that they are able to find marker 
panels combining a few markers. It comes, however, with an exponential increase in the 
computational requirements. The extension of sc2marker to consider marker combina-
tions by exploring efficient max-margin classifiers is an interesting path for future work.
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