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Emerging evidence has suggested a close correlation between COVID-19 and neurodegenerative disorders. However, whether
there exists a causal association and the effect direction remains unknown. To examine the causative role of COVID-19 in the risk of
neurodegenerative disorders, we estimated their genetic correlation, and then conducted a two-sample Mendelian randomization
analysis using summary statistics from genome-wide association studies of susceptibility, hospitalization, and severity of COVID-19,
as well as six major neurodegenerative disorders including Alzheimer’s disease (AD), amyotrophic lateral sclerosis, frontotemporal
dementia, Lewy body dementia, multiple sclerosis, and Parkinson’s disease. We identified a significant and positive genetic
correlation between hospitalization of COVID-19 and AD (genetic correlation: 0.23, P= 8.36E–07). Meanwhile, hospitalization of
COVID-19 was significantly associated with a higher risk of AD (OR: 1.02, 95% CI: 1.01–1.03, P: 1.19E–03). Consistently, susceptibility
(OR: 1.05, 95% CI: 1.01–1.09, P: 9.30E–03) and severity (OR: 1.01, 95% CI: 1.00–1.02, P: 0.012) of COVID-19 were nominally associated
with higher risk of AD. The results were robust under all sensitivity analyses. These results demonstrated that COVID-19 could
increase the risk of AD. Future development of preventive or therapeutic interventions could attach importance to this to alleviate
the complications of COVID-19.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19), caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread
across the world and led to substantial morbidity and mortality [1].
Due to the multifactorial pathogenesis of COVID-19, various
complications have been observed in patients with COVID-19
discharged from hospitals, such as fatigue, impaired pulmonary
function, kidney injury, and neurological manifestations [2, 3].
However, some long-term consequences might not be observed
promptly, especially in observational studies which might be
biased by unavoidable confounding factors. Identifying potential
complications of COVID-19 might help better understand the
pathogenesis of this epidemic, and facilitate therapeutic options
which could alleviate the complications of COVID-19.
Recent findings have shown a close correlation between

COVID-19 and neurodegenerative characteristics [4, 5], bringing
the potential role of COVID-19 in the future development of
neurodegenerative diseases into the spotlight. Neurodegenera-
tive disorders are characterized by a slow progressive loss of
neurons in the central nervous system (CNS), which leads to
deficits in specific brain functions. It is becoming clear that
COVID-19 can affect CNS, and patients diagnosed with COVID-19
may develop neurological symptoms [6]. From the epidemiolo-
gical perspective, previous retrospective analysis of over 200,000
patients in the UK found that 1.74 and 0.26% of patients with
intensive therapy unit (ITU) admission due to COVID-19
developed dementia and parkinsonism respectively in the

6 months after initial infection [5]. Meanwhile, neurodegenera-
tive biomarkers like neurofilament light chain (NfL) and glial
fibrillary acidic protein (GFAP) were higher in COVID-19 patients
than non-COVID-19 patients with mild cognitive impairment or
Alzheimer’s disease (AD), and these markers were correlated
with the severity of COVID-19 [4]. Pathologically, SARS-CoV-2
spike enters host cells by binding to its receptor human ACE2
(hACE2) through its receptor-binding domain (RBD) [7]. Direct
SARS-CoV-2 viral invasion of the CNS occurs in a subset of
patients with COVID-19 [8], and SARS-CoV-2 might infect brain
cells and damage neurons, thus affecting CNS and triggering
neurological symptoms [9, 10]. Previous study has shown that
SARS-CoV-2 could infect neural tissues and cause significant
neuronal death based on experimental evidence in human brain
organoids, mice with over-expressing ACE2, and autopsies from
patients who died of COVID-19 [10]. Meanwhile, the innate
immune responses and cytokine storm triggered by COVID-19
might also promote the development or progression of
neurodegeneration [11]. Peripherally released cytokines could
cross the blood-brain barrier, thus causing direct neurotoxicity
and contributing to the activation of microglia and astrocytes
[12]. Meanwhile, peripheral immune cells could participate in
the progression of neuroinflammatory and neurodegenerative
diseases by infiltrating the brain [13]. Patients with severe
COVID-19 infection have been reported to experience severe
cytokine storm, with increased serum levels of proinflammatory
cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor
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(TNF)-α [14], which might promote neuroinflammation and
neurodegeneration [15, 16]. The proinflammatory cytokines
might act directly on neurons to induce apoptosis [17].
Meanwhile, proinflammatory cytokines could cause a breach in
the blood-brain barrier thereby allowing for the entry of
inflammatory cells into the brain, which could induce the
additional release of inflammatory and neurotoxic molecules
contributing to chronic neuroinflammation and neuronal death
[15]. Meanwhile, the activation of the NLRP3 inflammasome
triggered during SARS-CoV-2 infection might lead to down-
stream tau aggregation and neurodegeneration [18]. The
specific molecular mechanism by which SARS-CoV-2 activates
NLRP3 inflammasomes is still unclear. A previous study has
shown that SARS-CoV-2 N protein promotes the assembly of the
NLRP3 inflammasome through direct interaction with NLRP3
protein [19]. In another study, the authors infected primary
human CD14+ monocytes in vitro with SARS-CoV-2, and found
that SARS-CoV-2 infection could trigger caspase-1 activation, IL-
1β production, and NLRP3 puncta formation. The evidence
indicates that SARS-CoV-2 infects human monocytes and
triggers NLRP3 activation and a lytic form of cell death [20].
Clinically, patients with dementia were with higher severity and
mortality of COVID-19 [21]. Patients with Parkinson’s disease
(PD) showed worsened motor and nonmotor symptoms after
being diagnosed with COVID-19 [22]. Meanwhile, several case
reports described the development of acute parkinsonism, AD,
or amyotrophic lateral sclerosis (ALS) following COVID-19
[23–25]. However, the observational studies might be biased
by unavoidable confounding factors, and cannot determine
causation. Therefore, whether COVID-19 triggers neurodegen-
eration is still elusive.
In this context, we performed a two-sample Mendelian

randomization (MR) analysis to explore the causal role of COVID-
19 in the risk of neurodegenerative disorders. The MR approach is
less susceptible to reverse causation or confounding factors which
may distort the interpretations of conventional observational
studies. As a result, we found that COVID-19 was causally
associated with higher risk of AD.

METHODS
Datasets
We obtained GWAS summary statistics of the susceptibility, severity, and
hospitalization of COVID-19 from the COVID-19 Host Genetics Initiative [26]
(https://www.covid19hg.org/, Release 6). The COVID-19 infection was
defined as a positive SARS-CoV-2 infection (e.g., RNA RT-PCR or serology
test), electronic health record evidence or self-reported infection from the
patients. The susceptibility phenotype compared COVID-19 patients with

population controls free of COVID-19 (Ncase = 112,612, Ncontrol=
2,474,079). The hospitalization phenotype was to compare patients with
COVID-19 who were hospitalized and controls who were not admitted to
hospitals due to COVID-19, or who were free of COVID-19 (Ncase = 24,274,
Ncontrol= 2,061,529). The severity phenotype was obtained between
hospitalized individuals with COVID-19 who died or required respiratory
support, and controls who were without severe COVID-19, or who were
free of COVID-19 (Ncase = 8779, Ncontrol= 1,001,875). Details of the
summary data from all GWAS were listed in Supplementary Table 1. Single
nucleotide polymorphisms (SNP) that passed the genome-wide signifi-
cance threshold (P < 5E–08) were chosen as instrumental variants, which
were then clumped based on the 1000 Genomes Project linkage
disequilibrium (LD) structure. Index SNPs (R2 < 0.001 with any other
associated SNP within 10 Mb) with the minimum P value were kept.
We analyzed six common neurodegenerative disorders as outcomes,

including Alzheimer’s disease (AD) (N= 455,258) [27], Parkinson’s disease
(PD) (N= 482,730) [28], ALS (N= 80,610) [29], multiple sclerosis
(N= 115,803) [30], frontotemporal dementia (N= 12,928) [31], and Lewy
body dementia (N= 6618) [32] based on summary statistics from previous
GWAS with large sample size. The study design like the collection of
samples, quality control procedures, and imputation methods have been
described in the original publications. Harmonization was undertaken to
rule out strand mismatches and ensure alignment of SNP effect sizes. The
study was approved by West China Hospital, Sichuan University.

Genetic correlation
We estimated the genetic correlation between COVID-19 and each
neurodegenerative disorder using GNOVA with default parameters [33].
GNOVA estimates genetic covariance with the genetic variants summary
data shared between two GWAS, and then calculates the genetic
correlation based on genetic covariance and variant-based heritabilities.
The European dataset from the 1000 Genomes Project was used as
reference data. A P value below 2.78E–03 (0.05/18) was considered
statistically significant after the Bonferroni correction.

Mendelian randomization analysis
We hypothesized that COVID-19 as a risk factor could causally influence
the risk of neurodegenerative disorders, and the following assumptions
were satisfied: the genetic variants as instrumental variables are associated
with COVID-19; the genetic variants are not associated with any
confounders; the genetic variants are associated with risk of neurodegen-
erative disorders through COVID-19 (namely horizontal pleiotropy should
not be present) (Supplementary Fig. 1).
To evaluate the causative effect of COVID-19 on the risk of

neurodegenerative disorders, we performed two-sample MR analysis using
the random effects inverse variance weighted (IVW) method, which is most
widely used in MR studies and could provide robust causal estimates under
the absence of directional pleiotropy. A P value below 2.78E−03 (0.05/18)
was considered statistically significant after the Bonferroni correction. We
further verified the results using the weighted median method, which
generally has greater power with a positive causal effect, particularly as the
proportion of invalid instrumental variables increases [34]. In addition, we

Fig. 1 Forest plot showing results from the genetic correlation analysis. Genetic correlation between A hospitalization, B susceptibility,
C severity of COVID-19 and neurodegenerative disorders. Error bars indicate 95% confidence intervals. Bold P value denotes statistical
significance after the Bonferroni correction.
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conducted comprehensive sensitivity analyses to estimate potential
violations of the model assumptions in the MR analysis. We conducted
Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO)
analysis and leave-one-out analysis to detect outlier instrumental variables
[35]. Outlier instrumental variables identified by the MR-PRESSO outlier test
were removed step-by-step to reduce the effect of horizontal pleiotropy.
Cochran’s Q test was executed to check the heterogeneity across the
individual causal effects. MR-Egger regression was performed to evaluate
the directional pleiotropy of instrumental variables [36]. To evaluate the
strongness of each instrumental variable, we computed the F-statistic of
each SNP [37]. The statistical power was calculated using an online tool at
http://cnsgenomics.com/shiny/mRnd/ [38]. The statistical analyses were
conducted using the R package TwoSampleMR 0.5.5 [39].

RESULTS
We first estimated the genetic correlation between COVID-19 and
each neurodegenerative disorder. We detected a significant
positive genetic correlation between hospitalization of COVID-19
and AD after the Bonferroni correction (genetic correlation: 0.23,
P= 8.36E−07) (Fig. 1).
Furthermore, we analyzed the role of COVID-19 in the risk of

each neurodegenerative disorder via the two-sample MR
approach. Results showed that hospitalization of COVID-19 was
significantly associated with a higher risk of AD (OR: 1.02, 95% CI:
1.01−1.03, P: 1.19E−03) after the Bonferroni correction (Fig. 2A).
Nominal association was identified using the weighted median
method (OR: 1.02, 95% CI: 1.00−1.04, P: 0.03) (Fig. 2D and
Supplementary Fig. 2). Consistently, susceptibility and severity of
COVID-19 were nominally associated with higher risk of AD using
both the IVW and the weighted median methods (Fig. 2B, C, E, F
and Supplementary Fig. 2), further strengthening the hypothesis
that COVID-19 could increase the risk of AD.

Next, we performed extensive sensitivity analyses to validate
the causal association between COVID-19 and the risk of
neurodegenerative disorders. The Cochran’s Q test did not detect
the heterogeneity of effects across the instrumental variables
(Table 1). The F statistics of all the instrument variables were above
10 (ranging from 29 to 399), indicating the absence of weakness in
the selected instruments. No apparent horizontal pleiotropy was
observed as the intercept of MR-Egger was not significantly
deviated from zero (Table 1). Meanwhile, no potential instru-
mental outlier was detected at the nominal significance level of
0.05 by the MR-PRESSO analysis (Table 1). The leave-one-out
results suggest that the causal effect was not driven by a single
instrumental variable (Supplementary Figs. 2–7).

DISCUSSION
Previous clinical studies have suggested that COVID-19 may trigger
clinical manifestations of neurodegenerative disorders. Functional
exploration of SARS-CoV-2 in the brain also reinforced such
hypothesis. However, as most neurodegenerative disorders are
late-onset and slowly progressive, current epidemiological studies
might not detect the effect to an observable extent. Meanwhile,
unmeasured confounding factors in clinical studies can potentially
bias the association evidence, as is a common criticism inherent to
observational studies. Therefore, we investigated the causative role of
COVID-19 in the risk of neurodegenerative disorders using the MR
approach. The results showed that COVID-19 could increase the risk
of AD. Such association was detected for susceptibility, hospitaliza-
tion, and severity of COVID-19. These findings provided a better
understanding of the role of COVID-19 in the risk of neurodegen-
erative disorders, and had clinical implications for patients, clinicians
and researchers.

Fig. 2 Forest plot showing results from the Mendelian randomization analysis. Results from the Mendelian randomization (MR) analysis to
evaluate causal role of A hospitalization, B susceptibility, and C severity of COVID-19 in neurodegenerative disorders using the inverse variance
weighted method. Results from the MR analysis to evaluate potential causal role of D hospitalization, E susceptibility, and F severity of COVID-
19 in neurodegenerative disorders using the weighted median method. Estimates are per 1 standard deviation (SD) increase in the trait. Bold P
value denotes nominal association (P < 0.05).
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The two previous noteworthy outbreaks caused by corona-
viruses, namely severe acute respiratory syndrome (SARS) and the
Middle East respiratory syndrome (MERS), both caused memory
impairment during and after the illness [40], suggesting a
potential role of COVID-19 in cognitive impairment as well.
Dementia or cognitive impairment as complications of COVID-19
has already been reported frequently in retrospective cohort
studies [5, 41, 42]. Around 0.67% of patients with COVID-19 and
1.74% of patients with COVID-19 admitted to ITU developed
dementia within 6 months after diagnosis [5]. Similarly, another
nationwide cohort study from South Korea among 306,577 adults
found that the incidence of dementia among COVID-19 survivors
was 1.39-fold higher (HR: 1.39, 95% CI: 1.05–1.85; P= 0.023).
Among the subtypes of dementia, COVID-19 survivors were in
higher risk of AD (HR: 1.32, 95% CI: 1.05–1.86; P= 0.028) and other
types of dementia (HR: 2.04, 95% CI: 1.25–3.32; P= 0.004), but not
vascular dementia (HR: 1.51, 95% CI: 0.62–3.70; P= 0.364) [43]. The
high levels of proinflammatory cytokines, hypoxia, and direct
infection into the brain by the SARS-CoV-2 might contribute to the
development of cognitive impairment [44]. Previous research has
shown that SARS-CoV-2 infection could activate TGF-β signaling
and oxidative overload, and the neuropathological pathways
causing tau hyperphosphorylation typically associated with AD
were activated in COVID-19 patients [45]. The exact mechanism of
how COVID-19 leads to tau phosphorylation and aggregation is
still poorly understood. One possible explanation is that activation
of the NLRP3 inflammasome triggered during SARS-CoV-2
infection could promote tau hyperphosphorylation [18, 46].
Meanwhile, a network-based, multimodal omics comparison of
COVID-19 and neurologic complications also identified significant
mechanistic overlap between AD and COVID-19, mainly centered
on neuroinflammation and brain microvascular injury [47]. All
these findings suggested that patients diagnosed with COVID-19
might have an acceleration of Alzheimer’s-related symptoms and
pathology. From a genetic perspective, our results provided
evidence for the causal role of COVID-19 in AD, though the effect
size was limited. The small effect might be due to the insufficient

instrumental variables, since the significant SNPs only explain a
small proportion of the variance in the exposures (Table 1).
Therefore, further replication based on GWAS with larger sample
size was still necessary.
In contrast, we did not identify a causal association between

COVID-19 and the other neurodegenerative disorders. This might
be due to the differences in the pathogenesis of AD from other
diseases. However, we cannot exclude the possibility that we
failed to detect the association due to the insufficiency of current
sample sizes. The variance explained by the instrumental variables
of the exposures was moderate, which limited the power to detect
weaker causal associations. With summary statistics from future
GWAS with larger sample sizes, the association of COVID-19 with
other neurodegenerative disorders might become significant. In
addition, the hospitalization and severity phenotype of COVID-19
might be influenced by various factors like medical situations in
each country, which could not be accounted for in the MR
analysis. Meanwhile, there was potential population structure in
the GWAS of COVID-19, since individuals from different countries
were involved. However, since no great heterogeneity was
detected for each instrumental variable we utilized from the
original GWAS of COVID-19, the population structure should not
influence the association much. Nevertheless, future studies on
this topic are still warranted.
In conclusion, our results demonstrated that COVID-19 was

genetically correlated to AD. Meanwhile, susceptibility, hospitali-
zation, and severity of COVID-19 could increase the risk of AD.
These findings help better understand the role of COVID-19 in
neurodegenerative disorders, and will facilitate therapeutic drugs
in future clinical trials to alleviate the complications of COVID-19.

DATA AVAILABILITY
Summary statistics of COVID-19 could be downloaded from the COVID-19 Host
Genetics Initiative (https://www.covid19hg.org/, release 6). Summary statistics of each
neurodegenerative disorder could be found in the original publication. The datasets
generated during the analysis were in the supplementary materials.

Table 1. Heterogeneity and horizontal pleiotropy analyses between COVID-19 and neurodegenerative disorders.

Exposure trait Outcome trait Heterogeneity Horizontal pleiotropy MR-PRESSO
P value

Variance Beta

IVW Q IVW Q df IVW
P value

Egger
intercept

SE P value

COVID-19
susceptibility

AD 6.78 6 0.24 −1.61E−03 2.45E
−03

0.54 0.352 3.70E−04 0.49

ALS 1.83 5 0.87 −2.08E−03 0.015 0.89 0.867 3.55E−04 0.90

FTD 8.39 4 0.08 0.12 0.07 0.16 0.108 2.24E−04 1.61

LBD 1.97 4 0.74 −0.05 0.05 0.42 0.675 2.00E−04 2.12

MS 6.87 3 0.08 0.06 0.04 0.25 0.065 2.08E−04 1.00

PD 9.2 6 0.16 −0.03 0.02 0.34 0.296 3.70E−04 0.62

COVID-19
hospitalization

AD 14.95 14 0.38 1.21E−03 1.61E
−03

0.47 0.476 5.41E−04 0.42

ALS 14.79 13 0.32 0.02 0.01 0.1 0.215 5.18E−04 0.78

FTD 9.47 9 0.4 0.04 0.03 0.26 0.278 4.58E−04 1.42

LBD 14.77 10 0.14 0.1 0.07 0.21 0.166 2.84E−04 2.02

MS 13.42 11 0.27 0.01 0.01 0.29 0.272 4.99E−04 0.68

PD 19.21 12 0.08 0.01 0.02 0.43 0.132 4.92E−04 0.55

COVID-19 severity AD 11.42 12 0.49 5.03E−04 1.72E
−03

0.78 0.572 9.05E−04 0.34

ALS 13.93 13 0.31 0.02 0.01 0.11 0.219 9.05E−04 0.63

FTD 8.14 7 0.32 0.04 0.04 0.3 0.178 7.76E−04 1.25

LBD 16.65 9 0.06 0.03 0.06 0.68 0.056 4.57E−04 1.86

MS 14.77 10 0.14 0.02 0.02 0.36 0.192 8.28E−04 0.54

PD 12.99 11 0.29 −4.62E−03 0.02 0.98 0.362 8.73E−04 0.44

IVW Inverse variance weighted; Q Cochran’s Q test estimate, df Cochran’s Q test degrees of freedom, SE standard error, AD Alzheimer’s disease, ALS amyotrophic
lateral sclerosis, FTD frontotemporal dementia, LBD Lewy body dementia, MS multiple sclerosis, PD Parkinson’s disease. Variance means the variance explained
by instrumental variables for the exposure trait. Beta means effect size which can be detected with the power of 0.8 given the sample size, proportion of cases,
and variance explained by instrumental variable for each Mendelian randomization analysis.
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CODE AVAILABILITY
The code and algorithm used to generate results in this study are available from the
corresponding authors upon reasonable request.
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