Skip to main content
. 2022 Jul 9;9(3):359–375. doi: 10.1007/s40801-022-00303-9

Table 2.

BERG’s Bayesian artificial intelligence analytics (bAIcis®) generated 19 networks that enabled unbiased identification of significant predictors of any cause mortality post-COVID-19 PCR+ testing for specific patient populations

Name Number of patients Number of features Number of features connected to any cause mortality Number of selected significant predictors of any cause mortality
All patients 16,277 2386 487 20
Inpatients 3082 1946 227 20
Inpatients post-COVID-19+ PCR test 3082 1285 100 20
Inpatients aged 60–69 655 796 32 20
Inpatients aged 70+ 1099 1238 32 20
Inpatients aged 60+ 1754 1570 77 20
Inpatients Hispanic 1231 1080 93 20
Inpatients white non-Hispanic 898 981 44 20
Inpatients aged < 60 1328 991 30 19
Inpatients pre-COVID-19+ PCR test 3082 678 23 17
Inpatients aged 40–49 391 448 26 10
Inpatients white non-Hispanic pre-COVID-19+ PCR test 898 315 7 7
Inpatients aged 60+ pre-COVID-19+ PCR test 1754 519 9 6
Inpatients Hispanic pre-COVID-19+ PCR test 1231 279 7 4
Inpatients aged 50–59 548 604 7 4
Inpatients age 18–39 389 386 7 3
Inpatients age <60 pre-COVID-19+ PCR test 1328 259 5 3
Inpatients African American Non-Hispanic 600 675 5 3
Inpatients African American Non-Hispanic pre-COVID-19+ PCR test 600 161 16 3