Table 3. Classification accuracy obtained using handcrafted and radiomic features.
Features | LDA | kNN | GNB | SVM | AdaBoost | RF | Ensemble | XGBoost | NN |
---|---|---|---|---|---|---|---|---|---|
SIFT | 0.656 | 0.720 | 0.608 | 0.615 | 0.665 | 0.725 | 0.739 | 0.720 | 0.780 |
GIST | 0.674 | 0.730 | 0.688 | 0.605 | 0.690 | 0.705 | 0.756 | 0.730 | 0.764 |
LBP | 0.689 | 0.658 | 0.660 | 0.626 | 0.690 | 0.710 | 0.748 | 0.716 | 0.791 |
HOG | 0.686 | 0.658 | 0.660 | 0.626 | 0.690 | 0.710 | 0.746 | 0.711 | 0.790 |
GLCM | 0.699 | 0.722 | 0.679 | 0.657 | 0.724 | 0.751 | 0.769 | 0.738 | 0.820 |
Radiomics | 0.769 | 0.838 | 0.745 | 0.727 | 0.764 | 0.830 | 0.849 | 0.841 | 0.876 |