Skip to main content
. 2022 Jul 14;17(7):e0268430. doi: 10.1371/journal.pone.0268430

Table 3. Classification accuracy obtained using handcrafted and radiomic features.

Features LDA kNN GNB SVM AdaBoost RF Ensemble XGBoost NN
SIFT 0.656 0.720 0.608 0.615 0.665 0.725 0.739 0.720 0.780
GIST 0.674 0.730 0.688 0.605 0.690 0.705 0.756 0.730 0.764
LBP 0.689 0.658 0.660 0.626 0.690 0.710 0.748 0.716 0.791
HOG 0.686 0.658 0.660 0.626 0.690 0.710 0.746 0.711 0.790
GLCM 0.699 0.722 0.679 0.657 0.724 0.751 0.769 0.738 0.820
Radiomics 0.769 0.838 0.745 0.727 0.764 0.830 0.849 0.841 0.876