Table 7. Classification accuracy obtained using all features.
Metrics | LDA | kNN | GNB | SVM | AdaBoost | RF | Ensemble | XGBoost | NN |
---|---|---|---|---|---|---|---|---|---|
Accuracy | 0.849 | 0.877 | 0.812 | 0.842 | 0.857 | 0.879 | 0.900 | 0.875 | 0.925 |
Precision | 0.865 | 0.880 | 0.938 | 0.901 | 0.890 | 0.895 | 0.913 | 0.889 | 0.926 |
Recall | 0.849 | 0.877 | 0.812 | 0.842 | 0.857 | 0.879 | 0.900 | 0.875 | 0.925 |
F1 Score | 0.846 | 0.877 | 0.810 | 0.849 | 0.853 | 0.871 | 0.896 | 0.866 | 0.922 |