Skip to main content
. 2022 Jul 14;17(7):e0268430. doi: 10.1371/journal.pone.0268430

Table 9. Comparison of the three-class classification studies from previous CXR-based COVID-19 studies.

Work Number of Cases Preprocessing Approach Performance (%)
Wang et al. [49]
  • 266 COVID-19

  • 8066 HC

  • 5538 Pneumonia

  • DA

COVID-Net
  • Accuracy = 93.3

  • Sensitivity = 91

  • PPV = 98.9

Ucar et al. [43]
  • 76 COVID-19

  • 1538 HC

  • 4290 Pneumonia

  • DA

  • RGB format

  • Normalizing

COVIDiagnosis-Net
  • Accuracy = 98.3

  • Specificity = 99.13

  • F1-Score = 98.3

Ozturk et al. [50]
  • 127 COVID-19

  • 500 HC

  • 500 Pneumonia

  • N/A

DarkCovidNet (CNN)
  • Accuracy = 87.02

  • Specificity = 92.18

  • Sensitivity = 95.35

  • Precision = 89.96

  • F1-Score = 87.37

Li et al. [21]
  • 179 COVID-19

  • 179 HC

  • 179 Pneumonia

  • Create a Noisy Snapshot Dataset

KTD framework (DenseNet121, ShuffleNetV2, MobileNetV2)
  • Accuracy = 84.3

  • AUCROC = 94

Punn et al. [44]
  • 108 COVID-19

  • 453 HC

  • 515 Pneumonia

  • Class Balancing Methods

  • Binary Thresholding

  • Adaptive Total Variation Method

NASNetLarge
  • Accuracy = 98

  • Specificity = 95

  • Precision = 88

  • F1-Score = 89

Elasnaoui et al. [22]
  • 6087 images (2780 Bacterial Pneumonia, 1724 Coronavirus (1493 Viral Pneumonia, 231 COVID-19))

  • 1583 HC

  • Intensity Normalization

  • CLAHE Method

  • DA

  • Resizing

Inception ResNetV2
  • Accuracy = 92.18

  • Specificity = 96.06

  • Sensitivity = 92.11

  • Precision = 92.38

  • F1-Score = 92.07

Khobahi et al. [23]
  • 99 COVID-19

  • 8851 HC

  • 9579 Pneumonia

  • DA

CoroNet (TFEN + CIN modules)
  • Accuracy = 93.50

  • Sensitivity = 90

  • Precision = 93.63

  • F1-Score = 93.51

Chowdhury et al. [74]
  • 219 COVID-19

  • 1341 HC

  • 1345 Pneumonia

  • DA

PDCOVIDNet (CNN)
  • Accuracy = 96.54

  • Precision = 96.58

  • Recall = 96.59

  • F1-Score = 96.58

Chowdhury et al. [75]
  • 589 COVID-19

  • 8851 HC

  • 6053 Pneumonia

  • DA

ECOVNet (pre-trained EfficientNet)
  • Accuracy = 94.68

  • Precision = 94.76

  • Recall = 94.68

  • F1-Score = 94.70

Perumal et al. [76]
  • 183 COVID-19

  • 8066 HC

  • 5538 Pneumonia

  • N/A

INASNET (Inception Nasnet)
  • Accuracy = 94.3

  • Precision = 94.0

  • Recall = 94.0

  • F1-Score = 94.0

Proposed method
  • 1093 COVID-19

  • 1341 HC

  • 1345 Pneumonia

  • Cropping, DA

  • Histogram Equalization

  • Constant Threshold Contouring

Feature-based Ensemble
  • Accuracy = 94.1

  • Precision = 94.5

  • Recall = 94.1

  • F1-Score = 94.0