Wang et al. [49] |
266 COVID-19
8066 HC
5538 Pneumonia
|
|
COVID-Net |
Accuracy = 93.3
Sensitivity = 91
PPV = 98.9
|
Ucar et al. [43] |
76 COVID-19
1538 HC
4290 Pneumonia
|
DA
RGB format
Normalizing
|
COVIDiagnosis-Net |
Accuracy = 98.3
Specificity = 99.13
F1-Score = 98.3
|
Ozturk et al. [50] |
127 COVID-19
500 HC
500 Pneumonia
|
|
DarkCovidNet (CNN) |
Accuracy = 87.02
Specificity = 92.18
Sensitivity = 95.35
Precision = 89.96
F1-Score = 87.37
|
Li et al. [21] |
179 COVID-19
179 HC
179 Pneumonia
|
|
KTD framework (DenseNet121, ShuffleNetV2, MobileNetV2) |
Accuracy = 84.3
AUCROC = 94
|
Punn et al. [44] |
108 COVID-19
453 HC
515 Pneumonia
|
|
NASNetLarge |
Accuracy = 98
Specificity = 95
Precision = 88
F1-Score = 89
|
Elasnaoui et al. [22] |
|
Intensity Normalization
CLAHE Method
DA
Resizing
|
Inception ResNetV2 |
Accuracy = 92.18
Specificity = 96.06
Sensitivity = 92.11
Precision = 92.38
F1-Score = 92.07
|
Khobahi et al. [23] |
99 COVID-19
8851 HC
9579 Pneumonia
|
|
CoroNet (TFEN + CIN modules) |
Accuracy = 93.50
Sensitivity = 90
Precision = 93.63
F1-Score = 93.51
|
Chowdhury et al. [74] |
219 COVID-19
1341 HC
1345 Pneumonia
|
|
PDCOVIDNet (CNN) |
Accuracy = 96.54
Precision = 96.58
Recall = 96.59
F1-Score = 96.58
|
Chowdhury et al. [75] |
589 COVID-19
8851 HC
6053 Pneumonia
|
|
ECOVNet (pre-trained EfficientNet) |
Accuracy = 94.68
Precision = 94.76
Recall = 94.68
F1-Score = 94.70
|
Perumal et al. [76] |
183 COVID-19
8066 HC
5538 Pneumonia
|
|
INASNET (Inception Nasnet) |
Accuracy = 94.3
Precision = 94.0
Recall = 94.0
F1-Score = 94.0
|
Proposed method
|
1093 COVID-19
1341 HC
1345 Pneumonia
|
|
Feature-based Ensemble |
Accuracy = 94.1
Precision = 94.5
Recall = 94.1
F1-Score = 94.0
|