Table 2.
Comparison of model accuracy and stability using simulation data (hold-out validation).
Study model | Training cases/testing cases, N | Accuracy ≥0.80 (training sets) | Stability ≥0.70 (testing sets) | |||||||||
|
|
Sensitivity | Specificity | Precision | Accuracy | AUCa | Sensitivity | Specificity | Precision | Accuracy | AUC | |
Naïve Bayes | 700/300 | 0.92 | 0.89 | 0.82 | 0.90 | 0.90 | 0.79 | 0.98 | 0.97 | 0.91 | 0.89 | |
KNNb | 700/300 | 0.98 | 0.99 | 0.98 | 0.99 | 0.99 | 0.83 | 0.99 | 0.99 | 0.93 | 0.91 | |
LRc | 700/300 | 0.82 | 0.91 | 0.84 | 0.88 | 0.87 | 0.70 | 0.92 | 0.85 | 0.84 | 0.81 |
aAUC: area under the curve.
bKNN: k-nearest neighbors.
cLR: logistic regression.