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The thiol group of cysteine (Cys) residues, often present in
the active center of the protein, is of particular importance
to protein function, which is significantly determined by
the redox state of a protein’s environment. Our knowledge
of different thiol-based oxidative posttranslational modifi-
cations (oxiPTMs), which compete for specific protein thiol
groups, has increased over the last 10 years. The prin-
cipal oxiPTMs include S-sulfenylation, S-glutathionylation,
S-nitrosation, persulfidation, S-cyanylation and S-acylation.
The role of each oxiPTM depends on the redox cellular
state, which in turn depends on cellular homeostasis under
either optimal or stressful conditions. Under such condi-
tions, the metabolism of molecules such as glutathione,
NADPH (reduced nicotinamide adenine dinucleotide phos-
phate), nitric oxide, hydrogen sulfide and hydrogen peroxide
can be altered, exacerbated and, consequently, outside the
cell’s control. This review provides a broad overview of these
oxiPTMs under physiological and unfavorable conditions,
which can regulate the function of target proteins.
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Introduction

Once synthesized in ribosomes, proteins can undergo numer-
ous posttranslational modifications (PTMs) involving chemical
changes in specific amino acid residues, which are mediated
by enzymatic or nonenzymatic additions of certain chemi-
cal groups. These additional regulatory mechanisms, many of
which have a very significant impact on cellular signaling, affect
the chemical properties of target proteins and, consequently,
their spatial conformation, stability, folding properties, subcel-
lular location and biological function (Navrot et al. 2011, Friso
and van Wijk 2015).

This highly diverse range of PTMs includes phosphorylation,
ubiquitination, SUMOylation, γ-carboxylation, poly(ADP-
ribosyl)ation, acetylation, redox modification, methylation, gly-
cosylation, acylation, alkylation, hydroxylation, nitration and

nucleotide addition, among others (Vu et al. 2018, Arefian et al.
2021, Gough and Sadanandom 2021, Péter et al. 2021, Wang
et al. 2021c). The UniProtKB/Swiss-Prot databases have identi-
fied over 450 different PTMs (Conibear 2020, Zhang and Zeng
2020, Wang et al. 2021b), which demonstrates the complexity of
cellular proteomes. The identification of a single PTM in a spe-
cific protein requires specific experimental techniques, which,
in many cases, involve complex technical protocols, includ-
ing chemoselective reactions, in order to label specific amino
acid residues, combined with tandem mass spectrometry anal-
yses (Chuh and Pratt 2015, Shortreed et al. 2015, Aslebagh
et al. 2019). Additionally, although developed to identify pro-
tein PTMs in different databases (Li and Tang 2016, Audagnotto
and Dal Peraro 2017, Xie et al. 2018), bioinformatic tools need
to be corroborated by experimental techniques.

This review provides a comprehensive and updated
overview of the major oxidative posttranslational modifications
(oxiPTMs), which affect thiol groups of protein cysteine residues
and their functioning in plant cells.

Overview of the thiol-based oxiPTMs: a mechanism
of protein regulation
Thiol (-SH) groups of cysteine (Cys) residues, which are involved
in the protein’s active center and folding, are essential for the
functioning and regulation ofmany proteins (Poole 2015, Ulrich
and Jakob 2019). These thiol groups can be deprotonated to a
negatively charged thiolate (Cys-S−), resulting in enhanced reac-
tivity. Furthermore, the oxidation of the thiol group can involve
either one- or two-electron oxidation events, leading to the for-
mation of thiyl radicals (Cys-S•) and sulfenic acids (Cys-SOH),
respectively (Trujillo et al. 2016, Turell et al. 2020). Under cellu-
lar oxidant conditions, sulfenic acid (-SOH) is oxidized to sulfinic
acid (-SO2H) and then to sulfonic acid (-SO3H), the latter being
an irreversible process, which usually triggers the inactivation of
the target protein (Fig. 1).

On the other hand, it should be noted that the acid dissoci-
ation constant (pKa) of the thiol group is typically close to the
physiological pH (7.0–7.4). The thermodynamics and kinetics of
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Fig. 1 Outline of the main thiol-based oxiPTMs. The upper side of the panel indicates the oxidation states of sulfur (S) in proteins, which can be
from thiol (−2) to sulfonic acid (+4). Under cellular oxidant conditions, the oxidation from sulfinic acid to sulfonic acid could take place, the
latter being an irreversible process. The principal reversible oxiPTMs result from the interaction between thiolate with either hydrogen peroxide
(H2O2 ; S-sulfenylation); glutathione (GSH; S-glutathionylation), nitric oxide (NO; S-nitrosation), hydrogen sulfide (H2S; persulfidation), cyanide
(HCN; S-cyanylation) or fatty acid (FA; S-acylation) are also displayed in the lower side of the panel.

protein thiol oxidation in vivo are affected by thiol acidity, which
varies according to the protein microenvironment in a specific
subcellular location and protein folding (Roos et al. 2013, Zhang
et al. 2021). This is particularly important when the cellular
redox state is susceptible to modification under stressful con-
ditions during which the generation of oxidant molecules is
uncontrollably boosted and initiates a cascade of cellular sig-
nals (Chung et al. 2013, Castro et al. 2021). In Arabidopsis,
under oxidative stress conditions, the peroxidatic Cys of the
chloroplast 2-Cys peroxiredoxin (2-Cys Prx) can be oxidized to
sulfinic acid causing its inactivation; however, the activity is
restored when this Cys is reduced back to sulfenic acid by a
sulfiredoxin enzyme (Iglesias-Baena et al. 2010), a process in
which NADPH thioredoxin reductase C appears to be involved
(Puerto-Gaĺan et al. 2015).

The change in the redox state of a specific thiol group can
either increase or decrease the biological function of the tar-
get protein (Table 1). Proteins in any cellular context are prone
to be exposed to different potential agents, which can oxi-
dize or reduce the thiol group. The final impact will therefore
depend on the accessibility of these potential thiol targets
to different potential oxidants or reducing molecules such as
certain free radical species, including hydroxyl (•OH), peroxyl
(ROO•), superoxide (O2

•−), nitric oxide (•NO) and nitrogen
dioxide (•NO2), as well as nonradical molecules such as hydro-
gen peroxide (H2O2), peroxynitrite (ONOO−) and hydrogen
sulfide (H2S). Furthermore, certain pair molecules like reduced/
oxidized glutathione [GSH/glutathione disulfide (GSSG)] and
NADPH/NADP+ (reduced and oxidized nicotinamide adenine

dinucleotide phosphate, respectively), which are involved in
numerous metabolic pathways either as substrates or cofactors
and whose reduced/oxidized ratio can be significantly affected
under nitro-oxidative conditions, also play an important role in
cellular redox homeostasis (Møller et al. 2020, Vogelsang and
Dietz 2020, Corpas et al. 2021b). Additionally, the involvement
of other thiol-based redox compounds such as S-nitrosothiols
(SNO), polysulfide (H2Sn), thioredoxins (Trxs), glutaredoxins
(Grxs) and peroxiredoxins (Prxs) also needs to be taken into
account (Rouhier et al. 2015, Knuesting and Scheibe 2018, Ben-
choam et al. 2020, Kimura 2021, Sánchez-Guerrero et al. 2021,
Takata et al. 2021). This complex redox regulation under phys-
iological and stress conditions has mostly been described in
chloroplasts (Yoshida et al. 2018, Liebthal et al. 2020, Yokochi
et al. 2021) and mitochondria (da Fonseca-Pereira et al. 2019,
Martí et al. 2020). Thus, chloroplastic Prx II E is involved
in peroxynitrite reductase activity, which is inhibited by S-
nitrosation (Romero-Puertas et al. 2007), while mitochondrial
PrxII F through S-nitrosation prevents the thermal aggregation
of citrate synthase (Camejo et al. 2015).

Other molecules with antioxidant capacity, such as ascor-
bate and melatonin, are also involved in this pool of regulatory
molecules (Tan et al. 2015, Zechmann 2018, Aghdam et al.
2021). All these elements broaden the network of interactions,
which are difficult to decipher if a holistic analysis is not used
to examine all the complex interactions. The oxiPTM mecha-
nism for the regulation of signaling protein functions requires
that: (i) the oxiPTM-promoted change in protein function is
caused by cellular stimuli; (ii) the modification be rapid and be
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Table 1 Number of identified plant proteins susceptible to undergo oxiPTMs according to proteomic analyses in different plant species and
organs.

oxiPTM
No of identified
proteins Plant species/organ Reference

S-sulfenylation 1,394a Arabidopsis cell culture treated with H2O2 Huang et al. 2019
132 b Arabidopsis plastids De Smet et al. 2019

S-glutathionylation 79c Arabidopsis cell culture Dixon et al. 2005
25d Wheat seedlings Gietler et al. 2016

S-nitrosation 63e Arabidopsis cell exposed to the NO donor S-nitrosoglutathione Lindermayr et al. 2005
52e Arabidopsis leaves of plants exposed to NO gas
46f Endogenous S-nitrosated proteins in Arabidopsis cells Fares et al. 2011
44f Endogenous S-nitrosated proteins in Arabidopsis plantlets Puyaubert et al. 2014
32e Populus × canescens Vanzo et al. 2014
926g Arabidopsis Hu et al. 2015
402 Peanut root tips Pan et al. 2021
35h Arabidopsis guard cells treated with flg22 Lawrence et al. 2020

Persulfidation 106i

2015
Arabidopsis leaves Aroca et al. 2015, Aroca et al. 2017

S-cyanylation 163 Arabidopsis leaves García et al. 2019
S-acylation 600

2643j
Arabidopsis Hemsley et al. 2013; Kumar et al. 2020

450 k Poplar cell culture Srivastava et al. 2016
aBTD-based probe.
bYAP1C probe.
cGS-biotin-labeling studies, 2D-PAGE followed by MALDI-MS.
dImmublot probe with anti-GSH antibodies and identified by MALDI-TOF and LC–MS/MS.
eBSM and LC–MS/MS.
fBSM and labeling with isotope-coded affinity tags.
gSite-specific nitrosoproteomic approach.
hIodo tandem mass tag™ labeling.
iModified BSM.
jAcyl resin-assisted capture assay.
kAcyl-Biotin Exchange method.

mediated by an enzyme and (iii) the modification be specific
and reversible (Shelton et al. 2005). In addition, the effective-
ness of these PTMs can vary depending on such factors as the
accessibility of the potential target Cys’ thiol group to each
molecule incorporated. For example, NOandH2S, being smaller
than GSH (reduced glutathione), are expected to access a larger
number of Cys residues. Nevertheless, the proteins correspond-
ing to each oxiPTM, whose number and specificity are expected
to increase with the development of new techniques, have been
identified using proteomic analysis (Alcock et al. 2018, Shi and
Carroll 2020, Wang et al. 2021b). Fig. 1 shows the principal
oxiPTMs examined in this review.

S-sulfenylation
S-sulfenylation involves the reaction of H2O2 with redox-
sensitive Cys in proteins to form cysteine sulfenic acid
(Cys-SOH), as well as the reversible covalent addition of one
oxygen atom to the thiol group. If the thiol oxidation state
persists over time, two or three oxygen atoms can be added
to generate an irreversible covalent addition until sulfonic acid
is formed (Fig. 1). This generally results in protein degrada-
tion or inactivation and is usually associatedwith nonfunctional
proteins and stressful conditions (Filipovic et al. 2018).

With the aid of a dimedone-based DYn-2 probe, ini-
tial in vitro studies of protein S-sulfenylation, which used
the human colon carcinoma (RKO) cell line treated with

500µM H2O2, identified over 778 S-sulfenylated proteins fol-
lowing detection with liquid chromatography–tandem mass
spectrometry (LC–MS/MS) (Yang et al. 2014). These S-
sulfenylated proteins, approximately 92% of which contained
only one or two S-sulfenylated residues, include protein kinases,
phosphatases, acetyltransferases, deacetylases and deubiquiti-
nases. This suggests that S-sulfenylation regulates these pro-
teins and may mediate other additional PTMs (Yang et al.
2014).

In Arabidopsis thaliana cell cultures treated with
100µM H2O2, an initial analysis of sulfenome identified
roughly 100 potential S-sulfenylated proteins (Waszczak et al.
2014). Later, 1394 proteins susceptible to S-sulfenylation
were identified using a more reactive 1-(pent-4-yn-1-yl)-1 H-
benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide (BTD) based probe
(Fu et al. 2019) than the DYn-2 probe to detect S-sulfenylated
residues (Huang et al. 2019), which had previously identified
200 S-sulfenylated proteins (Akter et al. 2015) (Table 2). These
proteins includedmitogen-activated protein kinase 4 (MAPK4),
which was S-sulfenylated at Cys181, leading to a decrease in
kinase activity (Huang et al. 2019). A more in-depth analy-
sis of Arabidopsis cells treated with 1 mM H2O2, using sulfenic
acid yeast ACTIVATOR PROTEIN 1 containing single redox-
active Cys598 (YAP1C) trapping technology tagged to the
plastids, identified 132 S-sulfenylated proteins (De Smet et al.
2019). More recently, a new noninvasive strategy using a
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Table 2 Representative examples of plant proteins that undergo several oxiPTMs.

NADP-DH/redox PTMs Effects Reference

Ferredoxin-NADP reductase
S-nitrosation Unknown Begara-Morales et al. 2013; Holzmeister et al. 2011b ; Niu et al. 2019b

Persufidation Unknown Aroca et al. 2017b ;

Glyceraldehyde-3-phosphate dehydrogenase
(NADP-GAPDH)

S-nitrosation Inhibition Lindermayr et al. 2005b ; Abat et al., 2008; Romero-Puertas et al. 2008b ; Wang et al.
2017; Vanzo et al. 2014b ; Niu et al. 2019b ; Tanou et al. 2009b ; Hu et al. 2015b ; Gong
and Shi 2019

S-cyanylation Unknown García et al. 2019
Persulfidation Activation Aroca et al. 2015b,c

Glutathionylation Inhibition Zaffagnini et al. 2007c

Catalase
S-nitrosation Inhibition Begara-Morales et al. 2013; Aroca et al. 2015; Rodríguez-Ruiz et al. 2019ba,c ; Palma

et al. 2020
Persulfidation Inhibition Aroca et al. 2015b ; Corpas et al. 2019c

S-acylation Unknown Kumar et al. 2020b

APX
S-nitrosation Activation Begara-Morales et al. 2014; Yang et al. 2015
Persulfidation Activation Aroca et al. 2015
S-cyanylation Unknown García et al. 2019
S-acylation Unknown Kumar et al. 2020b

NADP-malic enzyme
S-nitrosation Inhibition Hu et al. 2015b ; Muñoz-Vargas et al. 2020c

Persulfidation Inhibition Aroca et al. 2017b ; Muñoz-Vargas et al. 2020b,c

S-cyanylation (NADP-dependent malic
enzyme NADP-ME2)

Unknown García et al. 2019b

S-acylation Unknown Kumar et al. 2020b

NADP-isocitrate dehydrogenase
S-nitrosation Inhibition Fares et al. 2011b ; Leterrier et al. 2012c ; Puyaubert et al. 2014b ; Hu et al. 2015b ;

Muñoz-Vargas et al. 2018c ; Niazi et al. 2019c

Persulfidation Inhibition Aroca et al. 2017b ; Muñoz-Vargas et al. 2018a,c

Glutathionylation Inhibition Leterrier et al. 2012c ; Niazi et al. 2019c

S-cyanylation Unknown García et al. 2019
Sulfenylation Unknown De Smet et al. 2019b

S-acylation Unknown Kumar et al. 2020b

NADPH oxidase
S-nitrosation Inhibition Yun et al. 2011
Persulfidation Activation Shen et al. 2020
aComputational prediction.
bProteomic identification.
cActivity in vitro assay.

disulfide-linked peptide reporter has been implemented to
identify S-sulfenylated proteins in Arabidopsis cells (Wei et al.
2020).

These studies using cell cultures treated with high concen-
trations of H2O2 have provided a large number of candidate
proteins for S-sulfenylation. However, more in-depth analyses
need to be carried out on other plant species under both phys-
iological and stressful conditions in order to evaluate the role of
S-sulfenylation.

S-glutathionylation
Glutathione (GSH; γ-L-glutamyl-L-cysteinyl-glycine) is a non-
protein thiol compound, which, along with ascorbate, is
the most abundant soluble antioxidant present in plant cells
(Foyer and Noctor 2011). With its pKa of roughly 8–9 and

at physiological pH, the -SH group of GSH is highly proto-
nated. Under optimal physiological conditions, althoughmainly
found in a reduced form of GSH, in oxidative stress envi-
ronments, free glutathione is oxidized to glutathione disul-
fide (GSSG) (Airaki et al. 2011; Diaz-Vivancos et al. 2015).
GSH is required in a diverse range of detoxification pathways
including the ascorbate-glutathione cycle for H2O2 regulation,
the glyoxalase pathway for methylglyoxal (MG) detoxification
(Kharbech et al. 2020, Dorion et al. 2021), and also for the
biosynthesis of phytochelatins, which are a group of low molec-
ular weight polypeptides involved in heavy metal and metalloid
detoxification (Gupta et al. 2013, Rodríguez-Ruiz et al. 2019a,
Bhat et al. 2021). Some evidence indicates that stress-induced
reductions in the GSH/GSSG ratio in different cellular systems
promote the formation of mixed disulfide bridges between
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glutathione and protein thiols. S-glutathionylation, a reversible
PTM (Fig. 1), occurring spontaneously between glutathione
and a protein thiolate, regulates protein function in different
subcellular compartments (Shelton et al. 2005, Mailloux and
Treberg 2016, Zhang et al. 2018, Kalinina and Novichkova
2021). This nonenzymatic interaction can be through several
mechanisms: (i) protein thiol (P-SH) is oxidized by reactive
oxygen species (ROS) to a sulfenic acid (P-SOH) which then
rapidly reacts with GSH to form P-SSG; or (ii) exchange of
thiol-disulfide between P-SH with glutathione disulfide (GSSG)
(Zhang et al. 2018). There is also another proposed mecha-
nism mediated enzymatically by a glutaredoxin (GRX) where
P-SH is oxidized to a thiyl radical (PS•), which then quickly
reacts with GSH to form a thiyl radical glutathionyl intermedi-
ate (PSSG•−), which then reacts with O2 to form PSSG (Beer
et al. 2004). Another example in which S-glutathionylation is
mediated by aGRXhas beendescribed in theArabidopsisbrassi-
nosteroid insensitive 1-associated receptor-like kinase 1 (BAK1),
in which this PTM causes the inhibition of its kinase activ-
ity (Bender et al. 2015). Under certain adverse environmental
conditions, S-glutathionylation can prevent protein Cys overox-
idation, which causes its inactivation through the formation
of sulfonic residues (Zaffagnini et al. 2007, 2012, Gurrieri et al.
2019). For example, 2-Cys Prx undergoes deglutathiolation in
the presence of sulfiredoxin in pea chloroplasts, which does
not occur in the mitochondrial Prx IIF. Thus, it has been sug-
gested that glutathionylation/deglutathionylation is associated
with changes in redox state during plant development or in
response to stress conditions (Calderón et al. 2017).

S-glutathionylated proteins have been detected using tech-
niques such as the use of GSH antibodies and labeling with the
aid of 35S radiolabeling and biotinylation (Ito et al. 2003, Gao
et al. 2009). Thus, in Arabidopsis cell cultures, approximately 79
S-glutathionylated proteins have been identified using a com-
bination of GSH biotin labeling, 2D-PAGE and matrix-assisted
laser desorption/ionization-mass spectrometry (MALDI-MS)
(Dixon et al. 2005). In wheat seedlings, 25 S-glutathionylated
proteins were identified using 2-D electrophoresis, immunoblot
tests, anti-GSH antibodies, MALDI-TOF (time-of-flight) and
LC–MS/MS (Gietler et al. 2016) (Table 2).

As mentioned above, given its antioxidant properties, inter-
est in the involvement of GSH in S-glutathionylation pro-
cesses has been growing in plant research. For example, GSH
regulates ethylene biosynthesis in Arabidopsis by modulat-
ing 1-aminocyclopropane-1-carboxylate oxidase (ACO) activity
through S-glutathionylation. With the aid of in silico docking
analysis, Cys63 has been identified as the best candidate for
S-glutathionylation of ACO (Datta et al. 2015). In Arabidopsis,
S-glutathionylation can trigger the inhibition of chloroplastic
NADP-glyceraldehyde-3-phosphate dehydrogenase (AtGAPA1)
at Cys149 (Zaffagnini et al. 2007). S-glutathionylation has
also been found to facilitate the insoluble aggregation of
S-glutathionylated AtGAPA1, which appears to be irreversible.
On the other hand, the aggregation process has been reported
to be halted by Trx h1 (Zaffagnini et al. 2019). Another target

protein for S-glutathionylation, α-amylase 3 (AtAMY3), which
catalyzes the cleaving of α-1,4-glucosidic bonds in starch, is
involved in the response to osmotic stress and stomatal open-
ing and is also regulated by Trxs (Gurrieri et al. 2019). A
pKa analysis of catalytic cysteine residues Cys499 and Cys587
suggests that one of these residues, which are susceptible to
S-glutathionylation, can be deprotonated. This mechanism pre-
vents overoxidation under stress conditions when high H2O2

content is present (Gurrieri et al. 2019). Cytosolic NADPH-
generating isocitrate dehydrogenase (NADP-ICDH) in Ara-
bidopsishas also been shown tobe S-glutathionylated atCys363,
which is located outside the active center. Although it does not
directly affect NADP-ICDH activity, S-glutathionylation appears
to mediate inhibition caused by S-nitrosation in the presence of
S-nitrosoglutathione (GSNO) under in vitro conditions (Niazi
et al. 2019). S-glutathionylation appears to play a major role
in certain organelles. Accordingly, in an analysis of nine pho-
tosynthetic species from streptophyte algae to angiosperms,
Müller-Schüssele et al. (2021) have identified 364 proteins sus-
ceptible to undergo S-glutathionylation, of which 151 have a
plastid location.

S-nitrosation
Nitric oxide (•NO) is a free radical with signaling functions
found in higher plants. It mediates a wide variety of plant pro-
cesses ranging from seed germination to fruit ripening and
is involved in mechanisms of response to biotic and abiotic
stresses, either directly or through its interaction with other
growth regulators (González-Gordo et al. 2019, 2020a, Kolbert
et al. 2019, Mishra et al. 2021, Corpas et al. 2022a, 2022b).
Much of this regulation is carried out through NO-derived
PTMs such as tyrosine nitration (Corpas et al. 2021a), metal
nitrosylation and S-nitrosation (Corpas et al. 2020, Gupta et al.
2020). S-nitrosation, previously referred to as S-nitrosylation, is
a covalent reaction involving one-electron oxidation of thiol
groups. Thus, the presence of the thiol group enables GSH
to react with NO to generate S-nitrosoglutathione (GSNO),
regarded as a low molecular S-nitrosothiol, which can mediate
transnitrosation reactions (Corpas et al. 2013). GSNO content
is controlled by GSNO reductase (GSNOR), an enzyme that is
inhibited by S-nitrosation (Sakamoto et al. 2002, Leterrier et al.
2011, Guerra et al. 2016, Tichá et al. 2017).

Most research on S-nitrosation, which is one of the most
studied oxiPTMs, has been carried out inA. thaliana. Thus, using
the biotin switchmethod (BSM), 63 candidates for S-nitrosation
have been identified in Arabidopsis cells treated with the NO
donor GSNO (Lindermayr et al. 2005). In the same study, using
Arabidopsis plants exposed to NO gas, 52 S-nitrosated proteins
were detected in leaves. Using an alternative technique based
on a combination of BSMand labelingwith isotope-coded affin-
ity tags, a total of 46 endogenous proteins, which appeared
to be S-nitrosated, were identified in Arabidopsis cells (Fares
et al. 2011). With the aid of a similar approach, 44 endoge-
nous S-nitrosated proteins, 11 of which were overnitrosated
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under cold stress conditions, were also identified in Arabidop-
sis plantlets (Puyaubert et al. 2014). The number of Arabidopsis
S-nitrosated proteins identified was subsequently extended to
926 with the aid of a site-specific nitrosoproteomic approach
(Hu et al. 2015). More recently, the S-nitrosoproteome in Ara-
bidopsis guard cells has been studied in response to the bacterial
peptide flagellin using an iodo tandem mass tag labeling tech-
nique, which enabled 35 S-nitrosated proteins to be identified
(Lawrence et al. 2020).

A study of poplar leaves has identified 172 S-nitrosated pro-
teins, under ozone stress conditions; 32 S-nitrosated proteins
were differentially affected, 9 of which showed a higher degree
of S-nitrosation, with lower S-nitrosation observed in 23 of
these proteins; this suggests the presence of a de-nitrosation
mechanism to regulate these proteins (Vanzo et al. 2014). These
authors, who specifically studied phenylalanine ammonia-lyase
2 involved in lignin biosynthesis, observed that, under ozone
stress, enzyme activity increased due to de-nitrosation. On the
other hand, an S-nitrosoproteome analysis of the root tips of
peanut plants under aluminum stress, causing programmed cell
death, has identified 402 S-nitrosated proteins, which closely
correlated with an increase in GSNO content as a consequence
of the inhibition of GSNOR activity by S-nitrosation (Pan et al.
2021). A site-specific nitrosoproteomic study of tomato plants
under sodium alkaline stress has identified 334 S-nitrosated
proteins in 425 different S-nitrosated loci. These proteins were
involved in a wide range of metabolic processes, such as NO
homeostasis and ROS metabolisms, as well as Ca2+, ethylene
and mitogen-activated protein kinase (MAPK) signaling. In this
study, potential key target proteins, including ACO, ascorbate
peroxidase (APX) and glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH), were selected (Gong and Shi 2019). In silico
analyses have been used to complement the study of these
phenomena, while different bioinformatic platforms have also
been developed for these purposes, although it will eventually
be necessary to experimentally confirm all the theoretical data
reported (Kolbert and Lindermayr 2021).

Persulfidation
H2S is a gasotransmitter that is endogenously generated as part
of the sulfur andCysmetabolism (González-Gordo et al. 2020b).
This molecule in plant cells has been shown to be involved
in a myriad of physiological and stressful processes through
multiple interactions with phytohormones and other signaling
molecules, including H2O2, NO and melatonin (Corpas 2019,
Corpas and Palma 2020). At the protein level, H2S mediates a
PTM called persulfidation, previously known as S-sulfhydration,
which involves H2S interactions with a thiol group of suscepti-
ble Cys (Aroca et al. 2015, Aroca et al. 2018, 2021a, 2021b, Wang
et al. 2021a).

H2S is a gas, but in an aqueous solution, it is dissoci-
ated to hydrosulfide (HS–) and sulfide (S2–) anions according
to the following reaction: H2S(aqueous solution) ↔ HS− +H+ ↔
S2− + 2 H+. As H2S has an estimated pKa value of 6.8 at 37◦C,

the hydrosulfide anion (HS-) predominates at the physiologi-
cal pH of 7.4. Using a modified BSM combined with LC–MS/MS
analysis, a total of 106 putative persulfidated proteins were ini-
tially identified in Arabidopsis leaves (Aroca et al. 2015). Later,
using the tag-switch method, the number of persulfidated pro-
teins identified increased to 2015 in the same plant species
(Aroca et al. 2017) (Table 2). Like S-glutathionylation, per-
sulfidation has been considered a protection mechanism that
generates resistance to irreversible protein oxidation (Pantaleno
et al. 2021).

Analysis of the oxiPTM persulfidation, whose importance in
plant physiology has been demonstrated with the aid of new
methodological approaches, has highlighted the role of H2S
under physiological and stressful conditions (Kouroussis et al.
2019, Fu et al. 2020, Zhao et al. 2020). A comparative analysis of
protein persufidation, S-glutathionylation and S-nitrosation has
shown that persulfidation plays a more prominent role than the
other two oxiPTMs in Arabidopsis (Aroca et al. 2018). The phys-
iological importance of persulfidation has been demonstrated
in processes such as ROS metabolism regulation in which cer-
tain antioxidant enzymes such as APX and catalase have been
reported to be persulfidated (Table 1) (Aroca et al. 2015, Corpas
et al. 2019). In tomato (Solanum lycopersicum) plants, the H2S-
producing enzyme L-cysteine desulfhydrase (SlLCD1), a nucle-
arly encoded isozyme, is involved in the regulation of fruit
ripening (Hu et al. 2020). Persulfidation is also involved in Ara-
bidopsis stomatal closure through the persulfidation of different
proteins in the cascade of signals, including SnRK2.6 (Chen et al.
2020), ABAI4 (Zhou et al. 2021), RBOHD and the L-cysteine
desulfhydrase (Shen et al. 2020), with the latter two proteins
playing a role in the generation of O2

•- and H2S, respectively.
Furthermore, autophagy is regulated through the persulfidation
of ATG4 (Laureano-Marín et al. 2020) and ATG18a (Aroca et al.
2021b).

S-cyanylation
Cyanide (HCN), which inhibits mitochondrial cytochrome oxi-
dase and, consequently, the respiratory pathway, is known to
have a negative impact on cellularmetabolismandwas used as a
poison during the First and Second World Wars, as well as a fur-
ther chemical terrorism weapon. HCN can also inhibit other key
metalloproteins such as the antioxidant enzymes copper-zinc
superoxide dismutase and catalase (Corpas et al. 1998).

Endogenous HCN is part of the cell metabolism as a
result of cyanogenic glycosides hydrolysis byβ-glycosidases and
α-hydroxynitrile lyase (Arenas-Alfonseca et al. 2018, Cressey
and Reeve 2019, Gotor et al. 2019) and is also released as a co-
product of ethylene biosynthesis (Ansari et al. 2019). Cyanide
is mainly detoxified by mitochondrial β-cyanoalanine synthase
(CAS-C1) in the following reaction: L-cysteine+HCN → β-
cyano-L-alanine+H2S (Machingura et al. 2016). HCN is associ-
atedwith several physiological regulatory functions such as seed
germination, nitrate assimilation and root growth, as well as a
co-product of ethylene biosynthesis; HCN is also accumulated
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as a defensemechanism against plant pathogens and herbivores
(Miller and Conn 1980, Siegień and Bogatek 2006, Zidenga et al.
2017). More recently, HCN has gained more prominence as a
mediator of the PTM S-cyanylation due to its interaction with
thiol groups (Fig. 1). In human blood and plasma, HCN has
been observed to interact with albumin disulfide, as well as with
heavy and light IgG chains (Fasco et al. 2007, 2011). Given that
HCN does not react with free sulfhydryl groups, it has been sug-
gested that S-cyanylation occurs in free Cys residues from GSH
or other small molecules such as mixed disulfides.

In higher plants, our limited knowledge of S-cyanylation
mainly comes from a pioneer study of Arabidopsis wild-type
plants and a CAS-C1 knockout mutant. This proteomic analysis
of Arabidopsis roots and leaves identified 163 proteins suscep-
tible to S-cyanylation (García et al. 2019). As HCN detoxifica-
tion by CAS-C1 also generates H2S, the correlation between
both these molecules, which mediate S-cyanylation and persul-
fidation, raises new questions about their mutual interactions
as a mechanism of metabolic regulation (García et al. 2019).
Enzymes that are targeted by S-cyanylation include APX and
NADP-ICDH (Table 1) that participate also in the regulation of
the levels of H2O2 and NADPH, respectively.

S-acylation
This reversible PTM, frequently known as S-palmitoylation,
enables palmitate (C16 fatty acid) to be added to the thiol
group of a specific Cys from soluble or peripheral membrane
proteins through a thioester bond (Hurst and Hemsley 2015,
Li and Qi 2017). This reaction is catalyzed by a family of pro-
tein S-acyl transferases containing a Asp-His-His-Cys motif in a
Cys-rich domain (Batistǐc 2012, Yuan et al. 2013, Hemsley 2013,
2020). S-acylation increases the hydrophobicity of target pro-
teins, which facilities their attachment to the membrane and,
consequently, trafficking regulation (Hemsley 2020) and can be
reversed by thioesterases (Zheng et al. 2019).

Proteomic analyses of Arabidopsis using a biotin switch iso-
baric tagging for relative and absolute quantification-based
approach have identified 600 putative S-acylated proteins
(Hemsley et al. 2013) and, in poplar cells, several hun-
dred potential S-acylated proteins (Srivastava et al. 2016)
(Table 1). Representative proteins that illustrate
the importance of S-acylation include Ca2+-dependent pro-
tein kinases, calcineurin-B-like proteins, MAPKs, receptor-like
kinases, integral membrane transporters, ATPases and soluble
N-ethylmaleimide-sensitive factor-activating protein receptors
(Zheng et al. 2019). A more recent proteomic analysis of Ara-
bidopsis using an acyl resin-assisted capture assay has expanded
the list of potential S-acylated proteins to 2643 (Kumar et al.
2020). The importance of protein S-acylation has been high-
lighted in meiotic Arabidopsis, which is involved in the devel-
opment ofmale and female sporophyte reproductive structures
and associated gametophytes (Li et al. 2019).

Table 1 shows the number of identified proteins susceptible
to all the oxiPTMs in higher plants described above.

How oxiPTMs are integrated in the metabolism of
plant cells?
As previously described, nucleophilic thiol groups of protein
Cys residues facilitate redox PTMs, which modify the func-
tion of the affected proteins. Research has mainly focused on
specific oxiPTMs through the identification of potential tar-
gets with the aid of proteomic and LC–MS analyses adapted
to each PTM. Each modification is evaluated in relation to its
specific functional effect (an increase, decrease, or no effect
on purified proteins) usually under in vitro conditions. This
key step in the analysis needs to evaluate the effect of each
oxiPTMunder all cellular conditions, as specific thiol groups can
be targeted by several competing PTM-promoting molecules
according to their specificity, concentration, microenviron-
mental conditions and subcellular location, which will finally
determine their role in the process.

In higher plants, protein S-nitrosation is the most stud-
ied oxiPTM, with available information mainly obtained from
Arabidopsis plants. However, other oxiPTMs are attracting
increasing attention given the interactions among themand the
signaling properties of H2O2, NO and H2S involved in regulat-
ing the final function of target proteins. Table 2 shows different
proteins regulated by several oxiPTMs. Examples of multiply
regulated proteins include NADP-GAPDH, NADP-ICDH and
NADP-malic enzyme, which are involved in generating NADPH
(Hildebrandt et al. 2015, Niazi et al. 2019, Corpas et al. 2021b), a
keymolecule for themaintenance of redox homeostasis. On the
other hand, biomolecules such as GSH, Prxs and Trxs, which, in
turn, buffer cellular redox status, are also involved in regulating
oxiPTMs. All these elements provide a detailed picture of com-
plex redox equilibria, which finally determine the effect on the
target protein.

Recently, there has been increasing interest in the poten-
tial physiological role of the S-nitrosothiol, thionitrous acid
(HSNO), in cellular redox regulation, as a consequence of the
interplay between NO and H2S (Cortese-Krott et al. 2015, Nava
et al. 2016, Chen et al. 2019, Marcolongo et al. 2019, Marozkina
and Gaston 2020). The detection of this compound in biolog-
ical systems whose chemistry is more complex than expected
has been a major challenge. In plants, very little is known
about HSNO, which, to our knowledge, has only been stud-
ied when applied exogenously to alfalfa plants under drought
conditions using NOSH-aspirin, which simultaneously releases
NO and H2S to generate HSNO. Despite the beneficial effect of
this S-nitrosothiol, little information is available concerning any
potential oxiPTMs (Antoniou et al. 2020).

Summary and future perspectives
Interest in the different oxiPTMs has been growing of late due
to their major physiological role in a wide range of higher plant
processes. Over the last 10 years, significant advances have been
made in this field with the development of appropriate techni-
cal approaches to specifically identify each redox modification.
The methodology most commonly used involves proteomic
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Fig. 2 Comparative analysis of the number of proteins identified that
could be potentially targeted by one of the main thiol-based oxiPTMs
in the model plantArabidopsis thaliana. These PTMs include 2643 pro-
teins for S-acylation (Kumar et al. 2020), 163 for S-cyanylation (García
et al. 2019), 2015 for persulfidation (Aroca et al. 2017), 926 for S-
nitrosation (Hu et al. 2015), 79 for S-glutathionylation (Dixon et al.
2005) and 1394 for S-sulfenylation (Huang et al. 2019).

analysis combined with chemoselective probes and mass spec-
trometry techniques (Yang et al. 2016, Shi and Carroll 2020,
Zhang et al. 2021). Fig. 2 shows a comparative analysis of
proteins identified, which could be targeted by the principal
oxiPTMs of cysteine thiols in the model plantA. thaliana, with a
combination of three PTMs, persulfidation, S-sulfenylation and
S-nitrosation, affecting over 690 proteins (Aroca et al. 2018).

Although some oxiPTMs have been studied in the algal
model Chlamydomonas (Berger et al. 2016, De Mia et al. 2019),
most studies have been carried out on Arabidopsis plants. Our
knowledge of these oxiPTMs, therefore, needs to be extended
to other plant species, especially those of agronomic interest
under adverse environmental conditions, for crop improve-
ment and biotechnological purposes. This is crucial given that
signaling molecules, such as H2O2, NO and H2S, and molecules
with antioxidant capacity, such as GSH, are directly involved
in these mechanisms. Although cross talk between the dif-
ferent oxiPTMs clearly exists, our knowledge concerning this
phenomenon remains limited, and more research will need to
be carried out in order to boost the potential of thesemolecular
events.
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Sevilla, F. and Lázaro, J.J. (2010) Characterization of plant sulfiredoxin and
role of sulphinic form of 2-Cys peroxiredoxin. J. Exp. Bot. 61: 1509–1521.

Ito, H., Iwabuchi, M. and Ogawa, K. (2003) The sugar-metabolic enzymes
aldolase and triose-phosphate isomerase are targets of glutathionylation
in Arabidopsis thaliana: detection using biotinylated glutathione. Plant
Cell Physiol. 4: 655–660.

Kalinina, E. and Novichkova, M. (2021) Glutathione in protein redox mod-
ulation through S-glutathionylation and S-nitrosylation. Molecules 26:
435.

Kharbech, O., Sakouhi, L., Ben Massoud, M., Jose Mur, L.A., Corpas, F.J.,
Djebali, W., et al. (2020) Nitric oxide and hydrogen sulfide pro-
tect plasma membrane integrity and mitigate chromium-induced
methylglyoxal toxicity in maize seedlings. Plant Physiol. Biochem. 157:
244–255.

Kimura, H. (2021) Hydrogen sulfide (H2S) and polysulfide (H2Sn) Signaling:
the First 25 years. Biomolecules 11: 896.

Knuesting, J. and Scheibe, R. (2018) Small molecules govern thiol redox
switches. Trends Plant Sci. 23: 769–782.

Kolbert, Z., Barroso, J.B., Brouquisse, R., Corpas, F.J., Gupta, K.J.,
Lindermayr, C., et al. (2019)A forty year journey: the generation and roles
of NO in plants. Nitric Oxide 93: 53–70.

Kolbert, Z. and Lindermayr, C. (2021) Computational prediction of NO-
dependent posttranslational modifications in plants: current status and
perspectives. Plant Physiol. Biochem. 167: 851–861.

Kouroussis, E., Adhikari, B., Zivanovic, J. and Filipovic, M.R. (2019) Measure-
ment of protein persulfidation: improved tag-switch method. Methods
Mol. Biol. 2007: 37–50.

Kumar, M., Carr, P. and Turner, S. (2020) An atlas of Arabidopsis protein
S-acylation reveals its widespread role in plant cell organisation of and
function. BioRxiv. 10.1101/2020.05.12.090415.
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