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Abstract
Longevity was influenced by many complex diseases and traits. However, the relation-
ships between human longevity and genetic risks of complex diseases were not broadly 
studied. Here, we constructed polygenic risk scores (PRSs) for 225 complex diseases/
traits and evaluated their relationships with human longevity in a cohort with 2178 
centenarians and 2299 middle-aged individuals. Lower genetic risks of stroke and hy-
potension were observed in centenarians, while higher genetic risks of schizophrenia 
(SCZ) and type 2 diabetes (T2D) were detected in long-lived individuals. We further 
stratified PRSs into cell-type groups and significance-level groups. The results showed 
that the immune component of SCZ genetic risk was positively linked to longevity, and 
the renal component of T2D genetic risk was the most deleterious. Additionally, SNPs 
with very small p-values (p  ≤  1x10-5) for SCZ and T2D were negatively correlated 
with longevity. While for the less significant SNPs (1x10-5 < p ≤ 0.05), their effects 
on disease and longevity were positively correlated. Overall, we identified genetically 
informed positive and negative factors for human longevity, gained more insights on 
the accumulation of disease risk alleles during evolution, and provided evidence for 
the theory of genetic trade-offs between complex diseases and longevity.
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1  |  INTRODUC TION

Human longevity is influenced by many complex diseases and life-
styles. Stroke and ischemic heart disease were the leading causes 
of death (Zhou et al., 2019). Diabetes (Franco et al., 2007), cardio-
vascular diseases (Franco et al., 2007), and body mass index (BMI) 
(Abdelaal et al.,  2017) have been reported to be associated with 
higher mortality. Healthy lifestyles, such as consuming whole grain 
foods (Hu et al., 2020), physical exercises (Garatachea et al., 2015; 
Li et al.,  2020), and calorie restriction (Hwangbo et al.,  2020) are 
beneficial for promoting healthy aging. These correlations between 
longevity and complex diseases/traits may be ascribed to shared 
genetic components. Negative genetic correlations were found 
between longevity and cardiovascular diseases, smoking, type 2 
diabetes (T2D) as well as Alzheimer's disease (Broer et al.,  2015; 
Gutman et al., 2020; McDaid et al., 2017; Nebel et al.,  2011; Tesi 
et al.,  2020; Timmers et al.,  2020). Positive genetic associations 
were identified for education and exercise (McDaid et al.,  2017). 
Genome-wide association study (GWAS) of lifespan and human 
longevity also identified many pleiotropic genes. APOE is the 
most replicated longevity-related gene (Broer et al., 2015; Deelen 
et al., 2014; Deelen et al., 2019; Joshi et al., 2017; Nebel et al., 2011; 
Sebastiani et al.,  2017), and it is also a well-known gene associ-
ated with Alzheimer's disease (Schachter et al., 1994). An allele of 
the PON1 (Paraoxonase 1) gene has been linked to a higher risk of 
cardiovascular diseases and also underrepresented in centenarians 
(Bhattacharyya et al., 2008). All the above reports suggested that 
pleiotropy is a common event in longevity and complex diseases/
traits (Fernandes et al., 2016).

It is not always the case that increased disease genetic risks were 
linked to higher mortality. It is reported that the number of disease 
risk alleles, including those of coronary artery disease (CAD), heart 
failure, cancer, and T2D, was not reduced in long-lived individuals 
compared with that in middle-aged people (Beekman et al., 2010; 
Erikson et al.,  2016; Revelas et al.,  2019). Consistent evidence 
showed that CAD had a negative correlation with longevity (Deelen 
et al., 2019; Erikson et al., 2016; McDaid et al., 2017). However, con-
flicting correlational evidence was reported between longevity and 
T2D (Beekman et al., 2010; Deelen et al., 2019; Erikson et al., 2016; 
McDaid et al.,  2017). Recently, one study showed that most risk 
SNPs of the Alzheimer's disease (AD) associated with decreased 
odds of longevity, but some SNPs increased the probability of both 
AD and longevity (Tesi et al., 2021).

Although some genetic correlations between complex diseases 
and longevity have been studied, there are still many unproven asso-
ciations. Therefore, we performed systematic analyses between ge-
netic risks of complex diseases and longevity. We generated polygenic 
risk scores (PRSs) of 225 complex diseases/traits for 2178 centenari-
ans and 2299 middle-aged individuals from the Chinese Longitudinal 

Healthy Longevity Survey cohort (CLHLS). Each PRS was used to 
predict whether a person is a centenarian to study the relationships 
between genetic risks of complex diseases/traits and longevity. We 
further partitioned the SNPs into cell-type groups and different p-
value groups. Next, we annotated the pleiotropic SNPs into genes and 
gene ontology (GO) terms to gain more functional information about 
the pleiotropic genes. Finally, all the PRSs were put into one model to 
predict longevity and to evaluate how much proportion of genetics of 
complex diseases/traits could contribute to longevity.

2  |  RESULTS

2.1  |  Summary of study dataset

To evaluate the genetic correlations between longevity and complex 
diseases/traits, we have constructed 225 PRSs of complex diseases/
traits, based on well-selected GWAS meta-analysis summary statis-
tics of complex diseases/traits, to predict longevity. All the summary 
statistics covered a wide range of phenotypes, which can be classi-
fied into 9 distinct categories, including mental disorders (n = 17), 
age-related complex diseases (n  =  2), cardiovascular diseases and 
related factors (n = 9), type 2 diabetes and related traits (n = 12), 
other complex diseases (n = 8), anthropometrics (n = 18), metabolic 
indexes (n = 141), body compositions (n = 13), and social lifestyles 
(n = 5). The detailed characteristics of the phenotypes and sources 
were described in Table S1. 2178 centenarians and 2299 middle-
aged controls (aged 40–59) from CLHLS (Zeng, 2012) cohort were 
genotyped by Illumina HumanOmniZhongHua-8 BeadChips (Zeng 
et al.,  2016). 5,594,914 SNPs were retained after quality control 
(QC).

2.2  |  Both positive and negative correlations 
between PRSs and longevity were identified among 
multiple complex traits

SNPs for the construction of PRSs were selected through thresh-
olding p-values. The effects of selected SNPs from GWAS summary 
statistics were used as weights to sum the SNP genotypes. Multiple 
PRSs of each trait were utilized to predict whether a person is a cen-
tenarian or not. The best PRSs for one trait was the one which gained 
smallest p-value in the predictions. Multiple testing corrections were 
further conducted in the p-values of best PRSs for complex traits. 
Overall, we identified 134 PRSs of complex phenotypes correlated 
with longevity after multiple testing adjustment using false discov-
ery rate (FDR; FDR-adjusted p < 0.05; Figure 1 and Table S2).

Most of the PRSs of clinically diagnosed diseases were nega-
tively correlated with longevity, including those of Parkinson's 
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F I G U R E  1 134 PRSs of complex traits could predict longevity significantly. The length of the bar represents the proportion of longevity 
explained by PRS. The minus sign indicates negative correlation. Phenotype abbreviations were given in Table S1
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disease (PD), inflammatory bowel disease (IBD), stroke, CAD, and 
kidney disease. Inversely, the PRSs of some psychiatric disorders, 
such as schizophrenia (SCZ), autism spectrum disorder, cannabis 
disorder, insulin-related traits, and atopic dermatitis, were pos-
itively correlated with longevity. In the PRSs of body measure-
ments, the direct measures such as weight, hip circumference, and 
waist circumference were not correlated with longevity. While 
being integrated into indexing traits, some of the size measures 
were correlated with longevity. For instance, waist circumference 
adjusted by BMI as a strong predictor of harmful intra-abdominal 
fat mass (Berentzen et al., 2012) was negatively correlated with 
longevity. The PRS of height was negatively correlated with lon-
gevity; it was consistent with the result of a trans-ethnical study 
(Sakaue et al., 2020). In terms of brain and bone-related measures, 
the PRS of fracture was negatively correlated with longevity, while 
the PRSs of forearm bone mineral density, the intracranial volume 
of putamen, and pallidum of brain were positively correlated with 
longevity.

Interestingly, among the metabolic measures, “good lipids” and 
“bad lipids” were identified. Generally, the PRSs of very large and 
extreme large very-low-density lipoproteins (VLDL) were negatively 
correlated with longevity, while the PRSs of medium and large high-
density lipoproteins (HDL) were positively correlated with longevity. 
VLDL level is one of risk factors for atherosclerotic cardiovascular 
disease (Prenner et al.,  2014; Varbo et al., 2013). Epidemiological 
evidence suggested that higher HDL levels may serve a protective 
role from numerous age-related diseases (Milman et al., 2014; Wang 
et al., 2018). The PRS of the average number of double bonds in 
fatty acids (DB.in.FA) was significantly negatively correlated with 

longevity, while the PRS of the average number of methylene groups 
per double bond (CH2.DB.ratio) was positively influencing longevity. 
The DB.in.FA has been found negatively correlated with longevity in 
C. elegans (Shmookler Reis et al., 2011), the double bonds number 
and methylene in a fatty acid may be related to oxidative phosphor-
ylation (Parvez et al., 2018; Valencak & Azzu, 2014).

After Bonferroni correction, there were still 16 PRSs could sig-
nificantly predict longevity (p < 2.22 × 10−4; Figure S1 and Table 1). 
The top longevity related PRSs including SCZ, T2D and its related 
traits, CAD, stroke (any stroke and any ischemic stroke), metabolic 
traits (blood lipids and related ratios), and height. The PRS of dia-
stolic blood pressure (DBP) could explain the highest proportion of 
variation for longevity (R2 = 0.012).

2.3  |  PRSs of complex diseases/traits were 
associated with longevity while masking APOE region

Among the top 16 PRSs that were significantly correlated with lon-
gevity, there were many complex diseases/traits associated with 
APOE. For example, the role of Apolipoprotein E in lipid metabolism 
has been well established (Dose et al., 2016; Mahley, 2016), APOE 
was also reported to be associated with the risk of cardiovascular 
diseases and diabetes mellitus (Eichner et al., 2002), and APOE is the 
most replicated longevity-related gene (Broer et al., 2015; Deelen 
et al., 2014; Deelen et al., 2019; Joshi et al., 2017; Nebel et al., 2011; 
Sebastiani et al., 2017). In order to see whether the associations be-
tween longevity and the 16 PRSs of complex diseases/traits were 
dominated by APOE or contributed by multiple genetic factors, we 

TA B L E  1 Correlations between PRSs of complex traits and longevity

Phenotype Threshold PRS.R2 Effect Num_SNPs p Categories

DBP 1.18E-02 1.20E-02 Negative 17,121 2.79E-10 Cardiovascular diseases and related factors

AIS 5.00E-08 9.93E-03 Negative 18 8.74E-09 Cardiovascular diseases and related factors

SBP 6.95E-03 9.82E-03 Negative 14,457 1.07E-08 Cardiovascular diseases and related factors

AS 5.00E-08 8.93E-03 Negative 15 4.82E-08 Cardiovascular diseases and related factors

SCZ 7.69E-01 8.03E-03 Positive 111,079 2.28E-07 Mental disorders

DB.in.FA 5.00E-08 5.66E-03 Negative 9 1.34E-05 Metabolic indexes

Height 3.50E-02 5.32E-03 Negative 20,416 2.46E-05 Anthropometrics

CH2.DB.ratio 5.00E-08 5.27E-03 Positive 13 2.68E-05 Metabolic indexes

CAD 2.65E-03 5.18E-03 Negative 1860 3.15E-05 Cardiovascular diseases and related factors

S.VLDL.C 5.00E-08 4.75E-03 Negative 30 6.69E-05 Metabolic indexes

S.VLDL.FC 5.00E-08 4.73E-03 Negative 27 7.03E-05 Metabolic indexes

T2D 6.70E-01 4.58E-03 Positive 69,656 9.07E-05 Type 2 diabetes and related traits

otPUFA 5.00E-08 4.54E-03 Negative 26 9.75E-05 Metabolic indexes

Insulin_CIR 3.04E-02 4.29E-03 Positive 6737 1.51E-04 Type 2 diabetes and related traits

Bis.FA.ratio 5.00E-08 4.12E-03 Negative 12 2.02E-04 Metabolic indexes

FAw3 5.00E-08 4.08E-03 Negative 9 2.18E-04 Metabolic indexes

Phenotype: the names of the complex diseases/traits; Threshold: best p-value threshold; PRS.R2: variance explained by the PRS; Effect: the impact 
of genetic risk of complex diseases on longevity; Num_SNPs: the number of the SNPs in PRS construction; p: p-value of the model fit; Categories: the 
category of the complex diseases/traits. Phenotype abbreviations were given in Table S1.
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excluded the APOE region to construct PRSs for the 16 complex dis-
eases/traits and evaluated their relationships with longevity.

We defined the APOE region by LDBlockShow (Dong et al., 2021) 
in our genotype dataset that all individuals are Han Chinese, and 
replicated it using the genotypic data of Eastern Asian of the 1000 
Genome Project. The results of centenarians and controls showed 
that 8 LD blocks were in the APOE region, as SNPs located from 
position 45,361,224 to 45,432,557 base pairs on chromosome 
19 (Figure S2a). The result of Eastern Asian of the 1000 Genome 
Project showed that 14 LD blocks were in the APOE region, from 
position 45,361,224 to 45,436,657 base pairs on chromosome 19 
(Figure S2b). The APOE region was largely overlapped in our cohort 
and the Eastern Asian population. Finally, we excluded the larger 
APOE region of chr19:45,361,224-45,436,657 from the GWAS sum-
mary statistics of the 16 complex diseases/traits to construct PRSs 
and correlated them with longevity. The results showed that PRSs 
of complex diseases/traits were still associated with longevity while 
masking APOE region (Table S3). After Bonferroni correction for all 
the PRSs of 225 complex diseases/traits, including DBP, any ischemic 
stroke (AIS), systolic blood pressure (SBP), any stroke (AS), schizo-
phrenia, height, T2D, other polyunsaturated fatty acids than 18:2 
(otPUFA), DB.in.FA, corrected insulin response (Insulin_CIR), ratio 
of bis-allylic groups to total fatty acids in lipids (Bis.FA.ratio), ome-
ga-3 fatty acids were still significantly correlated with longevity with 
p-value < 2.22 × 10−4 (p < 0.05/225). The p-values of CH2.DB.ratio, 
free cholesterol in small very-low-density lipoprotein (S.VLDL.FC), 
and total cholesterol in small very-low-density lipoprotein (S.VLDL.C) 
became larger than 2.22 × 10−4, but still correlated with longevity 
with the p-value = 2.82 × 10−4 of CH2.DB.ratio, p-value = 4.23 × 10−4 
of S.VLDL.FC, and p-value = 5.62 × 10−4 of S.VLDL.C.

2.4  |  Cell-type group-specific PRSs show different 
directions of correlations with human longevity

The above analyses showed the differences of genetic components 
for complex traits contributing to longevity. Then, we further stud-
ied that within a complex trait, how do disproportionated genetic 
contributions of functional categories influence longevity. The SNPs 
were annotated into 220 cell types, and cell-type annotations were 
combined into 10 groups representing biological systems for human. 
Cell-type specific PRSs and cell-type group-specific PRSs were gen-
erated. We assessed statistical significance at p  < 0.05 after FDR 
corrections for 220 × 16 = 3520 tests, the numbers represent 220 
cell types and top 16 complex phenotypes whose PRSs were most 
significantly associated with longevity.

Cell-type group-specific PRS results for the 16 traits mentioned 
above were shown in Figure 2. Most of the complex diseases/traits 
showed negative correlations with longevity at all cell-type groups, 
including CAD, height, stroke, DBP and SBP, Bis.FA.ratio, DB.in.FA, 
otPUFA, S.VLDL.C and S.VLDL.FC. Two traits, Insulin_CIR and CH2.
DB.ratio, showed positive correlations with longevity at all cell-type 
groups. SCZ and T2D showed bi-directional correlations. For SCZ, 

all cell-type group-specific PRSs could predict longevity significantly 
(FDR-adjusted p < 0.05). PRSs of central nervous system (CNS), gas-
trointestinal, immune groups were positively correlated with longev-
ity, while that of adrenal, cardiovascular, connective or bone, kidney, 
liver, and skeletal muscle cell-type groups were negatively correlated 
with longevity. The PRS of the immune cell-type group explained the 
highest proportion of variation for longevity in positive correlation. 
Existing literature revealed that the hyperactive immune system was 
correlated with SCZ (Khandaker et al., 2015; Müller & Schwarz, 2010), 
and the enhanced immune system may be an advantage to longevity 
(Zeng et al., 2016). In T2D, the PRSs for cardiovascular, CNS, connec-
tive or bone and kidney groups passed the threshold (FDR-adjusted 
p < 0.05). PRSs of CNS and connective or bone groups showed pos-
itive correlations with longevity, while PRS for cardiovascular and 
kidney groups showed negative correlations with longevity. T2D is a 
major risk factor of kidney disease, and renal disease is an important 
complication (Tancredi et al., 2015), our results indicated that T2D-
associated kidney diseases may be a great risk factor of mortality. 
The significant cell-type specific PRS results for the 16 traits were 
displayed in Table S4. Most of the complex traits correlated with brain 
structure-related and immunity-related cell types.

Then, we excluded the APOE region chr19:45,361,224-45, 
436,657 from the GWAS summary statistics of the 16 complex 
diseases/traits to construct cell-type group-specific PRSs and cor-
related them with longevity. Most of our reported associations 
were still significant after masking the APOE region (Figure  S3). 
Cell-type group-specific PRSs of S.VLDL.FC and S.VLDL.C could 
explain smaller proportion of the longevity.

2.5  |  Dissecting effects of SNPs in SCZ, 
T2D, and longevity

The above analyses suggested that SNPs across the genome have dif-
ferent directions of effects between complex diseases and longevity, 
especially for SCZ and T2D. In order to deeply explore the effects 
of pleiotropic SNPs on longevity and complex diseases, we detailed 
stratified PRSs using different p-value thresholds in SCZ and T2D. We 
identified similar patterns in SCZ and T2D. For the most significant 
groups of SNPs in disease summary statistics, the increased disease 
risks were associated with a reduced chance of becoming centenar-
ian. While for those SNPs with less significances, the increased dis-
ease risks also increase the chance of being long-lived (Figure 3a, b).

We were then interested in searching for the functions of pleio-
tropic SNPs/Genes in longevity and SCZ/T2D, especially those in-
creasing both disease risks and probability of being centenarian. In 
order to do this, two pairs of summary statistics were compared, 
SCZ vs. longevity and T2D vs. longevity. Within each pair, the ef-
fects of SNPs with nominal significance (p < 0.05) in both pheno-
types were selected and compared (Figure S4a,b). All the compared 
SNPs could be classified into two categories: (1) both increasing 
chance of diseases and longevity (panel 1); (2) increasing disease 
risks and reduce life expectancy (panel 2). The top 10 significant GO 
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terms for two panels of genes were shown in Figure  4. Only two 
terms were overlapped between panels 1 and 2, for SCZ and T2D, 
respectively. This suggesting that the functions of panels 1 and 2 
were complementary.

2.6  |  Comparing the effects of longevity-related 
genes in SCZ and T2D

We evaluated longevity-related SNPs/Genes from the largest meta-
analysis of longevity (Deelen et al., 2019). The information of SNPs/

Genes was shown in Table S5. Effect size of these genes in SCZ and 
T2D was compared to their effects of longevity (Figure 5a, b, and 
Table 2). There were 9 longevity-related SNPs have nominally signifi-
cant (p < 0.05) effects on SCZ. Among these SNPs, 6 SNPs showed 
positive effects on both longevity and SCZ, 3 SNPs showed oppo-
site effects on longevity and SCZ. 5 longevity-related SNPs showed 
nominally significant (p < 0.05) effects on T2D, 1 SNP showed both 
positive effects on longevity and T2D, the others showed opposite 
effects on longevity and T2D. FOXO3 was a famous longevity-related 
gene (Broer et al., 2015; Tanaka et al., 2017; Timmers et al., 2019). 
The allele T of rs72942514 within FOXO3 was nominally significantly 

F I G U R E  2 Correlations between cell-type group-specific PRSs of complex traits and longevity. The length of the bar represents the 
proportion of longevity explained by cell-type group-specific PRS. The minus sign indicates negative correlation. Phenotype abbreviations 
were given in Table S1. *FDR-adjusted p < 0.05. **p < 0.05 after Bonferroni correction
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F I G U R E  3 Directions of correlations 
and percentage of variances explained by 
PRSs in different thresholds. The length 
of the bar represents the proportion of 
longevity explained by PRS. The minus 
sign indicates negative correlation. 
*p < 0.05
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F I G U R E  4 GO enrichment of the 
pleiotropic genes for SCZ and T2D. 
SCZ_Panel 1: Genes both increasing 
chance of SCZ and longevity; SCZ_Panel 
2: Genes increasing SCZ risk and reducing 
the chance of longevity; T2D_Panel 1: 
Genes both increasing chance of T2D and 
longevity; T2D_Panel 2: Genes increasing 
T2D risk and reducing the chance of 
longevity
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associated with longevity (OR = 1.604, p < 0.05), and it was also cor-
related with higher risk of SCZ (OR =  1.084, p < 0.005; Figure  5a, 
Table 2). The SNP which had both positive effects on longevity and 
T2D located on intergenic region.

2.7  |  Estimating the contribution of all PRSs

The above analyses were performed using a single PRS to predict 
longevity. Next, we were interested in using all PRSs of complex dis-
eases/traits to predict longevity and evaluate the overall contribu-
tion of all PRSs to longevity. To find an optimized regression method, 
we trained our data with multiple common classifiers, including SVM 
based classifier, KNN classifier, Naive Bayes classifier, logistic re-
gression, Decision Tree, and Random Forest classifier. 10-fold cross-
validation was conducted for model construction, and 100 iterations 

with randomly split training and validation sets were run to avoid 
overfitting. Consequently, the logistic regression classifier provided 
the best prediction (Figure  6a). Further optimizing parameters of 
logistic regression could achieve AUC = 0.69 and pseudo-R2 = 0.08 
(Figure 6b), indicating that all PRSs together could only explain a small 
proportion of the variance of longevity. The coefficient of each PRSs 
in the best prediction model was shown in Table S6.

3  |  DISCUSSION

One might expect that the genetic risks of complex diseases would 
be lower in long-lived people as compared to that in younger con-
trols. In this study, we provided evidence in support of this ex-
pectation, most of the PRSs of clinically diagnosed diseases were 
negatively correlated with longevity, including PD, IBD, stroke, CAD, 

F I G U R E  5 Effect sizes of longevity-
related genes in SCZ and T2D. (a) Effects 
of longevity-related genes in SCZ; (b) 
effects of longevity-related genes in T2D. 
Dist: The distant from the SNP to the 
gene
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and kidney disease. Previous studies also provide sufficient evi-
dence to support this expectation, reduced risks for height (Sakaue 
et al., 2020), CAD and its related traits (Timmers et al., 2019) such as 
DBP (Sakaue et al., 2020), SBP (Sakaue et al., 2020) contributed to 
longevity or lifespan (Broer et al., 2015; Deelen et al., 2019; Sakaue 
et al., 2020; Timmers et al., 2019).

However, relationships between longevity and complex dis-
eases were not always as expected, in which increased disease risks 
were not necessarily linked to higher mortality. We identified that 
the PRSs of some psychiatric disorders, such as SCZ, autism spec-
trum disorder (ASD), cannabis disorder, and atopic dermatitis, were 
positively correlated with longevity, as well as T2D. We have further 
investigated these intriguing associations and possible underlying 

mechanisms by stratified PRS analyses. The results showed that 
most of the SNPs with very small p-values (p ≤ 1 × 10−5) for SCZ/T2D 
were negatively correlated with longevity. While for the less signifi-
cant SNPs (1 × 10−5 < p ≤ 0.05), their effects on disease and longevity 
were positive. It was reported that the cancer incidence in first-
degree relatives of patients with SCZ had significantly decreased 
risks of overall cancers (Catts et al.,  2008), and this finding has 
been replicated in an independent study (Ji et al., 2013). Many CNS 
disorders have inversed cancer comorbidity (Tabares-Seisdedos 
& Rubenstein, 2013). Further, in the term of cell-type levels, PRS 
of the immune cell-type group explained the highest proportion 
of variation in the positive correlations. The hyperactive immune 
system-related genes may be causes of SCZ (Comer et al., 2020). 

F I G U R E  6 Using all PRSs of complex phenotypes to predict longevity. (1) Comparisons of the prediction efficiency of different methods. 
(2) The optimized prediction from the logistic regression model

(a)

(b)
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Meanwhile, the enhanced immune system could be beneficial for 
an increasing long-life span (Pinti et al., 2016). If detailed looking 
at gene level effects, FOXO3 gene was a famous gene for human 
longevity, which controls the magnitude of T-cell immune response 
by modulating dendritic cell function. The enhanced capacity of 
Foxo3-deficient dendritic cells to sustain T-cell viability by produc-
ing increased amounts of interleukin 6 (IL-6) (Dejean et al., 2009). 
The increased expression of IL-6 would enhance cell survival and 
transform cell growth in human malignant cholangiocytes (Meng 
et al., 2006). Also, the decreased expression of FOXO3A was found 
in acute SCZ patients (Gu et al., 2021). It is possible that the reduced 
expression of FOXO3 leads to enhanced IL-6 expression and formed 
an enhanced immune system. In T2D cell-type group-specific PRSs, 
PRS of kidney-related cell-type group explained the highest pro-
portion of variation for longevity. T2D is a major risk factor of kid-
ney disease, and renal disease is an important complication causing 
mortality (Shmookler Reis et al., 2011). Still, some genetic factors 
were contributing to the positive associations between T2D genetic 
risk and longevity, especially for those genes in the CNS. Glucose 
is the main source of energy for brain and brain consumes ~20% 
of glucose-derived energy to maintain the neuronal activities. It 
is reported that glucose acts as a double edge sword in regulating 
the functions of SIRT1 (Chattopadhyay et al., 2020). SIRT1 has long 
been known to be a longevity factor. Glucose binds and modifies 
SIRT1 ultimately reduces its levels. Loss of SIRT1 is associated with 
obesity and aging. On the contrary, overactivation of the longevity 
factor SIRT1 was also detrimental to liver physiology and resulted 
in increased blood glucose levels leading to a pre-diabetic like state 
(Chattopadhyay et al., 2020). In this case, a high blood glucose level 
is associated with high SIRT1.

Our results of the associations between genetic risks of complex 
diseases and longevity were conflicted with the phenotypic asso-
ciations. Both SCZ and T2D were reported to increase mortality in 
many studies (Bardenheier et al., 2016; Hennekens, 2007; Kilbourne 
et al., 2009; Sikdar et al., 2010). One possible explanation would be 
that the phenotypes were influenced by genetics, environments, 
and their interactions. In our prediction model, all the PRSs could 
only explain a small proportion of the variances of longevity. There 
were much more effects depend on other factors. The genetic ef-
fects of phenotypes may vary between different environments. Our 
results showed that the immune component of SCZ genetics was 
beneficial to longevity. While SCZ could also be triggered by many 
environmental factors, such as early hazards causing fetal growth 
retardation or drug abuse (Dean & Murray, 2005), these environ-
mental factors may disturb the development of the immune system 
which may be harmful for health and cause early death. Similar to 
T2D, air pollution, diet, and physical activity (Dendup et al., 2018) 
were strongly correlated with T2D. An unhealthy diet would damage 
renal function in patients with diabetes (Lin et al., 2020). Our results 
showed that the renal component for genetic risks of T2D signifi-
cantly reduced the possibility of longevity. Furthermore, the SNP 
genotypes will not change during one's life, but their impact on vul-
nerability to mortality could be changed by epigenetics. Age-related 

DNA methylation patterns have been reported a lot (Bell et al., 2019; 
Gensous et al., 2019). Different sets of genes may be activated in re-
sponse to different age- and population-specific environments and 
exposures (Ukraintseva et al., 2016).

It is reasonable that some risk genes for diseases are posi-
tively related to longevity from the aspect of evolution (Carter & 
Nguyen,  2011). During the historical process of natural selection, 
the beneficial mutant was accumulated while the deleterious muta-
tion would be eliminated. Therefore, the existing common variants 
increasing the disease risks may potentially be protective against 
some extreme environment.

All these complex G × G and G × E interactions made the genetic 
effects on longevity highly conditional. In different stages of one's 
life cycle, distinct environments with diverse lifestyles would all 
lead to different effects from the same set of genes. This may be 
the reason why the results of longevity GWAS studies were very 
hard to be replicated (Broer et al., 2015; Deelen et al., 2014; Deelen 
et al., 2019; Erikson et al., 2016; Joshi et al., 2017; Nebel et al., 2011; 
Pilling et al., 2017; Timmers et al., 2019).

The antagonistic pleiotropy effects had been proposed in many 
articles (Aidoo et al.,  2002; Byars & Voskarides,  2020; Carter & 
Nguyen, 2011; Sørensen et al., 1999; Ukraintseva et al., 2016), but 
most of them are literature reviews. Our study used a data-driven 
approach and constructed PRSs for a wide range of complex phe-
notypes in the same group of people and compared their effects on 
longevity. Overall, our results suggested that “risk” or “beneficial” of 
a common genetic variant is conditional regarding its role in human 
aging, health, and lifespan. Studying these conditions is crucial for 
a detailed understand of the aging process, and also essential for 
personalized medicine which emphasizes the uniqueness of each 
individual.

In the PRS construction, we choose a clumping and threshold-
ing method (Choi & O'Reilly,  2019). The p-value thresholds were 
selected in logistic regression model which predicting longevity phe-
notype. We believe p-value thresholding method is better than the 
fixed p-value threshold method. Because it is unfair to choose fixed 
thresholds for different complex phenotypes due to the inconsistent 
sample sizes of different GWASs, it is uncertain which fixed thresh-
old is the best for PRS construction. In addition, the objective of 
this study was evaluating the associations between PRSs of complex 
phenotypes and longevity. This approach can try more possibility 
of the p-value thresholds and select the best one that could pre-
dict longevity phenotype. Therefore, using this approach, we could 
identify more complex phenotypes whose PRSs could significantly 
correlated with longevity.

In conclusion, our study evaluated the relationships between 
PRSs of complex diseases/traits and longevity. We confirmed the 
genetic risks of most fatal diseases would decrease the chance of 
being long-lived. Moreover, we also identified several traits, whose 
genetic risks may have benefits for longevity. Our study provided 
evidence for the genetic trade-off theory. We emphasized the posi-
tive effects of disease risk alleles on longevity, which could help ex-
plain the origin of diseases genetic components.
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4  |  METHODS

4.1  |  Study populations, genotyping, and 
imputation

Our study included 2178 centenarians (mean age 102.7 ± 3.49 [SD]) 
and 2299 middle-aged controls (mean age 48.4 ± 7.44 [SD]) (Zeng 
et al., 2016). The data were obtained from the Chinese Longitudinal 
Healthy Longevity Survey cohort (CLHLS) (Zeng,  2012; Zeng 
et al.,  2016; Zeng et al.,  2018; Zhao et al.,  2018). All the centenar-
ians and middle-aged controls were genotyped by the Illumina 
HumanOmniZhongHua-8 BeadChips, including 600 k common vari-
ants (MAF ≥ 5%), 290 k rare variants (MAF < 5%), and 10 k SNPs exist-
ing only among Chinese and other Asian populations. We performed 
standard GWAS QC and imputation for the data, the detailed steps 
can see the previously published study (Zeng et al.,  2016). Briefly, 
the data QC included two dimensions, samples, and SNPs. All QC as-
sessments and successive filtering were done using PLINK1.9 (Purcell 
et al., 2007). Samples with more than 1% missing genotyped SNPs, dif-
ferent genetic sex with the record in the phenotypic database were 
removed. Samples who have genetic relationship within two degree 
of relatedness were filtered out. SNPs had high rate of missing geno-
types and deviated from the Hardy–Weinberg equilibrium (HWE) 
test (p ≤ 1 × 10−5) as well as SNPs on X and Y chromosomes and mi-
tochondria were also removed. Principal component analysis (PCA) 
was performed using SNPs on autosomal chromosome by PLINK1.9 
(Purcell et al., 2007) to investigate population stratification. No clear 
sub-cluster was observed. Typical north to south grandaunt was dem-
onstrated by the first principal component. Next, the 1000 Genomes 
Project integrated phase 1 release was used as reference panel to 
infer the genotypes of all SNPs (MAF > 1%) by IMPUTE2 (Marchini 
et al., 2007), imputed SNPs with a quality score less than 0.9 were dis-
carded before analysis. After imputation, we performed SNP QC again 
as discussed above. Finally, 5,594,914 SNPs were retained and used as 
target data to construct PRSs.

4.2  |  GWAS summary statistics data resources and 
preprocessing

Firstly, the GWAS summary statistics collected by LD hub (Zheng 
et al., 2017), a centralized database of summary-level GWAS results 
for complex diseases/traits from different publicly available re-
sources/consortia, were considered. But some of the them were out 
of date, some of them were conducted by sex-stratified approaches, 
and some of the GWAS studies involve multiple GWAS summary sta-
tistics. We used the following criteria to filter the GWAS summary 
statistics: (1) Not sex-stratified; (2) Multi-ethnic meta-analysis was 
preferred to single-ethnic research; and (3) For multiple GWASs of 
the same phenotype, the one with the largest sample size was se-
lected. As a result, 200 of the GWAS summary statistics were col-
lected based on LD hub. 16 of them were updated for obtaining the 
latest GWAS results, including T2D, asthma, 5 mental disorders, 2 

anthropometrics, 3 body composition, and 4 metabolism indexes. In 
addition, we added 8 cardiovascular-related diseases and risk factors 
(stroke and blood pressure-related complex traits) since cardiovascu-
lar diseases were the leading causes of death, and 17 GWAS summary 
statistics of 2 anthropometrics, 8 body compositions, and 7 meta-
bolic indexes. Therefore, a total of 225 complex diseases/traits were 
included in this study. The detailed characteristics of the phenotypes 
and sources of GWAS summary data were described in Table S1.

All the coordinates of SNPs in GWAS summary statistics were 
converted to the coordinates of hg19/GRCh37 using UCSC LiftOver 
tool (Kent et al.,  2002). Then, the genotypes of each SNPs were 
matched, and the effect size was converted to ensure the testing 
allele for all the traits were the same. SNPs with mismatched alleles 
were flipped into their complementary alleles to match again. SNPs 
that had different or ambiguous genotypes in multiple studies were 
excluded. The clean GWAS summary statistics were used as base 
data to construct PRSs.

4.3  |  Construction of PRSs and prediction of 
longevity phenotype

According to the effect size and p-values of SNPs in large-scale 
GWAS summary statistics (base data), we constructed PRSs for cen-
tenarians and middle-aged controls using their genotype data using 
PRSice-2 (Choi & O'Reilly, 2019). The following formula was used to 
calculate PRSs. Assuming Si is the summary statistic of the ith effec-
tive allele, Gij is the number of the ith effective alleles observed in jth 
individual (0, 1, 2, respectively), Mj is the number of alleles included 
in the PRS of the jth individual.

We derived PRSs of complex diseases for each individual by a clumping 
and thresholding method. First, linkage disequilibrium (LD) clumping 
was performed on genotypic data of centenarians and controls using 
a clumping option of r2 > 0.1 and a window of 500 kb. Then, PRSs of 
complex diseases of individuals were computed by different p-value 
thresholds, from 5 × 10−8 to increase by an order of magnitude each 
time until 1. Next, the PRSs were regressed to longevity phenotypes 
by a logistic regression model. PRSs with smallest p-values were de-
fined as best PRS for each trait.

4.4  |  Definition of the APOE region

LD block analysis of APOE was performed on our genotype data 
including 4477 Han Chinese individuals and genotype data of 
Eastern Asian of the 1000 Genome Project. LDBlockShow (Dong 
et al.,  2021) was used to perform this analysis within the region 
of chr19:45,311,941–45,512,079, before 100  kb of rs429358 
(chr19:45,411,941) and after 100 kb of rs7412 (chr19:45,412,079).

PRSj =
∑

i

Si × Gij

Mj
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4.5  |  Construction of stratified PRSs and 
regressed them to longevity

We applied stratified PRSs of SCZ and T2D through two strategies: (1) 
Cell-type partitioning; (2) p-value thresholding. Firstly, we carried out 
the stratified PRSs by partitioning all SNPs into 220 cell types and 10 
cell-type groups then regressed the stratified PRSs to longevity phe-
notypes. Cell-type and cell-type group-specific annotations for each 
SNP were obtained from the study of LD score regression (Finucane 
et al., 2015). In which, the cell-type annotations for histone modifica-
tions (H3K4me1, H3K4me3, H3K9ac, and H3K27ac) were sorted out 
based on the Roadmap Epigenomics Project (Roadmap Epigenomics 
Consortium,  2015). Secondly, we constructed stratified PRSs by di-
viding all SNPs into 8 SNP sets, the p-value thresholds as 5 × 10−8, 
1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 5 × 10−2. To 
apply the stratified PRS construction, we used a set-based clumping 
and thresholding method with the default parameters in PRSet (Choi 
& O'Reilly, 2019). After stratified PRS construction, we regressed the 
set-based PRSs to longevity. We assessed statistical significance at 
p < 0.05 after FDR corrections for 220 × 16 = 3520 tests, the numbers 
represent 220 cell types and top 16 complex phenotypes whose PRSs 
were most significantly associated with longevity.

4.6  |  Dissecting effects of pleiotropic SNPs

In order to explore the function of SNPs which both influence longev-
ity and complex diseases, we analyzed the distributions of SNPs' effect 
size between longevity and complex diseases. We selected the SNPs 
that were used in the construction of the best PRSs and then selected 
the SNPs that with p-value < 0.05 in both longevity and complex traits/
diseases to plot the effect size distributions. We transformed the odds 
ratio (OR) to beta value, beta = log(OR). All effect alleles recorded in 
the T2D GWAS summary statistics for the trans-ethnic T2D GWAS 
meta-analysis as published in Mahajan et al. were alleles that increased 
the risk of T2D. For the SCZ summary statistics, we consolidated all 
the effect alleles into risk alleles, the beta of effect allele is equal to the 
negative of beta of non-effect allele.

4.7  |  Gene annotation and functional 
pathway enrichment

SNPs used in the best PRS construction were extracted and an-
notated by ANNOVAR (Yang & Wang, 2015). The annotated genes 
entered GO enrichment analyses in DAVID (Huang da et al., 2009a; 
Huang da et al., 2009b). Different panels of genes were classified 
into three GO classes, Biological Process, Cellular Component, and 
Molecular Function, respectively. We defined the significant enrich-
ments as those p-value < 2.22 × 10−4 (p < 0.05/225), after Bonferroni 
correction.

4.8  |  Longevity predicting model construction 
using all PRSs

The prediction of longevity can be portrayed as a binary classifi-
cation problem. Generally, classification algorithms can output a 
Bernoulli distribution for each sample and choose the label with 
higher possibility as its prediction. To pursue the optimized regres-
sion model, the following steps had been established: (1) Classifier 
selection. We tried various classifiers, including support vector 
machine (SVM), k-nearest neighbors (KNN), Naive Bayes, logistic 
regression, Decision Tree, and Random Forest classifiers, and se-
lected the best method with ROC (receiver operating characteris-
tic) curves and mean accuracy scores; (2) hyper-parameters tuning. 
Appropriate hyper-parameters were acquired with the grid-search 
method; (3) repeated k-fold cross-validation. We evaluated the 
optimum model from adequate randomly generated training and 
validation subsets. Scikit-learn (Pedregosa et al., 2011) was used 
primarily. Consequently, we fixed the logistic regression classifier 
in the further experiment.

To avoid model overfitting, regularization techniques were 
applied to train our models. Due to the limitations of scikit-learn, 
we can only apply the approaches of L1 and L2 penalties. To find 
the optimized training hyper-parameters, we used the scikit-learn 
built-in grid-search method to tune the hyper-parameters of the lo-
gistic classifier (Pedregosa et al., 2011). The grid-search method ex-
haustively considered every possible combination of the parameters 
and trained the data with each option, then selected the best model 
available. In this experiment, solver to use in the model, regular-
ization strength, and training iteration numbers provided by scikit-
learn were utilized in our grid-search. We used the “saga” solver, an 
implementation of the Stochastic Average Gradient method, with 
L2 penalties. A larger regularization strength had also been set-
tled for better accuracy. We used the 10-fold cross-validation and 
repeated the whole process for 100 iterations. The model hyper-
parameters with the best accuracy on the given valid datasets and 
labels were picked out. Finally, we trained the model again with the 
hyper-parameters obtained on the 80% training dataset and tested 
it against the 20% test dataset.
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