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Abstract

Outbreaks of an endemic infectious disease can occur when the disease is introduced into a 

highly susceptible subpopulation or when the disease enters a network of connected individuals. 

For example, significant HIV outbreaks among people who inject drugs have occurred in at 

least half a dozen U.S. states in recent years. This motivates the current study: how can limited 

testing resources be allocated across geographic regions to rapidly detect outbreaks of an endemic 

infectious disease? We develop an adaptive sampling algorithm that uses profile likelihood to 

estimate the distribution of the number of positive tests that would occur for each location in a 

future time period if that location were sampled. Sampling is performed in the location with the 

highest estimated probability of triggering an outbreak alarm in the next time period. The alarm 

function is determined by a semiparametric likelihood ratio test. We compare the profile likelihood 

sampling (PLS) method numerically to uniform random sampling (URS) and Thompson sampling 

(TS). TS was worse than URS when the outbreak occurred in a location with lower initial 

prevalence than other locations. PLS had lower time to outbreak detection than TS in some but not 

all scenarios, but was always better than URS even when the outbreak occurred in a location with 

a lower initial prevalence than other locations. PLS provides an effective and reliable method for 

rapidly detecting endemic disease outbreaks that is robust to this uncertainty.
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1 | INTRODUCTION

For many endemic infectious diseases that are present at a low level in a population, 

outbreaks with much higher incidence can occur when the disease is introduced into 

a highly susceptible subpopulation or when the disease enters a network of individuals 
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who have close contact. This has occurred, for example, with HIV among people who 

inject drugs (PWID) in the United States (U.S.). Since an outbreak of HIV among PWID 

in Scott County, Indiana1 in 2014–2015, at least a half a dozen similar outbreaks have 

occurred across the U.S. in Cincinnati, Ohio and Northern Kentucky2; Lawrence and Lowell, 

Massachusetts3; several counties in West Virginia4; North Seattle, Washington5; and the 

Overtown neighborhood of Miami, Florida.6 Many of these outbreaks have been driven by 

risky behaviors among PWID. Earlier detection of these outbreaks could greatly reduce their 

impact.7

In the wake of the initial HIV outbreak in Indiana, the Centers for Disease Control 

and Prevention (CDC) developed a list of 220 counties in the U.S. deemed at high risk 

of outbreaks of HIV (and other diseases such as hepatitis C).8 However, some of the 

subsequent outbreaks (in Washington, Massachusetts, and Florida) occurred outside of the 

counties considered at high risk by the CDC. This suggests that the ability to quickly 

detect and stop these outbreaks has not been sufficient. Although the U.S. has a system of 

both passive and active surveillance for HIV, resource constraints do not allow for regular, 

widespread HIV testing in all communities at risk. Furthermore, given the low prevalence of 

HIV in the general U.S. population, it is not clear that comprehensive testing efforts such as 

those in heavily affected sub-Saharan African countries are warranted here.

Mobile HIV testing services such as those provided by the AIDS Healthcare Foundation9, 

Project UJIMA10, and numerous health organizations provide the opportunity to quickly 

re-allocate testing capacity across different geographic locations in response to new data. 

Such clinics typically visit a relatively small number of locations in a city or county (e.g., 

a street corner, neighborhood, or zip code, selected for accessibility by at-risk individuals) 

on a recurring basis. An estimated 2,000 mobile clinics in the U.S. provide up to 6.5 million 

visits annually, with services that include testing for HIV and a range of endemic diseases.11 

Here we focus on adaptively locating a single mobile HIV testing unit that serves a city, 

county, or state. The CDC risk model prioritizes counties but it is a static model that does 

not adaptively re-distribute testing resources as new data is collected in real time.

Surveillance for endemic diseases (e.g., HIV, hepatitis B, hepatitis C, and various sexually 

transmitted infections) is fundamentally different from detecting a disease for which we 

expect no cases (e.g., anthrax, smallpox) because we expect to see some endemic cases, and 

thus we must model how the disease incidence changes over time; in contrast, for diseases 

such as smallpox, the detection of a single case would trigger an alarm.

Previous work has suggested using Thompson sampling to choose between testing locations 

to maximize yield of previously undiagnosed cases of HIV infection in a local community.12 

Thompson sampling is a Bayesian method that dynamically creates a belief distribution 

about the probability of finding new cases in each location, then randomly selects a value 

from the belief distribution for each location, and then samples in the location for which 

the selected probability of finding new cases is highest.13 The idea is that there are multiple 

locations with existing cases of a disease, yet undetected, in which a Bayesian search tool 

will use regular disease testing data to hone in on the most likely places to find undiagnosed 
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cases over the course of daily or weekly testing in these locations. The goal is to maximize 

the cumulative number of undiagnosed cases that are detected.

Such an approach will not necessarily work for the early detection of new incident 
cases; that is, an outbreak. The Thompson sampling algorithm uses new data to update 

probabilities of finding new cases in each location and thereby maximize the yield of testing. 

An emerging cluster may start in a region with low prevalence and thus yield no positive 

tests initially. When this happens, the Thompson sampling algorithm will not frequently visit 

this location until its prevalence begins to approach that of other locations, by which time 

the outbreak may be out of control. Earlier, more frequent surveillance of the location could 

detect the growth in prevalence earlier.

Thus, for early detection of new incident cases of an endemic infectious disease we face 

the following situation: limited resources for testing are available to deploy over time and 

space, and locations sampled might result in no incident diagnoses that could indicate a 

new cluster. However, if and when an outbreak emerges, delays in detection will allow the 

outbreak to spread, with attendant human and economic costs. This motivates the subject of 

the present study: How can limited testing resources be allocated to rapidly detect outbreaks 
of an endemic infectious disease?

The problem of detecting an endemic disease outbreak as early as possible is a quickest 
change detection, or sequential surveillance, problem. In this canonical problem, a system 

changes state at some unknown point in time (the change point or outbreak start time) 

while an algorithm observes a sequence of observations over time. The algorithm uses the 

observations to decide whether the change point has occurred, and sounds an alarm if it 

believes that a change point has occurred. A false alarm cost is incurred for declaring a 

change too early and a delay cost is incurred that grows in the time difference between the 

alarm and the change point. The classical quickest change detection problem is an optimal 

stopping partially observed Markov decision process with a known optimal solution that 

sounds an alarm if the belief that the system’s state has changed crosses a threshold.14 A 

number of variants of the classical problem have been considered: for example, risk averse 

utility functions or delay costs that grow exponentially.14,15 Frisén16 provides additional 

evaluation methods and optimality criteria for sequential surveillance methods and presents 

several other methods, including the Shiryaev-Roberts method, Shewhart method, CUSUM 

method and exponentially weighted moving average models. These methods have been 

applied to detecting outbreaks of diseases such as tularemia and influenza.17,18

In the problem setup considered by most of the literature, there is only one system 

(location), so there is no decision about which system (location) to sample from. In our 

work, we have an additional decision about which location to sample in each time step. We 

think of this as a multi-arm quickest change detection problem.

Our problem is similar to a multi-armed bandit problem19 in that we have a set of arms 

(locations) to choose from in each time step and we do not know the underlying state of 

the arms, but we can learn from the data we observe. The study using Thompson sampling 

to allocate HIV testing resources treated the problem of allocating testing resources as 
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a multi-armed bandit problem.12 Multi-armed bandits have been extended to deal with 

non-stationary reward distributions (e.g.,20,21,22), such as when the prevalence of a disease 

in different geographic areas changes over time. Non-stationary multi-armed bandits have 

been applied to disease surveillance: for example, in allocating limited COVID-19 testing 

resources.23,24

While multi-armed bandits have useful applications for allocating testing resources for 

controlling infectious disease, the problem we consider here is fundamentally different. 

Multi-armed bandit problems are concerned with maximizing observed cumulative reward 

over some fixed time horizon, whereas in sequential surveillance we are concerned with an 

unobserved, terminal reward (false alarm cost and delay) at the time an alarm is declared. 

In the multi-arm quickest change detection problem, we are not only concerned with a 

sampling rule, but also an outbreak alarm decision that would trigger a larger response. We 

aim to balance the need to detect an outbreak early (thereby minimizing outbreak spread) 

with the cost of false alarms (which waste response resources).

While most of the quickest change detection literature does not consider multiple sampling 

locations, some recent literature has dealt with this problem, using the term multi-stream 
data. One study develops a second-order asymptotically optimal algorithm when only 

one location (or stream) is assumed to change.25 The algorithm samples from a single 

location until determining there is no change, moves to another location and continues 

until becoming confident there is no change, eventually cycling through all locations until 

an alarm is raised. Another study uses Thompson sampling to sample statistics for each 

location based on the Shiraev-Roberts procedure.26 These statistics, which are treated like 

the rewards in a multi-armed bandit framework, contain information about how likely 

a change has occurred. Finally, Banerjee and Veeravalli27 consider the quickest change 

detection problem when there is a cost for sampling; in contrast, in our problem we have a 

constraint on the number of locations we can sample in each time step.

Here we propose an adaptive sampling method for solving the multi-arm quickest change 

detection problem. In each period the algorithm samples from the location with the highest 

likelihood of triggering an alarm. We show how to calculate the probability of triggering an 

alarm by fitting a predictive distribution using profile likelihood estimation28 that requires 

very little prior information. We demonstrate the effectiveness of our method by a simulation 

study, and compare it to uniform random sampling, Thompson sampling, a clairvoyant 

method with perfect information about where the outbreak will occur, and a sampling 

method that has perfect information about the future alarm probability in each location.

2 | METHODS

We model a set of independent locations, l ∈ [L], in which a decision maker conducts tests 

for the disease using a mobile testing unit that can visit only one location in each discrete 

time step, t = 1, 2, 3, … We let xt ∈ [L] denote the decision variable that indicates which 

location is tested at time t. The unknown, endemic prevalence of the disease in each location 

is pl
0 before an outbreak has started. At some time step, Γl > 0, an outbreak begins in location 
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l, and the prevalence monotonically increases following an unknown sequence pl
τ

τ = 0
T

where pl
τ ≤ pl

τ + 1 and pl
T ≤ 1. The decision maker does not know the outbreak times a priori. 

The first outbreak start time is denoted Γ = minl Γl, which is the first time the whole system 

changes from an “in-control” to an “out-of-control” state.

The mobile testing unit conducts n tests in each time step. If the unit tests in location l at 

time step t, then the number of positive tests, Zt+1, follows a binomial distribution

Zt + 1 =

Binomial n, pl t < Γl

Binomial n, pl
t − Γl + 1 Γl ≤ t < Γl + T

Binomial n, pl
T t ≥ Γl + T

(1)

We let Wlt = Slt, Zlt  denote the data collected from location l up to time t where Slt
denotes the times at which we sampled location l and Zlt denotes the positive test counts 

that we observed at those times. For example, W15 = ( 2, 5 , 5, 4 ) means that location 1 

was sampled at time steps 2 and 5 with positive test counts of 5 and 4 observed, respectively, 

and we have this information available at time step 5. We let Wt = Wlt l = 1
L  denote the data 

for all locations available at time t.

At any time step t > 0, an alarm can be triggered in a location according to a predefined 

alarm indicator function, A Wt , and an outbreak investigation is launched. We let τ denote 

the first time the alarm function sounds an alarm:

τ = min t:A Wt = 1 .

As with the classical change point detection problem, we want to minimize the worst case 

delay in detecting the first change in the system

D(τ) = sup
1 ≤ Γ < ∞

E τ − Γ ∣ τ ≥ Γ

subject to a false alarm constraint

E[τ ∣ Γ = ∞] ≥ γ,

where E[τ ∣ Γ = ∞] is referred to as the average run length when there is no outbreak. In our 

problem, we need to select both a sampling policy and an alarm statistic; thus, at each time 

step we decide which location to sample, and whether to sound an alarm.

2.1 | Alarm Statistic

We use the following semiparametric likelihood ratio test for our alarm function for a 

location l at time t, suggested by Frisén:17
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Rlt Wlt = max L Wlt ∣ Γl ≤ t
max L Wlt ∣ Γl > t . (2)

We trigger an alarm if the sum of the largest r values of Rlt(·) exceeds a threshold, as 

suggested by Zhang and Mei.26 Assume that the values of Rlt(·) have been sorted in non-

increasing order, and define R(k)t(·) as the kth largest value of Rlt(·). Then,

A Wt = 1 ∑
k = 1

r
R(k)t Wkt > α (3)

where α is a constant parameter that controls the false alarm probability, and R(1)t ≥ … 

≥ R(k)t … ≥ R(L)t. Higher values of α reduce the false alarm probability but increase the 

expected delay. The appropriate value of α depends on the relative cost of delay in detecting 

the outbreak versus the cost of a false alarm. The function L(·) is the likelihood of the data. 

We do not know the pre-outbreak prevalence nor the post-outbreak prevalence sequence, so 

we do not know the parameters of the likelihood functions. We maximize the likelihood 

function in our likelihood ratio test to set the parameters of the likelihood functions, which is 

why this method is a semiparametic method.

The denominator in the likelihood ratio (3) is the likelihood function under a static system. 

In our case, for the binomial distribution, we have

max L Wlt ∣ Γl > t = ∏
i ∈ Zlt

n
i pi(1 − p)n − i

where

p =
∑i ∈ Zlti

n Zlt
.

The quantity p is just the number of positive test results for location l divided by the number 

of tests conducted in that location so far.

To calculate max L Wlt ∣ Γl ≤ t , we fit a maximum likelihood model under an assumed 

growth model. In our work, we assume a logistic growth model, described in section 2.2.1, 

and solve the maximum likelihood estimation problem by solving a sequence of convex 

optimization problems (MLE1, described in section 2.2.3). Alternatively, Frisén et al.17 

proposed using isotonic regression to enforce the monotonicity constraint for prevalence 

without assuming a parameteric growth model. The authors showed how to calculate the 

alarm function for Poisson data.

2.2 | Sampling Policy

The sampling policy takes the datasets, Wt = Wlt l = 1
L , for each location at the end of time 

step t − 1, and decides which location to sample in time step t. We propose a heuristic 

Fairley et al. Page 6

Stat Med. Author manuscript; available in PMC 2023 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that selects the location with the highest probability of triggering an alarm following data 

collection in the next time step. We refer to this probability as the future alarm probability in 

location l:

ℙ A Wt = 1 ∣ Wt − 1 = EZt ∣ Wl(t − 1) A Wq(t − 1) q = 1, q ≠ l
L ∪ t, Zt ∪ Wl(t − 1)

= ∑
i = 0

n
ℙ Zt = i ∣ Wl(t − 1) A Wq(t − 1) q = 1, q ≠ l

L ∪ (t, i) ∪ Wl(t − 1) .

The future alarm probability is equal to the expectation that the new data, (t, Zt), combined 

with the existing data, Wl t − 1 , will trigger the alarm function in the next time step. Note 

that the future alarm probability depends on values observed at all locations up to time t − 1 

(that is, Wt − 1) because our alarm function considers the top r likelihood ratio values. Zt is 

an unknown random variable at time step t − 1 that can take on values 0, …, n, so we can 

express the expectation of the alarm indicator function as the sum of the probabilities of Zt 

taking on values i = 0, …, n multiplied by the alarm function given a specific value of i.

We select the location to sample in the next time step, xt, as the one that maximizes the 

future alarm probability:

xt = arg max
l

ℙ A Wt = 1 ∣ Wt − 1 .

In our expression for the future alarm probability, we must calculate the probability of 

observing a specific count i, ℙ Zt = i ∣ Wl(t − 1) , given the data collected so far. To do so, we 

must assume a model for how the prevalence of the disease in a location changes over time. 

In the following sections, we describe a model for prevalence and then describe Bayesian 

and frequentist approaches to calculating the future alarm probability.

2.2.1 | Logistic growth model—We propose a simple model of an epidemic where 

the prevalence increases, starting at the unknown change point, according to a logistic 

growth curve. A logistic function for prevalence is the solution to the fraction of infected 

individuals in a susceptible-infected (SI) model with no flow from the infected state back 

to the susceptible state, and is a good approximation for the early stage of an epidemic 

when exponential growth occurs. In any realistic scenario, the epidemic will be detected 

during the exponential phase; for our purposes, we are not concerned with what happens 

after detection.

In this model, the prevalence remains at pl
0 before the outbreak starts and then increases 

according to a logistic function with transmission rate parameter βl:
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plt = max pl
0, 1

1 + exp  −βl t − Γl − log 
pl
0

1 − pl
0

(4)

= 1

1 + exp  −βl t − Γl
+ − log 

pl
0

1 − pl
0

(5)

= 1
1 + exp  −βl t − Γl

+ − vl
(6)

where vl ≡ log
pl
0

1 − pl
0 = logit pl

0  and (·)+ = max(0, ·).

2.2.2 | Bayesian approach—In the Bayesian approach to calculating the future alarm 

probability, we integrate over the unknown prevalence, θt, to calculate the probability of 

observing a specific count:

ℙ Zt = i ∣ Wl(t − 1) = ∫
0

1
ℙ θt ∣ Wl(t − 1)

n
i θt i 1 − θt n − idθt .

We then determine the posterior probability of a specific prevalence level given the data, 

ℙ θt ∣ Wl(t − 1) , by considering two cases: the prevalence given that the outbreak has not 

started yet and the prevalence given that the outbreak has started:

ℙ θt ∣ Wl(t − 1) = ℙ θt ∣ Γl > t, Wl(t − 1) ℙ Γl > t ∣ Wl(t − 1)
+ ℙ θt ∣ Γl ≤ t, Wl(t − 1) ℙ Γl ≤ t ∣ Wl(t − 1) .

The Bayesian approach requires a prior for the initial prevalence, the growth rate, and the 

change point. While we could readily specify a prior for the initial prevalence and growth 

rate, specifying a prior for the change point is more difficult. If we have no knowledge 

about whether and when an outbreak will occur, we would want a prior distribution that 

assigns equal probability to an outbreak occurring in any future time period (from the initial 

time period to ∞). Such a prior does not exist, as it is not possible to have a sum of a 

constant probability over infinite possible values that equals 1, as required by a probability 

distribution. If we specify that outbreaks occur frequently then our model will not use 

the data to learn when the outbreak has started because, as time passes, our model will 

develop near certainty that the outbreak has already occurred. Conversely, if we specify 

that outbreaks are extremely rare then our model will initially ignore the growth model to 

determine prevalence, and treat the system as static. For these reasons, we instead consider a 
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frequentist approach that learns from the data rather than relying on a prior distribution for 

the change point.

2.2.3 | Frequentist approach—We require a predictive distribution for the number 

of positive tests in the next time step. In a frequentist framework, we could determine 

maximum likelihood estimates for pl
0, βl, and Γl and then plug these into the binomial 

probability mass function (pmf) to calculate the probability of a specific count. However, 

this approach does not take into account the uncertainty in estimating the true values of 

pl
0, βl, and Γl; it only takes into account the uncertainty due to sampling from a known 

binomial distribution. This approach will lead to overly narrow distributions for the positive 

counts: for example, if our model observes 0 positive counts in the first time step and sets 

pl
0 = 0, then our model will assign a probability of 1.0 to a count of 0. Clearly, this is overly 

confident because it does not take into account that pl
0 was estimated from a finite sample, 

and thus may not be the true value, pl
0. To resolve this issue, we instead use the concept of 

profile likelihood to develop a predictive distribution28:

ℙ Zt = i ∣ Wl(t − 1) ∝ max 
Γl, βl, pl

0
L (t, i) ∪ Wl(t − 1) .

We set the probability of observing a specific count, i, proportional to the likelihood function 

maximized with the specific count appended to the data. So, for each possible value of i, we 

maximize the likelihood function and obtain different parameter values.

The likelihood function under a logistic growth model is

L (t, i) ∪ Wl(t − 1) = ∑
s ∈ Sl(t − 1)

Zs βl s − Γl
+ + vl − n log 1 + exp βl s − Γl

+ + vl ,

which is a concave function for a fixed value of Γl. We can restrict Γl ∈ {0, 1, …, t} 

because for all Γl ≥ t, the values of βl and pl
0 that maximize the likelihood function are the 

same. Therefore, we can find the globally optimal values of Γl, βl, and υl that maximize the 

likelihood function by solving a sequence of convex optimization problems for each Γl ∈ {0, 

1, …, t} and selecting the value of Γl with the maximum likelihood. Furthermore, we can 

add linear constraints on the values of βl and υl given what we know about the problem. 

For example, we know that the transmission rate of any given disease is limited, and the 

initial prevalence is very small. In summary, we obtain the following optimization problem 

for each value of i:

Fairley et al. Page 9

Stat Med. Author manuscript; available in PMC 2023 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



max
Γl ∈ 0, 1, …, t

max
βl, vl

∑
s ∈ Sl(t − 1)

Zs βl s − Γl
+ + vl

− n log 1 + exp βl s − Γl
+ + vl

s.t. 0 ≤ βl ≤ βl
U

vl ≤ logit pl
0, U

(MLE1)

where βl
U and pl

0, U are optional upper bounds on the transmission rate and initial prevalence, 

respectively. These bounds can be set based on prior knowledge of the disease, and should 

be set to values well above the expected true values.

Algorithm 1 summarizes our method for selecting the next location to sample. In practice, 

Algorithm 1 should be implemented using log probabilities to prevent floating point errors. 

We visit each location at least twice in a warm-up period before using Algorithm 1.

3 | SIMULATION STUDY

We performed a simulation study to evaluate the performance of the profile likelihood 

method. We programmed Algorithm 1 using the Julia programming language. We enumerate 

the active sets of constraints in (MLE1). We use Newton’s method to solve the problem 

for an active set, then check to see whether the solution satisfies the Karush-Kuhn-Tucker 

(KKT) conditions; we stop when a solution satisfies the KKT conditions. The algorithm 

is relatively straightforward to implement and runs quickly. For example, for a single 

location with 50 weeks of data, Algorithm 1 requires an average of 40 milliseconds on 

a 3.8 GHz 8-core Intel Core I7 machine using multi-threading. The code is available at 

https://github.com/MFairley/AdaptiveSurveillance.jl.

3.1 | Predictive Distributions

We first examine properties of the predictive distribution as a function of the number of 

samples and the prediction time horizon for a given location l. Figure 1 shows an example of 

the number of positive tests over time for a given location, generated by sampling according 

to equation (1). In this example, the sample size is n = 200, initial prevalence is pl
0 = 1%, 

and the outbreak starts at time Γl = 100 with transmission rate βl = 0.015 (similar to the 

transmission rate in a model for the HIV outbreak in Scott County, Indiana7), growing 

according to a logistic epidemic curve (equation (6)). We assume a weekly time step.

Figure 2 shows the predictive distributions for the new number of positive test results, 

generated according to Algorithm 1 and using the data in Figure 1, for a prediction horizon 

of 1 and 10 weeks, and for predictions made at the end of week 2, 50, or 150. Note that 
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when there are multiple locations (L > 1), we make predictions more than one time step 

ahead for all locations except the location visited most recently. While we always make 

a prediction for time step t at time step t − 1, we have old data for other locations (the 

set Wl(t − 1) = Wl(t − 2) when x(t−1) ≠ l), so a prediction for time step t at time step t − 1 

is equivalent to making a prediction for time step t at an earlier time step. Hence, in this 

example, we consider a prediction horizon of 10, not just 1.

At the end of week 2, we have only two samples, for weeks 1 and 2. In each of those 

weeks, 1 positive result was found (Figure 1). As shown in the figure, the prediction for the 

next week ranges from 0 to approximately 15 positive tests (with very small probabilities 

for values higher than 15), with a mean of approximately 3.4. In contrast, the prediction 

for week 12 (10 weeks in the future) is a nearly uniform distribution between 0 and 200, 

reflecting the fact that an outbreak could start in those weeks. The prediction for week 51 

made at the end of week 50 has a narrower probability mass function than the prediction for 

week 3 made in week 2 and a slightly higher mean (4.0), reflecting the additional 49 weeks 

of data. However, the prediction for week 60 is similar to the prediction for week 12 that 

was made in week 2, again reflecting the fact that an outbreak could occur. When we make 

a prediction at the end of week 150, the outbreak has already occurred (at week 100) and we 

have 50 weeks of data after the outbreak. In this case, the model predicts a much narrower 

range of future values, both for weeks 151 and 160, as it has learned the transmission rate 

from the sample data. The predicted mean and range for week 160 are higher than for week 

151 (mean 5.8 versus 4.5), reflecting potential epidemic growth over those future 10 weeks.

3.2 | Outbreak Detection

We next examine the performance of the profile likelihood method in detecting an outbreak. 

We perform 1000 replications of each problem instance. We simulate weekly until the first 

alarm occurs for each replication. We consider five locations. For locations 3, 4 and 5 we 

assume 1% initial prevalence, and for locations 1 and 2 we consider three cases for initial 

prevalence: p1
0, p2

0 = (0.01, 0.01) or  (0.01, 0.02) or (0.02, 0.01). We assume that an outbreak will 

occur in location 1 in either week 1 or week 50 (Γ1 = 1 or 50), with transmission rate β 
= 0.015. No outbreak occurs in locations 2, 3, 4, and 5, so prevalence in those locations is 

constant over the time horizon. Testing can be done in any one of the locations each week, 

with a sample size of n = 200. For the maximum likelihood estimation problem (MLE1) 

we set the upper bounds on the transmission rate and initial prevalence to βl
U = 0.1 and 

pl
0, U = 0.1, respectively, for all locations.

We compare our method to four other sampling methods: a clairvoyant method where we 

always sample in location 1; a true future alarm probability method where we always sample 

in the location that has the true highest probability of a future alarm (calculated using 

true values of initial prevalence, growth rate, and outbreak start time); a uniform random 

sampling method where any location is equally likely to be sampled in each period; and 

Thompson sampling. In contrast to the true future alarm probability method, our profile 

likelihood method must account for uncertainty in initial prevalence, growth rate, and 

outbreak start time. We note that the location with the true highest probability of a future 
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alarm is not always location 1 because the alarm function depends on the specific, random 

sample counts that have been observed thus far. Thompson sampling uses the number of 

positive tests as its reward function and focuses on locations with the highest prevalence.12 

For the Thompson sampling algorithm we assumed a Beta(1, 1) prior distribution for the 

prevalence in each location.12 This is an uninformative prior that assumes that all prevalence 

levels are equally likely and thus encourages exploration of alternative locations at early 

time steps.

In order to have a fair comparison, we calibrate all five sampling methods such that they 

have the same false alarm constraint. Specifically, we set the alarm threshold parameter α 
from equation (3) for each sampling method to have an average run length, when there is no 

outbreak, of 56 for each scenario, and we set r = 2 (see equation (3)). We visit each location 

twice before we begin adaptive sampling, first visiting location 1 twice, and then location 2 

twice, and so forth.

For each of the six problem instances (which vary by initial prevalence and time of 

outbreak) and each of the five surveillance methods, we calculate the mean delay (and 95% 

confidence intervals) in triggering an alarm given that an outbreak has happened (Table 1). 

For each problem instance and surveillance method we also plot the cumulative probability 

of an alarm over time (Figure 3).

Time to outbreak detection—As expected, the clairvoyant method has the shortest mean 

time to detect the outbreak because this method samples location 1 every time period. 

Similarly, as expected, uniform random sampling always performs worse than the profile 

likelihood method because uniform random sampling does not learn from the sampling data. 

The true future alarm probability method was only slightly better than the profile likelihood 

method, indicating that the estimate of the future alarm probability using profile likelihood is 

accurate.

The mean time to detect the outbreak for the profile likelihood method compared to 

Thompson sampling depends on the initial prevalence in location 1 compared to location 

2. When locations 1 and 2 have similar initial prevalence (in this case, 1%), the profile 

likelihood method and Thompson sampling have similar performance. When location 1 

has lower initial prevalence than location 2 (1% in location 1 vs. 2% in location 2), the 

profile likelihood method significantly outperforms Thompson sampling. This is because 

Thompson sampling first focuses on the location with higher prevalence (location 2) and 

does not take many samples from location 1 until the estimated prevalence for location 1 

exceeds that of location 2. When location 1 has higher initial prevalence than location 2 

(2% in location 1 vs. 1% in location 2), then Thompson sampling performs better than the 

profile likelihood method. This is because Thompson sampling focuses on the location with 

the highest expected prevalence, which is always location 1. These differences are illustrated 

graphically in Figure 3.
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4 | DISCUSSION

The profile likelihood method we have introduced estimates the distribution of the number 

of positive tests in each location that would occur if that location were sampled, and takes 

into account the uncertainty due to sample size and time horizon. In numerical experiments, 

Thompson sampling either performed well or very poorly: Thompson sampling was worse 

than uniform random sampling when the outbreak occurred in a location with lower initial 

prevalence than other locations. The profile likelihood method had lower time to outbreak 

detection than Thompson sampling in some but not all scenarios we considered, but was 

always better than uniform random sampling even when the outbreak occurred in a location 

with a lower initial prevalence than other locations. In practice, outbreaks of endemic 

disease can occur in any location, regardless of initial disease prevalence. Profile likelihood 

sampling provides an effective and reliable method for rapidly detecting endemic disease 

outbreaks that is robust to this uncertainty.

Similar to existing studies in the literature (e.g.,26) we minimize the time to outbreak 

detection, as indicated by an alarm being triggered. It is possible that the alarm is triggered 

after an outbreak has occurred, but in the wrong location, potentially leading to a costly 

delay in detecting the true outbreak. In this case, after a false alarm has occurred, we would 

update information and continue sampling in each time period. One could potentially create 

an objective function that incorporates location-specific outbreak times and false alarm 

definitions that depend on where the alarm was triggered. However, such a model would be 

difficult to analyze as a stopping time formulation because an alarm does not necessarily 

stop the process; after a false alarm, the process would continue with additional information 

from investigation in the location where the false alarm occurred. This is an area for future 

exploration.

A number of possible extensions could be made to this work. We assumed that the locations 

are independent; in reality, contact networks can span multiple locations so an outbreak in 

one location may make an outbreak in a nearby location more likely. Future work could take 

into account these network effects to make more efficient use of the data. We assumed that 

we can visit exactly one location in each time period. Future work could consider a fleet of 

mobile testing units that can sample multiple locations in any time period. We also assumed 

a fixed sample size but the sample size could be less than this fixed value due to randomness 

in the number of individuals who come to the unit for testing (presumably a combination 

of baseline demand plus outreach efforts). Future work could model the sample size as a 

random variable. We assumed a fixed value for the alarm threshold α. It is possible that the 

performance of the profile likelihood method could be improved using a dynamic value of α 
that is specific to each location, possibly as a function of the number of times a location has 

been visited. Finally, we compared the profile likelihood method to the standard Thompson 

sampling method. It is possible that the Thompson sampling method could be improved 

for the disease surveillance problem, for example by using only recent data to parameterize 

belief distributions.

Undetected outbreaks of endemic infectious disease can lead to significant morbidity, 

mortality, and health care expenditure (e.g.,1,29,30,31,32). Improved methods for endemic 
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infectious disease detection are needed. Because limited public health budgets preclude 

testing in all locations all the time, effective and efficient methods are needed to determine 

where and when to test. The profile likelihood sampling method we present here is one such 

method.
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FIGURE 1. 

Example sample data with initial prevalence pl
0 = 0.01, and outbreak start time Γl = 100 with 

transmission rate βl = 0.015.
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FIGURE 2. 
Example predictive distributions at different time steps (week 2, 50, 150) and for different 

time horizons (1 and 10 weeks) using the sample data shown in Figure 1.
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FIGURE 3. 
Comparison of surveillance methods for example problem: Cumulative probability of alarm 

over time. Shaded regions represent 95% confidence intervals. The vertical red line denotes 

outbreak occurrence.
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TABLE 1

Comparison of surveillance methods for example problem: mean conditional delay (mean delay in triggering 

an alarm given that the alarm is triggered after the outbreak starts). 95% confidence intervals are shown in 

brackets.

Mean Conditional Delay

p1
0  * p2

0  † Algorithm Γ1 = 1
‡ Γ1 = 50

‡

0.01 0.01

Clairvoyant 31 [29, 31] 19 [18, 20]

True Future Alarm Probability 44 [43, 46] 33 [31, 35]

Profile Likelihood 47 [45, 49] 36 [32, 39]

Thompson Sampling 43 [42, 45] 40 [35, 39]

Uniform Random 52 [51, 56] 42 [40, 47]

0.01 0.02

Clairvoyant 30 [28, 30] 18 [16, 19]

True Future Alarm Probability 44 [42, 47] 35 [32, 36]

Profile Likelihood 47 [45, 50] 37 [35, 42]

Thompson Sampling 73 [59, 65] 117 [97, 123]

Uniform Random 52 [50, 55] 42 [38, 47]

0.02 0.01

Clairvoyant 28 [26, 28] 16 [15, 17]

True Future Alarm Probability 38 [36, 39] 28 [26, 29]

Profile Likelihood 40 [39, 42] 29 [26, 31]

Thompson Sampling 31 [29, 32] 18 [16, 18]

Uniform Random 47 [45, 50] 35 [32, 38]

*
Initial prevalence in location 1, where the outbreak occurs

†
Initial prevalence in location 2

‡
Outbreak start time in location 1
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