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Clarifications regarding bumetanide for neonatal seizures

Neonatal seizures are frequently resistant to anticonvulsant therapy1. My colleagues 

and I have pursued the idea that neuronal chloride accumulation after brain injury 

produces a positive shift in the reversal potential for GABA-gated chloride currents that 

compromises GABAergic inhibition2. After injury, inhibiting the sodium-potassium-chloride 

cotransporter NKCC1 reduces neuronal chloride accumulation3, which shifts the GABA 

reversal potential to more physiological values, and improves the response of neonatal 

seizures to anticonvulsants such as phenobarbital that increase the mean open time of 

GABAA channels4. These ideas were challenged in a recent study5 and subsequent editorial6 

by the study authors. Here I respond to those challenges.

The core challenge is that bumetanide was not effective in a new experimental model of 

neonatal seizures5. However, several aspects of this neonatal seizure model5,7,8,9 may reduce 

its accuracy as a predictor of anticonvulsant efficacy for human neonatal seizures. The 

model is closely based on the hypercarbia-withdrawal model of acute seizures developed by 

Dixon Woodbury and colleagues in the 1950s10,11,12. In these models, seizures are triggered 

by the termination of exposure to hypercarbia, with or without accompanying hypoxia. The 

extension of this model to predict anticonvulsant efficacy for neonatal seizures raises several 

concerns:

1. The hypercarbia-withdrawal model does not predict the efficacy of 

anticonvulsants in human seizures. For example, Woodbury et al. found that 

seizures are worsened by therapeutic doses of phenytoin12, but the opposite 

occurs in human neonatal seizures13.

2. The primacy of hypercarbia withdrawal (vs hypoxic ischemic brain injury) as 

a driver of ictogenesis in the hypercarbia withdrawal model is underscored by 

the unique responsiveness of these seizures to agents that slow the response to 
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hypercarbia withdrawal14. Slowing the re-equilibration of CO2 with the carbonic 

anhydrase inhibitor acetazolamide blocked seizures both in Woodbury’s original 

reports10, 11 and in the hypercarbia withdrawal model of neonatal seizures8.

3. Hypoxia and ischemia are not necessary to induce seizures by hypercarbia 

withdrawal in perinatal animals15, weakening the rationale for the withdrawal 

of hypercarbia as a model of human seizures following a perinatal hypoxic-

ischemic insult.

4. Hypercarbia can occur in human perinatal asphyxia, but the levels of CO2 in the 

umbilical artery16,17 almost never reach the levels required to induce hypercarbia 

withdrawal seizures5, 7 , 9, 11, 11, 12. Importantly, the umbilical artery PCO2 does 

not predict neonatal seizures in humans18,19.

5. The difference in mechanisms underlying hypercarbia-withdrawal vs human 

neonatal seizures is highlighted by the large differences in the time course of 

seizures. Seizures begin within 30 seconds of CO2 withdrawal, and terminate 

within a few minutes of the reduction in inspired CO2
9, 10, 11, similar to the 

time course of absence seizures triggered by hyperventilation-induced reductions 

in systemic CO2
20,21. But seizures in asphyxiated human newborns begin 

hours22,23, not seconds, after delivery, and for this reason neonatal resuscitation 

guidelines do not mention seizure management24,25. Neonatal seizures associated 

with hypoxic ischemic brain injury continue for hours to days, not minutes, after 

establishment of stable ventilation22, 23.

For these reasons, a lack of effect of bumetanide in the perinatal hypercarbia-withdrawal 

model does not significantly challenge the demonstrated efficacy of bumetanide in several 

models of experimental neonatal seizures2,26,27,28,29,30,31,32, neonatal brain injury33, and the 

robust efficacy signal produced in the blinded, randomized, controlled trial treating seizures 

in human newborns34.

In the subsequent editorial, the theoretical basis for the efficacy of bumetanide for neonatal 

seizures was questioned based on the levels of the membranous cation-chloride transporters 

present in the neonatal human brain. In immunohistochemical and Western blot studies of 

human brain, we found higher neonatal levels of neuronal NKCC1 and lower levels of 

KCC22, the neuron-specific potassium-chloride transporter that canonically exports chloride 

to maintain low cytoplasmic chloride concentrations and an inhibitory, hyperpolarizing 

GABAA reversal potential. The editorial argued that other studies found higher levels of 

KCC2 in the human neonatal brain as evidence that the GABAA reversal potential was 

already sufficiently hyperpolarizing in human neonates, such that inhibition of NKCC1 by 

bumetanide would not be an effective anticonvulsant therapy. I have the following concerns 

with this idea.

1. Of the 4 studies cited in the editorial to compare neonatal to mature KCC2 

levels, one did not study KCC2 levels in the mature brain35. 2 of the studies 

measured mRNA rather than the level of KCC2 protein35,36. Of the two 

immunohistochemical studies, one states “the expression of KCC2 continues to 
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increase throughout the third trimester and postpartum period”37, which supports 

our findings2.

2. The relative activity of KCC2 is a clearly established determinant of seizure 

termination38, and mechanisms to fractionally enhance KCC2 activity are being 

pursued as anticonvulsant strategy39. We showed a 3 – 4 fold increase in human 

cortical KCC2 protein from term age to adult using Western blots2. The mRNA 

studies cited in the editorial also show an increase in KCC2 message from term 

newborn to adult brain, in the range of 50 – 100%36,40. All of these reported 

changes in KCC2 expression are relevant to neonatal seizure control.

3. At the ages considered equivalent to term birth in humans41,42, a wealth of 

experimental data, with key contributions from the authors of the editorial43, 

demonstrate that KCC2 expression is low in rodents (reviewed in 44). The 

editorial authors have also shown that excitatory hippocampal activity in rodents 

at these ages is suppressed by bumetanide in vivo45.

4. Our understanding of neuronal chloride homeostasis has evolved beyond the idea 

that KCC2 expression dictates whether GABA transmission is hyperpolarizing. 

We have demonstrated that the species of expressed cation-chloride transporter 

(i.e. NKCC1 vs KCC2) does not determine the neuronal cytoplasmic chloride 

concentration or the polarity of GABAA responses46,47. While this finding 

was initially controversial48,49,50, the key findings (e.g. neuronal chloride 

concentrations do not collapse to a passive distribution after block of chloride 

transporters) have since been replicated by the editorial authors and colleagues 

(cf. Figure 1B,C of reference 46 and Figure 6D of reference 51); the key 

predictions (e.g. the redistribution of other charged cytoplasmic molecules have 

a larger immediate effect on chloride concentrations than block of either chloride 

transporter) have recently been demonstrated52; and the implications for the 

anticonvulsant effects of bumetanide are discussed in detail in a review53 and in 

the trial paper34.

Thus the concerns regarding KCC2 expression in the neonatal brain do not address the basis 

for the efficacy of bumetanide.

The editorial raises a valid question regarding the distribution of bumetanide in the brain. 

Experimental studies perfuse bumetanide directly onto neurons, whereas in vivo bumetanide 

must first cross the blood-brain barrier (BBB). However, in experimental studies, chloride 

salts are also applied directly to neurons. Whereas in vivo, chloride salts must first cross the 

blood brain barrier after brain injury before entering neurons to cause cytotoxic edema and 

shift the GABAA reversal potential53,54. NKCC1 is an important component of the chloride 

pathway from blood to brain55,56. Thus after brain injury and seizures, systemic bumetanide 

limits not only seizures in neonatal animals2, 26, 30, 32 but also cerebral edema in mature 

animals57,54,58. Highlighting the potential role of NKCC1 at the BBB, the only models in 

which bumetanide is not effective have either no perfusion of the injured brain tissue59, or 

directly injure the BBB itself60. Thus while the action of bumetanide is to lower neuronal 

cytoplasmic chloride, the locus at which this effect occurs may be either at the neuronal 

membrane or the blood brain barrier.
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The editorial also raises the concern that bumetanide may be ototoxic. It is important to 

recognize that most of the patients treated for neonatal seizures have hypoxic-ischemic 

encephalopathy (HIE)34, 63, and there is a 10% incidence of hearing loss in neonatal 

HIE treated with hypothermia61. Experimental studies in non-asphyxiated animals have 

demonstrated no evidence of bumetanide otoxtoxicity at a dose of 50 mg / kg62,63, which is 

150–500 times the dose used in the human neonatal seizure trials34,64. Although bumetanide 

has not been shown to be ototoxic experimentally, bumetanide and other loop diuretics 

increase aminoglycoside ototoxicity61, 62, 65. Accordingly, none of the patients in our study 
who suffered hearing loss were treated with bumetanide alone (Table). 2 patients with 

hearing loss were treated with aminoglycosides and bumetanide, and one patient with 

hearing loss was enrolled but not treated (did not meet criteria regarding seizure activity 

for randomization). It is important to clarify that while the editorial correctly states that a 

neonate who did not receive gentamicin in our study suffered hearing loss, the editorial does 

not indicate that the neonate in question also did not receive bumetanide (Table). As stated in 

our trial paper, the numbers are too low in either our trial34 or the preceding NEMO trial63 

(or both trials combined) to reach statistical significance. Thus, the blinded, randomized 

trial provides no evidence that bumetanide in the absence of aminoglycosides is ototoxic. 

However, future studies of bumetanide should be designed to avoid co-administration of 

aminoglycoside antibiotics.

Finally, the editorial questions why we did not provide the fractional reduction in neonatal 

seizures for phenobarbital +/− bumetanide. The reduction in seizures for each group is 

plotted vs the overall seizure burden in Figures 5 and 634. The fractional reduction in 

seizures is then the slopes of these plots for phenobarbital and phenobarbital + bumetanide, 

which are provided. The large difference in these slopes (Figure 5) and the consistent effect 

of bumetanide dose on the slope shown in Figure 6 provide strong antiseizure efficacy 

signals for the addition of bumetanide vs. phenobarbital alone.

The next step is a randomized, controlled, multicenter Phase II-III trial of bumetanide for 

neonatal seizures that do not respond to phenobarbital, excluding neonates treated with 

aminoglycosides.
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Table:

hearing loss vs bumetanide and bumetanide + aminoglycoside therapy for the 26 surviving treated neonates in 

the Boston neonatal seizure trial3.

Hearing loss No hearing loss

bumetanide 0 12

Aminoglycoside + bumetanide 2 12
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