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Abstract

Neural computations are currently investigated using two separate approaches: sorting neurons 

into functional sub-populations, or examining the low-dimensional dynamics of collective activity. 

Whether and how these two aspects interact to shape computations is currently unclear. Using 

a novel approach to extract computational mechanisms from networks trained on neuroscience 

tasks, here we show that the dimensionality of the dynamics and sub-population structure play 

fundamentally complementary roles. While various tasks can be implemented by increasing the 

dimensionality in networks with fully random population structure, flexible input-output mappings 

instead require a non-random population structure that can be described in terms of multiple 

sub-populations. Our analyses revealed that such a sub-population structure enables flexible 

computations through a mechanism based on gain-controlled modulations that flexibly shape 

the collective dynamics. Our results lead to task-specific predictions for the structure of neural 

selectivity, inactivation experiments, and for the implication of different neurons in multi-tasking.

Introduction

The quest to understand the neural bases of cognition currently relies on two disjoint 

paradigms1. Classical works have sought to determine the computational role of individual 

cells by sorting them into functional populations based on their responses to sensory 

and behavioral variables2;3;4. Fast developing tools for dissecting neural circuits have 
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opened the possibility of mapping such functional populations onto genetic and anatomic 

cell types, and given a new momentum to this cell-category approach5;6;7;8;9;10;11. This 

viewpoint has however been challenged by observations that individual neurons often 

represent seemingly random mixtures of sensory and behavioral variables, especially in 

higher cortical areas12;13;14;15;16, where sharply defined functional cell populations are often 

not directly apparent15;17;4. A newly emerging paradigm has therefore proposed that neural 

computations need instead to be interpreted in terms of collective dynamics in the state 

space of joint activity of all neurons18;14;15;19;20;21. This computation-through-dynamics 

framework22 hence posits that neural computations are revealed by studying the geometry 

of low-dimensional trajectories of activity in state space15;23;24;20;25;26, while remaining 

agnostic to the role of any underlying population structure.

In view of the apparent antagonism between these two approaches, two works have sought 

to precisely assess the presence of functional cell populations in the posterior parietal 

cortex (PPC)17 and prefrontal cortex10. Rather than define cell populations by classical 

methods such as thresholding the activity or selectivity of individual neurons, these studies 

developed new statistical techniques to determine whether the distribution of selectivity 

across neurons displayed a non-random population structure4. Using analogous analyses, 

but different behavioral tasks, the two studies reached opposite conclusions. Raposo et al 

found no evidence for non-random population structure in selectivity, and argued that PPC 

neurons fully multiplex information. Hirokawa et al also observed that individual neurons 

responded to mixtures of task features, but in contrast to Raposo et al, they detected 

important deviations from a fully random distribution of selectivity, a situation they termed 

non-random mixed selectivity. By clustering neurons according to their response properties, 

they defined separate, though mixed-selective populations that appeared to represent distinct 

task variables and to reflect underlying connectivity. To resolve the apparent discrepancy, 

Hirokawa et al conjectured that revealing non-random population structure in higher cortical 

areas may require sufficiently complex behavioral tasks.

These conflicting findings therefore raise a fundamental theoretical question: do specific 

computational tasks require a non-random population structure, or alternatively can any task 

in principle be implemented with a fully random population structure as in17? To address 

this question, we trained recurrent neural networks on a range of systems neuroscience 

tasks27;28;29 and examined the population structure that emerged in both selectivity and 

connectivity using identical methods as17;10. Starting from the premise that computations 

are necessarily determined by the underlying connectivity30, we then developed a new 

approach for assessing the computational role of population structure in connectivity 

for each task. Together, these analyses revealed that, while a fully random population 

structure was sufficient to implement a range of tasks, specific tasks required a non-random 

population structure in connectivity that could be described in terms of a small number 

of statistically-defined sub-populations. This was in particular the case when a flexible 

reconfiguration of input-output associations was needed, a common component of many 

cognitive tasks31 and more generally of multi-tasking29;32;33. To extract the mechanistic 

role of this population structure for computations-through-dynamics, we focused on the 

class of low-rank models30;34;35 that can be reduced to interpretable latent dynamics 

characterized by a minimal intrinsic dimension and number of sub-populations36. We found 
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that the sub-population structure of the connectivity enables networks to implement flexible 

computations through a mechanism based on gain modulations37;38 of effective interactions 

between latent variables. Our results lead to task-specific predictions for the statistical 

structure of single-neuron selectivity, for inactivations of specific sub-populations, as well as 

for the implication of different neurons in multi-tasking.

Results

Identifying non-random population structure in trained networks

We trained recurrent neural networks (RNNs) on five systems neuroscience tasks29;39 

spanning a range of cognitive components: perceptual decision-making (DM)40, parametric 

working-memory (WM)41, multi-sensory decision-making (MDM)17, contextual decision-

making (CDM)15 and delay-match-to-sample (DMS)42. We then searched for evidence of 

non-random population structure by comparing the selectivity, connectivity and performance 

of the trained networks with randomized shuffles.

We first asked if training on each task led to the emergence of non-random structure in 

selectivity. Following Raposo et al 2014 and Hirokawa et al 2019, we represented each 

neuron as a point in a selectivity space, where each axis was given by the linear regression 

coefficient of neural firing rate with respect to a task variable such as stimulus, decision 

or context (Fig. 1a). The dimension of the selectivity space ranged from 2 to 4 depending 

on the task (see Methods), and each trained network led to a distribution of points in that 

space (Fig. 1b). For each network, we used the ePAIRS17;10 test to compare the obtained 

distribution with a randomized shuffle corresponding to a multivariate Gaussian (Fig. 1b,c). 

A non-significant outcome suggests an isotropic distribution of single-neuron selectivity, a 

situation that has been denoted as non-categorical mixed selectivity17 and we refer to it 

asfully-random population structure. A statistically significant outcome instead indicates that 

neurons tend to be clustered along multiple axes of the selectivity space. Following17;10, we 

refer to this situation as non-random mixed selectivity, or non-random population structure. 

The ePAIRS analysis revealed the presence of non-random population structure for two out 

of the five tasks, the contextual decision-making and delay-match-to-sample tasks (Fig. 1d) 

(proportion of statistically significant networks under the ePAIRS test, p < 0.05, Bonferroni 

corrected : DM 1/100, WM 6/100, MDM 10/100, CDM 87/100, DMS 100/100, Extended 

Data Figure 1). In particular, we found a clear difference between the multi-sensory17 

and context-dependent15 decision making tasks, which had an identical input structure and 

therefore selectivity spaces of identical dimensions, but required different mappings from 

inputs to outputs.

The selectivity in trained RNNs necessarily reflects the underlying connectivity30. We 

therefore next sought to determine the presence of non-random population structure directly 

in the connectivity of trained networks by applying an analogous analysis in a connectivity 
space. To define a connectivity space with a minimal number of parameters, we focused 

on RNNs constrained to have recurrent connectivity matrices Jij of a fixed rank R, a type 

of connectivity structure that typically emerges when training RNNs on simple tasks35. A 

matrix of rank R can be written as
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Jij = mi
(1)nj

(1) + ⋯ + mi
(R)nj

(R), (1)

so that neuron i is characterized by 2R recurrent connectivity parameters {mi
(r), ni

(r)}r = 1…R, 

as well as Nin input weights Ii
(s) and a readout weight wi (see Methods). For each task, 

we determined the minimal required rank R (Extended Data Figure 2). We then represented 

the connectivity of each neuron as a point in a (2R+Nin +1)-dimensional connectivity 
space, and described the connectivity of a full network as the corresponding distribution 

of points (Fig. 1e,f). Similarly to the selectivity analysis, we assessed the presence of non-

random population structure by comparing connectivity distributions of trained networks 

with randomized shuffles corresponding to multivariate Gaussians with matching empirical 

means and covariances. The results were consistent with the analysis of selectivity (Fig. 

1g,h), and showed a gap between the same two groups of tasks (Fig. 1h, number of networks 

with statistically significant clustering for each task: DM 3/100; WM 5/100; MDM 1/100; 

CDM 100/100; DMS 100/100; p < 0.05 with Bonferroni correction). In particular the 

MDM and CDM tasks again led to opposite results although their connectivity spaces were 

identical.

The analyses of selectivity and connectivity are purely correlational, and do not allow us 

to infer a causal role of the observed structure (see Supplementary Text 1). To determine 

when non-random population structure is computationally necessary, or conversely when 

random population structure is computationally sufficient, we therefore developed a new 

resampling analysis. For each task, we first generated new networks by sampling the 

connectivity parameters of each neuron from the randomized distribution used to assess 

structure in Fig. 1e–h, i.e. a multivariate Gaussian distribution with mean and covariance 

matching the trained low-rank RNNs. This procedure preserved the rank of the connectivity 

(Fig. 1e), and the overall correlation structure of connectivity parameters, but scrambled 

any non-random population structure (Fig. 1j,k). We then quantified the performance of 

each randomly resampled network on the original task. This key analysis revealed that the 

randomly resampled networks led to a near perfect accuracy for the DM, WM and MDM 

tasks, but not for the CDM and DMS tasks (Fig. 1l). This demonstrates that, on one hand, 

random population structure is sufficient to implement the DM, WM and MDM tasks, while 

on the other hand non-random population structure is necessary for CDM and DMS tasks. 

These results held independently of the constraints on the rank of the connectivity, and 

in particular for unconstrained, full-rank networks in which only the learned part of the 

connectivity was resampled (Extended Data Figure 3).

In summary, our analyses of trained recurrent neural networks revealed that certain tasks 

can be implemented with a fully-random population structure in both connectivity and 

selectivity, while others appeared to require additional organization in the connectivity that 

led to non-random structure in selectivity. We next sought to understand the mechanisms 

by which the population structure of connectivity determines the dynamics and the resulting 

computations. In a first step, we examined the situation in which the population structure is 

fully random. In a second step, we asked whether non-random population structure in the 
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connectivity space could be represented in terms of separate clusters or sub-populations, and 

how this additional organization expands the computational capabilities of the network.

Interpreting computations in terms of latent dynamics

To unravel the mechanisms by which population structure impacts computations, we 

developed a method for interpreting low-rank networks in terms of underlying low-

dimensional dynamics22;36. Here we first outline this general model reduction approach 

(Fig. 2), and next apply it to trained recurrent networks.

In line with methods for analyzing large-scale neural activity18;43;19;21, we represented 

the dynamics as trajectories x(t) = {xi(t)}i=1...N in the activity state space, where each 

dimension corresponds to the activation of one neuron (Fig. 2b). As in dimensionality 

reduction analyses, we then parametrized these trajectories by a small number of latent 

variables43;19. Crucially, for low-rank networks this dimensionality reduction is exact, 

because the connectivity structure directly restricts the dynamics to lie in a low-dimensional 

subspace36. Specifically, x(t) can be decomposed into a set of internal variables κr(t) and 

inputs us(t) that respectively quantify activity along recurrent and input-driven directions 

m(r) and I(s) in state-space25, where m(r) and I(s) are connectivity and input vectors obtained 

by grouping connectivity parameters across neurons (see Fig. 2b and Methods Eq. 23). A 

mathematical analysis of network dynamics then shows that the set of internal variables κ 
= {κr}r=1...R forms a dynamical system driven by inputs u = us s = 1…Nin, with a temporal 

evolution given by

d
dtκ(t) = F (κ(t), u(t)) (2)

where F is a non-linear function that determines the amount of change of κ at every time 

step. In the limit of large networks, the precise shape of F is set by the statistics of the 

connectivity parameters across neurons (Methods Eq. 32), i.e. precisely the distribution of 

points in the connectivity space that we previously examined in Fig. 1f. The connectivity 

can therefore be interpreted in two complementary ways, either in terms of directions in the 

activity state-space (Fig. 2b top left) or in terms of distributions in the connectivity space 

(Fig. 2b bottom left) and these two representations together determine the low-dimensional 

latent dynamics.

In summary, in line with the computation-through-dynamics framework20;22, low-rank 

networks can be exactly reduced to low-dimensional, non-linear latent dynamical systems 

which determine the performed computations. We next examined how the population 

structure in trained recurrent networks impacts the resulting latent dynamical system.

Latent dynamics for fully random population structure

Our resampling analyses of trained RNNs revealed that a range of tasks could be performed 

by networks in which the population structure was fully random in connectivity space 

(Fig. 1l). We therefore first examined the latent dynamics underlying computations in 

that situation. Crucially, a fully random population structure limits the available parameter 

space, and strongly constrains the set of achievable latent dynamics independently of their 
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dimensionality36 (see Methods). We start by specifying these constraints on the dynamics, 

and show they nevertheless allow networks with random population structure to implement 

a range of tasks of increasing complexity by increasing the rank of the connectivity and 

therefore the dimensionality of the dynamics.

Networks with fully random population structure were defined in Fig. 1i–l as having 

distributions of connectivity parameters computationally equivalent to a Gaussian 

distribution. In such networks, the statistics of connectivity are fully characterized by a set 

of covariances between connectivity parameters, each of which can be directly interpreted as 

the alignment, or overlap between two connectivity vectors (Fig. 2b bottom left, see Eq. 10). 

For this type of connectivity, a mean-field analysis shows that the latent low-dimensional 

dynamics can be directly reduced to an effective latent circuit, where internal variables κr 

integrate external inputs us, and interact with each other through effective couplings set by 

the overlaps between connectivity vectors multiplied by a common, activity-dependent gain 

factor36. In such reduced models, the role of individual parameters can then be analyzed in 

detail (Supplementary Note 2).

As a concrete example, a unit-rank network (R = 1) with connectivity vectors m and n 
and a single feed-forward input vector I (Nin = 1) leads to two-dimensional activity, fully 

described by a single internal variable κ(t) and a single external variable u(t) (Fig. 2b). The 

latent dynamics of κ(t) are given by

τ dκ
dt = − κ + σnmκ + σnIu(t), (3)

where σnm and σnI are effective couplings defined as σnm = Φ′ σnm and σnI = Φ′ σnI, where 

σnm (resp. σnI) is the fixed overlap between the vector n and the vector m (resp. I). The 

connectivity vector n therefore selects inputs to the latent dynamics30: the overlap between 

n and I controls how strongly the latent dynamics integrate feed-forward inputs, while the 

overlap between n and m controls the strength of positive feedback in the latent dynamics. 

Crucially, all the effective couplings are scaled by the same factor ⟨Φ′⟩ that represents the 

average gain of all neurons in the network. This gain depends on the activity in the network 

(see Methods Eq. 39), which makes the dynamics in Eq. 3 non-linear. The fact that all the 

effective couplings are scaled by the same factor however implies that, in networks with a 

fully random population structure, the overall form of the effective circuit is fixed by the 

connectivity overlaps, and this strongly limits the range of possible dynamics for the internal 

variables36.

Applying this model-reduction approach to the perceptual decision-making (DM) and 

parametric working-memory (WM) tasks confirmed that tasks for which a fully random 

population structure is sufficient are those that can be implemented by a fixed effective 

circuit at the level of latent dynamics (Fig. 3 and Supplementary Text 2). Increasing the 

rank allows networks to perform tasks of increasing complexity by relying on an increasing 

number of latent variables. The DM task for instance relies on a single latent variable that 

corresponds to integrated evidence (Fig. 3c,d), while the WM task exploits two variables 

(Fig. 3h,i). By fixing the shape of the effective circuit, the random population structure 
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however limits ways in which these latent variables can interact among themselves and with 

inputs. As a consequence, for more complex tasks a fully random population structure was 

not sufficient. We next sought to further elucidate this aspect.

Representing non-random structure with multiple populations

The resampling analysis in Fig. 1l indicated that tasks such as context-dependent decision-

making and delayed-match-to-sample relied on a population structure in connectivity that 

was not fully random. To better understand the underlying structure and its computational 

role, we further examined RNNs trained on these two tasks, and asked whether their 

connectivity could be represented in terms of multiple populations. We first examined 

whether a multi-population connectivity structure is sufficient to implement the two tasks, 

and in a second step examined how such a structure modifies latent dynamics and expands 

their computational capacity.

To identify computationally-relevant populations, we took inspiration from10, and first 

performed clustering analyses in the connectivity space where non-random population 

structure was found (Fig. 4a, see Methods). Applying a Gaussian mixture clustering 

algorithm on the cloud of points formed by each trained network, we partitioned the neurons 

into separate sub-populations. In the trained networks, all clusters were centered close to the 

origin, but each had a different shape and orientation that corresponded to multiple peaks in 

the distribution detected by the ePAIRS analysis (Fig. 1f–g). Each population was therefore 

characterized by a different set of covariances, or overlaps, between input, recurrent, and 

output connectivity vectors. We then extended our resampling approach from Fig. 1i–l, and 

generated new networks by first randomly assigning each neuron to a population, and then 

sampling its connectivity parameters from a Gaussian distribution with the fitted covariance 

structure. Finally, we inspected the performance of these randomly generated networks, and 

compared them with fully trained ones. By progressively increasing the number of fitted 

clusters, we determined the minimal number of populations needed to implement the task 

(see Methods). Within this approach, networks with a fully random population structure 

such as those described in Fig. 3 correspond to a single overall population in connectivity 

space.

We first considered context-dependent decision making, where stimuli consisted of a 

combination of two scalar features that fluctuated in time15. Depending on a contextual 

cue, only one of the two features needed to be integrated (Fig. 4b), so that the same stimulus 

could require opposite responses, a hallmark of flexible input-output transformations44. 

We found that unit-rank connectivity was sufficient (Fig. Extended Data Figure 2), and 

focused on such networks. The analysis in Fig. 1l showed that generating networks 

by resampling connectivity from a single, fully-random population led to a strong 

degradation of the performance, although it remained above chance. A closer inspection 

of psychometric matrices representing input-output transforms in different contexts revealed 

that the resampled single-population networks in fact generated correct responses for stimuli 

requiring identical outputs in the two contexts, but failed for incongruent stimuli, for which 

responses needed to be flipped according to context (Fig. 4c). This observation was not 

specific to unit-rank networks, as randomizing population structure in higher-rank (Extended 
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Data Figure 4) and full-rank networks (Extended Data Figure 3) led to a similar reduction 

in performance. We therefore performed a clustering analysis in the connectivity space. The 

number of clusters varied across networks (Extended Data Figure 5 and Supplementary 

Text 3), but the minimal required number was two. For such minimal networks, we found 

that randomly resampling from the corresponding Gaussian mixture distribution led to an 

accuracy close to the original trained connectivity (Fig. 4d). In particular, the randomly 

generated networks correctly switched their response to incongruent stimuli across contexts, 

in contrast to networks with a single population (Fig. 4c). This indicated that connectivity 

based on a structure in two populations was sufficient to implement the context-dependent 

decision-making task.

An identical analysis based on clustering and resampling connectivity parameters showed 

that rank-two networks with two sub-populations could perform the delayed-match-to-

sample task (Extended Data Figure 6 and Supplementary Text 4). Altogether, our 

results therefore indicated that connectivity distributions described by a small number of 

populations were sufficient to implement tasks requiring flexible input-output mappings. To 

identify the mechanistic role of this multi-population structure, we next examined how it 

impacted the latent dynamics implemented by trained networks.

Gain modulation of latent dynamics

To unveil the mechanisms underlying flexible input-output mappings in networks with 

connectivity based on multiple populations, we examined how such a structure impacts 

the latent dynamics of internal variables. Here we first describe how, in contrast to a 

single-population, a multi-population structure allows external inputs to flexibly modulate 

the overall form of the circuit describing latent dynamics. We then show how this general 

principle applies specifically to the two flexible tasks (Fig. 4 and Extended Data Figure 6). 

We focus here on networks with minimal rank and minimal number of populations, and 

show in the next section that the inferred predictions hold more generally.

In Fig. 4 we defined sub-populations as subsets of neurons characterized by different 

overlaps between input, recurrent and output connectivity vectors in a network of fixed rank. 

In a network with a multi-population structure, the number of internal variables describing 

low-dimensional dynamics is determined by the rank of the recurrent connectivity, as in 

networks without population structure (Fig. 2a). Remarkably, a mean-field analysis36 (see 

Methods) shows that the latent low-dimensional dynamics can still be represented in terms 

of an effective circuit where internal variables κr integrate inputs and interact with each 

other through effective couplings (Fig. 5a). The key effect of the multi-population structure 

is however to modify the form of the effective couplings and endow them with much greater 

flexibility than in the case of a single, fully random population. Indeed, in a network with a 

single population, the effective couplings were given by connectivity overlaps multiplied by 

a single, global gain factor, and modulating the gain therefore scaled all effective couplings 

together. In contrast, in networks with multiple populations, each population is described by 

its own set of overlaps between connectivity sub-vectors (Fig. 4a), and, importantly, by its 

own gain, which corresponds to the average slope ϕ′(xi) on the input-output nonlinearity of 

neurons in the population. The effective couplings between inputs and internal variables are 
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then given by a sum over populations of connectivity overlaps each weighted by the gain 

of the corresponding population (Methods Eq. (38)). As an illustration, in the case of two 

populations, the effective coupling between the input and the internal variable becomes

σnI = σnI
(1) Φ′ 1 + σnI

(2) Φ′ 2 (4)

where σnI
(1) and σnI

(2) are the overlaps for each population between the input vector I and 

the input-selection vector n, while ⟨Φ′⟩1 and ⟨Φ′⟩2 are the gains of the two populations, 

that depend implicitly both on inputs and the values of internal variables. Crucially, 

additional inputs restricted to a given population can modulate its gain independently of 

other populations by shifting the position of neurons on the non-linear input-output function. 

Depending on the geometry between input vectors and input-selection vectors, different sets 

of inputs can play distinct roles of drivers and modulators37, allowing the network to flexibly 

remodel the effective circuit formed by collective variables in different trials or epochs 

according to the demands of the task.

We applied this model-reduction analysis to the context-dependent decision-making task, for 

which the minimal trained networks were of unit rank and consisted of two sub-populations 

(Fig. 4b). Analyzing the statistics of input and connectivity vectors for each population, 

we found that the input vectors IA and IB corresponding to the two stimulus features uA 

and uB had different overlaps with the input-selection vector n in the two populations 

(Fig. 5b right) so that the two stimulus features uA and uB acted as drivers of latent 

dynamics. The contextual input vectors IctxA and IctxB in contrast had weak overlaps with 

the input-selection vector n (Extended Data Figure 7), but strongly different amplitudes on 

the two populations (Fig. 5b left). They therefore modified the gains of the two populations 

in an opposite manner (Fig. 5c bottom), and played the role of modulators that changed 

the form of the effective circuit describing latent dynamics in each context (Fig. 5c top). 

More specifically, the latent dynamics of the internal variable κ could be approximated by 

(Methods and Sup. Fig. S4):

τ dκ
dt = − κ + σmnκ + σnIA

(1) Φ′ 1uA(t) + σnIB
(2) Φ′ 2uB(t) (5)

where ⟨Φ′⟩1 and ⟨Φ′⟩2 are the average gains of the two populations, σnIA
(1)

 the overlap for 

the first population between the input vector for stimulus feature A and the input-selection 

vector n, and σnIB
(2)

 the overlap for the second population between n and the input vector for 

stimulus feature B. By modulating the gains of the two populations in a differential manner 

between the two contexts (Fig. 5c bottom), the contextual cues controlled the effective 

couplings between stimulus inputs and the internal variable κ, and determined which 

feature was integrated by the internal variable in each context (Fig. 5d). This mechanism 

implemented an effective input gating, but only at the level of the latent dynamics 

of the internal variable κ that integrated relevant evidence. Importantly, as observed in 

experimental data15, on the level of the full network, the two stimulus features were instead 

equally represented in both contexts, but along directions in state space orthogonal to the 
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direction that encoded internal collective variable (Extended Data Figure 8) as observed in 

experimental data15.

A similar picture was obtained for the DMS task (Fig. Extended Data Figure 9 and 

Supplementary Text 4), in which case the sub-population structure controlled autonomous 

dynamics rather than selecting a stimulus to be integrated. Altogether, our model-reduction 

analyses showed that networks with multiple sub-populations implemented flexible 

computations by exploiting gain modulation to modify in various ways the effective 

couplings between collective variables.

Predictions for neural selectivity and inactivations

Analyzing networks of minimal rank and minimal number of sub-populations allowed us 

to identify the mechanisms underlying computations based on a multi-population structure 

in connectivity. We next sought to generate predictions of the identified mechanisms that 

are experimentally testable without access to details of the connectivity. We then tested 

these predictions on networks with a higher number of sub-populations or higher rank, 

obtained by varying the constraints used during training. We focus here specifically on 

the context-dependent decision-making (CDM) task, and contrast it with the multi-sensory 

decision-making (MDM) task, for which networks received an identical input structure, but 

were required to produce an output independent of context.

For the CDM task, reducing the trained networks to effective circuits revealed that the 

key computations relied on a differential gain modulation of separate sub-populations 

by contextual inputs. For each neuron, contextual cues set its functioning point on its 

non-linearity, and thus the gain of its response to incoming stimuli. A direct implication 

is that neurons more strongly modulated by contextual cues change more strongly their 

gain across contexts, and thereby the amplitude of their responses to stimulus features (Fig. 

6a). An ensuing prediction at the level of selectivity of individual neurons is therefore that 

the pre-stimulus selectivity to context should be correlated with the change across contexts 

of regression coefficients to stimulus features (Fig. 6b). Our analyses therefore predict 

a specific form of multiplicative interactions, or non-linear mixed selectivity to stimulus 

features and context cues14, but also imply that the two sub-populations can be identified 

based on their selectivity to context (Fig. 6b).

The multiplicative interaction between context and stimulus selectivity is a necessary, 

but not a sufficient condition for implementing context-dependent responding. A second, 

necessary component of the computational mechanism is that each sub-population integrates 

dominantly one of the two features into the latent dynamics, as seen from the overlaps 

between the input vectors and the input-selection vectors (Fig. 5b right). This leads to 

a specific prediction for inactivation experiments: inactivating separately sub-populations 

defined by their selectivity to context disrupts performance in one context, while leaving the 

other intact (Fig. 6c–d). In contrast, inactivating a random subset of neurons leads only to an 

overall decrease in performance independently of the context (Fig. 6c–d).

We first tested the two predictions on networks constrained to be of minimal, unit rank, but 

in which clustering analyses in connectivity space revealed more than two sub-populations 
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(Extended Data Figure 5), as in Yang et al.29. The two predictions for selectivity and 

inactivations were therefore directly borne out for such networks (Fig. 6e). We next turned 

to networks trained without rank constraint, and tested the two predictions without analyzing 

connectivity, as would be the case in experimental studies. The two predictions were 

again borne out (Fig. 6f), confirming that key aspects of the computational mechanisms 

extend to networks in which the connectivity was of higher rank, and the dynamics higher 

dimensional.

Finally we examined unit-rank networks trained on the MDM task. Such networks received 

an input structure identical to the CDM task, consisting of two stimulus features and two 

context cues. In contrast to the CDM task, the networks were trained to average the two 

stimulus features, and contextual cues were irrelevant, so that a fully random population 

structure was sufficient to perform the task (Fig. 1l). We therefore expected that the two 

predictions made for the CDM task do not necessarily hold in this case. We indeed found 

that training networks on the MDM task led to weaker selectivity to context, and weaker 

correlation between context selectivity and the change in stimulus selectivity (Fig. 6g). 

Specific neurons still exhibited selectivity to contextual cues, but inactivating them led 

to changes in performance similar to inactivating a random subset of neurons (Fig. 6g). 

Importantly, this finding was unchanged when we matched the strength of context selectivity 

between MDM and CDM task by increasing the amplitude of contextual inputs (Extended 

Data Figure 10).

Altogether, identical context selectivity therefore led to opposite effects of inactivations 

across tasks, as predicted by our minimal-rank models.

Implications for multi-tasking

A recent study reported that multiple populations emerge in networks trained simultaneously 

on multiple tasks, and can be repurposed across tasks29. Our results more specifically 

suggest that a multi-population structure in connectivity is needed only when an identical 

stimulus requires different outputs depending on the context set by the performed task. 

While this is the case in many multi-tasking situations, concurrent tasks are alternatively 

often based on different sets of stimuli45;46;47. Here we show that the reduced models 

developed by analyzing networks trained on individual tasks can be used to build networks 

that perform multiple tasks in parallel (Fig. 7). More specifically, multiple tasks on an 

identical set of stimuli can be performed by combining and repurposing multiple sub-

populations, while in contrast multiple tasks on separate sets of stimuli can be performed 

with a single population by relying on dynamics in orthogonal subspaces32;48. As a result, 

when identical stimuli are processed, some individual neurons exhibit task-specialisation, 

while for separate sets of stimuli all neurons are multi-taskers, and contribute to multiple 

tasks in parallel. These findings are in direct agreement with the activity of neurons in the 

prefrontal cortex during flexible categorisation, which show specialisation when identical 

stimuli are processed49, and multi-tasking when separate stimuli sets are used45.

To illustrate task-specialization, we first consider a network that receives stimuli composed 

of two sensory features, and depending on a rule cue performs one out of three different 

tasks on them : perceptual decision-making on the first stimulus feature, perceptual decision-
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making on the second stimulus feature, or integration of the two features as in the 

multi-sensory decision making task (Fig. 7a). This multi-tasking setup is in fact a direct 

extension of context-dependent decision-making, and we implemented it using a simplified 

network based on the CDM task, consisting of unit-rank connectivity with three separate 

sub-populations (Extended Data Figure 5). In that network, each sub-population has a 

well defined computational role. One of them plays the role of an evidence integrator, by 

endowing the latent dynamics with a long timescale through strong positive feedback. That 

population is repurposed across all tasks (Fig. 7c orange neuron), and inactivating it leads 

to performance degradation on all three tasks (Fig. 7b). The other two populations relay 

separately the two sensory features into the latent dynamics, as in the CDM task (Fig. 

5b–d). Each of them participates in only two of the three tasks, as corroborated by changes 

in task performance after selective inactivations (Fig. 7b). Neurons belonging to these 

two populations are therefore specialised for specific tasks, as seen in their task-specific 

responses to stimuli (Fig. 7c green and purple neurons).

We next illustrate multi-tasking in a network that performs two tasks on distinct sets of 

stimuli, the perceptual decision-making (DM) and the parametric working-memory (WM) 

tasks (Fig. 7d). Such a network can be obtained by directly superposing the connectivity 

matrices JDM and JWM of two minimal networks of rank-one and two that perform the 

individual tasks with random population structure (Fig. 3). The resulting connectivity J = 

JDM +JWM is of rank three, and has a random population structure. The corresponding latent 

dynamics are based on a recurrent sub-space of dimension three, and the two tasks rely on 

two orthogonal subspaces with one dimension implementing the DM task, and the other 

two implementing the WM task (Fig. 7e). Because of the random population structure, each 

neuron is a random combination of collective variables corresponding to different tasks, so 

that all neurons display multi-tasking activity (Fig. 7f).

Discussion

The goal of this study was to determine whether and when a non-random population 

structure is necessary for networks to perform a specific computation based on recurrent 

dynamics. To address this question, we first trained recurrent neural networks on a range of 

standard systems neuroscience tasks, and examined the emerging population structure in the 

selectivity and connectivity, and its relationship with the computations. We then identified 

underlying mechanisms by extracting the latent low-dimensional dynamics. Although a 

number of tasks could be implemented with random population structure in connectivity, 

we found that tasks based on flexible input-output mappings instead appeared to require an 

additional structure that could be accurately approximated in terms of a small number of 

sub-populations which played functionally distinct roles.

The starting motivation of this work was the apparent discrepancy between the experimental 

results of Ref.17 and Ref.10 (see also11). Analyzing neural activity in the rat posterior 

parietal cortex during a multi-sensory decision-making task, Ref.17 found no evidence for 

non-random population structure in selectivity. Applying identical analyses to the prefrontal 

cortex, Ref.10 instead identified population structure in activity during a more complex task 

that combined perceptual and value-guided decisions. Our results suggest that the difference 
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between tasks provides a possible explanation for these diverging conclusions. Examining 

networks trained on an abstracted version of the multi-sensory integration task of Ref.17, we 

found that a non-random population structure was not needed. Implementing a full version 

of the task used in Ref.10 would have required reinforcement learning that falls beyond the 

scope of the supervised methods for training networks used here. The core component of 

that task was however a flexible weighing of two sensory features depending on the context 

set by reward history. That requirement of context-dependent weighing of input streams 

is in fact identical to the context-dependent decision-making task, in which all-or-none 

weights were assigned to the two stimulus features depending on the contextual cues. The 

gain-modulation mechanism underlying networks that performed the CDM task can more 

generally assign graded weights to each feature as required for the task of Ref.10. This 

mechanism requires multiple populations, so that our analyses predict that a non-random 

population structure is needed for the task used in Ref.10.

We found that in trained networks relying on a non-random population structure, 

connectivity could be accurately described by a small number of sub-populations. 

Mechanistically, the role of such a sub-population structure can be understood from two 

perspectives. From the neural state-space perspective, the collective dynamics explore 

a low-dimensional recurrent subspace, and the sub-population structure shapes the non-

linear dynamical landscape of the activity in that subspace50. Specifically, different 

inputs differentially activate different sub-populations, and shift the recurrent subspace 

into different regions of the state-space with different non-linear dynamical landscapes. 

A complementary picture emerges from the perspective of the effective circuits which 

describe the low-dimensional latent dynamics in terms of interactions between collective 

variables through effective couplings (Fig. 5). In that picture, the sub-population structure 

allows inputs to control the effective couplings by modulating the average gain of different 

sub-populations. The computations then rely on two functionally distinct types of additive 

inputs: drivers that directly entrain the collective variables, and modulators that shape 

the gains of the different sub-populations, and thereby the interactions between collective 

variables. Interestingly, gain modulation has long been posited as a mechanism underlying 

selective attention51, a type of processing closely related to flexible input-output tasks 

considered here. While patterns of gain modulation52;38;53, and the distinction between 

drivers and modulators37 are fundamentally physiological concepts (see Supplementary 

Discussion 1 for a physiological interpretation of sub-populations), here we found that an 

analogous mechanism emerges in abstract trained networks at the collective level of latent 

dynamics.

Previous studies have reported that when training networks on a given task, some aspects of 

the solutions are invariant54 while others depend on the details of the implementation29;32;55. 

Our analyses confirmed these observations. Our main result for the computational 

requirement of non-random population structure in connectivity (Fig.1l) held independently 

of the details of the training, and in particular in absence of constraints on the rank of the 

network (Extended Data Figure 3). For tasks requiring a non-random population structure, 

the number of sub-populations needed to approximate connectivity however varied across 

networks (Extended Data Figure 5). For those tasks, our results show that a single global 

population is insufficient (see Supplementary Discussion 2 for the relation with the universal 
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approximation theorem) and that fundamental computational mechanisms are conserved 

across a range of different networks (Fig. 6). Our analyses however do not predict the 

specific dimensionality or number of populations to be expected. More systematic model 

selection could for instance be performed by further constraining recurrent neural networks 

based on recorded neural activity23;56.

The fact that neurons are selective to mixtures of task variables rather than individual 

features has emerged as one of the defining properties of representations in higher order 

areas of the mammalian cortex44. Moving beyond a simple dichotomy between pure and 

mixed selectivity, recent studies argued that mixed selectivity does not necessarily preclude 

the presence of a population structure, and introduced the notion of non-random mixed 

selectivity17;10. Our results predict that the expected type of structure and mixed selectivity 

depends on the complexity of the performed task. In particular, for tasks requiring flexible 

input-output associations, we predict the presence of non-random population structure. 

The resulting non-random mixed-selectivity however becomes apparent only in response 

to specific combinations of variables, while selectivity to other variables can remain fully 

random (Fig. 6). Ultimately, as the task complexity is increased, identifying the signatures 

of computational mechanisms in the neural activity requires a careful comparison with 

computational models on a task-by-task basis.

Methods

Recurrent Neural Networks

We considered networks of N rate units that evolve over time according to

τ dxi
dt = − xi + ∑

j = 1

N
Jijϕ xj + Ii

FF(t) + ηi(t) . (6)

Here xi represents the activation or total current received by the i-th unit, and ϕ(xi) = 

tanh(xi) is its firing rate. Moreover, each neuron received a feed-forward input Ii
FF  and an 

independent white-noise input ηi(t) specified below.

The recurrent connectivity is set by the connectivity matrix J = {Jij}i,j=1...N. For full-rank 

networks, the coefficients Jij were treated as independent parameters. For low-rank networks 

J was constrained to be of rank R, and parametrized as

Jij = 1
N ∑

r = 1

R
mi

(r)nj
(r)

(7)

i.e. J was a sum of R outer-products of vectors m(r) = {mi
(r)}i = 1…N and n(r) = {ni

(r)}i = 1…N. 

Throughout the text, we refer to the vectors m(r) and n(r) as the connectivity vectors, with 

m(r) the r-th output vector, and n(r) the r-th input-selection vector. Without loss of generality, 

we will assume that all the output vectors (and respectively all the input-selection vectors) 

are mutually orthogonal. Such a representation is uniquely defined by the singular-value 
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decomposition of J by taking m(r) to be the left singular vectors, and n(r) the right singular 

vectors multiplied by the corresponding singular values.

The feed-forward inputs Ii
FF(t) were generated by Nin temporally-varying scalar stimuli 

us(t), each fed into the unit i through a set of weights Ii
(s):

Ii
FF(t) = ∑

s = 1

Nin
Ii

(s)us(t) . (8)

We refer to I(s) = {Ii
(s)}i = 1…N as the s-th input vector.

The output of the network was defined by a readout value

z = 1
N ∑

j = 1

N
wjϕ xj , (9)

where w = {wi}i=1...N is the readout vector.

The time constant of neurons was τ = 100ms. For simulation and training, equation (6) 

was discretized using Euler’s method with a time step Δt = 20ms. The white noise ηi 

was simulated by drawing at each time step a random number from a centered Gaussian 

distribution of standard deviation 0.05.

For any pair of N-dimensional vectors a and b, the overlap σab was defined as the empirical 

covariance of their entries:

σab = 1
N ∑

i = 1

N
aibi . (10)

Network training procedure—We used backpropagation through time57 to train 

networks to minimize loss functions corresponding to specific tasks. For each task (see 

details below), we specified the temporal structure of trials and the desired mapping from 

combinations of stimulus inputs to target readouts z, and then stochastically generated trials. 

We minimized the mean squared error loss function

ℒ = ∑
k, t

Mt zk, t − zk, t
2

(11)

where zk,t and zk, t are respectively the actual, and the target readout values and the indices 

k, t respectively run over trials and time steps. The terms Mt are {0, 1} masks that were 

non-zero only during a decision period at the end of each trial, when the readouts were 

required to match their target values. For each task we also define a performance measure 

called accuracy, defined as the fraction of test trials for which the network output has the 

same sign as the expected output (i.e. sign ∑tMtzk, t = sign ∑tMtzk, t )
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For full-rank networks (Figs. 1,6) the gradients were computed with respect to individual 

entries Jij of the connectivity matrix. For results on full-rank networks in Fig. 1 (left column) 

and Extended Data Figure 3, matrices J were initialized with random independent Gaussian 

weights of mean 0 and variance ρ = 1/N. For the Extended Data Figure 3, we also trained 

networks whose weights were initialized with a variance ρ = 0.1/N, since these tend to be 

approximated more easily by low-rank networks35.

For low-rank networks, we specifically looked for solutions in the subspace of connectivity 

matrices with rank R. The loss functions were therefore minimized by computing gradients 

with respect to the elements of connectivity vectors {m(r)}r=1...R, {n(r)}r=1...R. Unless 

specified otherwise in the description of individual tasks, we did not train the entries of input 

vectors {I(s)}s = 1…Nin and the readout vectors {w} but only an overall amplitude factor 

for each input and readout vector. All vectors were initialized with their entries drawn from 

Gaussian distributions with zero mean and unit standard deviation, except for the readout 

vector, for which the standard deviation was 4. The initial network state at the beginning of 

each trial was always set to 0. We used the ADAM optimizer58 in pytorch59 with the decay 

rates of the first and second moments of 0.9 and 0.999, and learning rates between 10−3 and 

10−2.

To identify networks of minimal rank that performed each task, the number of pairs of 

connectivity vectors R was treated as a hyper-parameter. We first trained full rank networks 

(R = N) and determined the accuracy with which they solved the task. We then started 

training rank R = 5 networks, and progressively decreased the rank until there was a sharp 

decrease in accuracy (Extended Data Figure 2). The minimal rank R∗ was defined for each 

task such that the accuracy at R∗ was at least of 95%.

To ease the clustering and resampling procedure, and approach mean-field solutions, we 

trained large networks (of sizes 512 neurons for the networks of figures 1 and 3, 4096 

neurons for the context-dependent DM and DMS task networks of Figures 5 and Extended 

Data Figure 6, and 1024 neurons in figure 7).

Definition of individual tasks

Perceptual decision making (DM) task

Trial structure.: A fixation epoch of duration Tfix = 100ms was followed by a stimulation 

epoch of duration Tstim = 800ms, a delay epoch of duration Tdelay = 100ms and a decision 

epoch of duration Tdecision = 20ms.

Inputs and outputs.: The feed-forward input to neuron i on trial k was

Ii
FF(t) = Iiu(k)(t) (12)

where, during the stimulation period, u(k)(t) = u(k) + ξ(k)(t), with ξ(k)(t) a zero-mean Gaussian 

white noise with standard deviation σu = 0.1. The mean stimulus u(k) was drawn uniformly 

from ±0.1 × {1, 2, 4} on each trial. The elements Ii of the input vector were generated from a 

Gaussian distribution with zero mean and unit standard deviation, and fixed during training.
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During the decision epoch, the output z was evaluated through a readout vector w = 

{wi}i=1...N, the elements wi of which were generated from a Gaussian distribution with 

zero mean and standard deviation of 4, and fixed during the training. On trial k, the target 

output value zk in the loss function (Eq. (11)) was defined as the sign of the mean input u(k).

Parametric working memory (WM) task

Trial structure.: A fixation epoch of duration Tfix = 100ms was followed by a first 

stimulation epoch of duration Tstim1 = 100ms, a delay epoch of duration Tdelay drawn from a 

uniform distribution between 500 and 2000ms, a second stimulation epoch of duration Tstim2 

= 100ms and a decision epoch of duration Tdecision = 100ms.

Inputs and outputs.: The feed-forward input to neuron i on trial k was

Ii
FF(t) = Ii u1

(k)(t) + u2
(k)(t) (13)

where u1
(k)(t) and u2

(k)(t) were non-zero during the first and second stimulation epochs 

respectively. On trial k and during the corresponding stimulation epoch, the values of these 

inputs were u1, 2
(k) = 1

fmax − fmin
(f1, 2

(k) −
fmax + fmin

2 ), with f1
(k) and f2

(k) drawn uniformly from 

{10, 11, … , 34}, and fmin = 10 and fmax = 34. The elements Ii of the input vector were 

generated from a Gaussian distribution with zero mean and unit standard deviation, and 

fixed during the training.

During the decision epoch, the output z was evaluated through a readout vector w = 

{wi}i=1...N, the elements wi of which were generated from a Gaussian distribution with 

zero mean and standard deviation of 4, and fixed during the training. On trial k, the target 

output value z(k) in the loss function (Eq. (11)) was defined as z(k) =
f1

(k) − f2
(k)

fmax − fmin
.

Context-dependent decision making (CDM) task

Trial structure.: A fixation epoch of duration Tfix = 100ms was followed by a first context-

only epoch of duration Tctxt1 = 0ms for figure 1 and 350ms for Figs. 4–6 plots, followed 

by a stimulation epoch of duration Tstim = 800ms, a second context-only epoch of Tctxt2 = 

500ms, and a decision epoch of Tdecision = 20ms.

Stimuli and outputs.: The feed-forward input to neuron i on trial k was

Ii
FF(t) = uA

(k)(t)Ii
A + uB

(k)(t)Ii
B + uctxA

(k) (t)Ii
ctxA + uctxB

(k) (t)Ii
ctxB . (14)

Here uctxA
(k)  and uctxB

(k)  correspond to contextual cues. On each trial, during the context-only 

and the stimulation epochs, one of the two cues took a value +0.1 (or +0.5 for Figs. 4–6), 

while the other was 0. The inputs uA
(k)(t) and uB

(k)(t) represent two sensory features of the 

stimulus. They were non-zero only during the stimulation epoch, and took the same form 
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as in the perceptual decision-making task, with means uA
(k) and uB

(k), and fluctuating parts 

ξA
(k)(t) and ξB

(k)(t) drawn independently for each feature, on each trial. The elements of the 

input vectors were generated from a Gaussian distribution with zero mean and unit standard 

deviation on both populations. For the networks presented in the main text, input vectors 

were trained, while for the networks reported in Supplementary Note 2.3 all the input 

vectors were fixed throughout training.

During the decision epoch, on trial k the target z(k) in the loss function (Eq. (11)) was 

defined as the sign of the mean uX
(k) of feature X = A or B for which the contextual cue was 

activated, i. e. uctx
(k) = 1. The readout vector was fixed throughout training.

Multi-sensory decision making (MDM) task

Trial structure.: A fixation epoch of duration Tfix = 100ms was followed by a context-only 

period of duration Tctx = 350ms, a stimulation epoch of duration Tstim = 800ms, a delay 

epoch of duration Tdelay = 300ms and a decision epoch of duration Tdecision = 20ms.

Inputs and outputs.: The feed-forward input to neuron i on trial k had the same structure as 

for the context-dependent decision-making task, and was given by:

Ii
FF(t) = uA

(k)(t)Ii
A + uB

(k)(t)Ii
B + uctxA

(k) (t)Ii
ctxA + uctxB

(k) (t)Ii
ctxB . (15)

where the two stimulus inputs uA
(k)(t) and uB

(k)(t) represent two sensory modalities, and uctxA
(k)

and uctxB
(k)  are contextual inputs. In this task, the contextual inputs were irrelevant for the 

output, and we included them as a control. The inputs uA
(k)(t) and uB

(k)(t) were generated as 

for the CDM task, with the difference that on each trial the two inputs provided congruent 

evidence for the output, i.e. their means were of the same sign.

Specifically in each trial a sign sk ∈ {−1, 1} is generated randomly, as well as a modality 

that can be A, B, or AB. Then if the modality is A or AB, a mean uA
(k) is chosen from 0.1 

× sk × {1, 2, 4} and the signal uA
(k)(t) during the stimulation period is set to that mean plus 

a gaussian white noise as in the perceptual decision making task. A contextual input signal 

uctxA
(k) (t) is set to 0.1 from the beginning of the contextual period to the end of the trial. If the 

modality is B, then the signal uA
(k)(t) is only equal to the zero-centered gaussian white noise. 

The signals uB
(k)(t) and uctxB

(k) (t) are set in a similar manner. During the decision epoch, the 

target z(k) is the underlying common sign sk.

The networks received input signals through input vectors IA, IB, IctxA and IctxB which 

were trained, and output was read through a readout vector w which was fixed throughout 

training.
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Delayed-match-to-sample task

Trial structure.: A fixation epoch of duration Tfix = 100ms was followed by a first stimulus 

epoch of duration Tstim1 = 500ms, a delay epoch of a duration drawn uniformly between 

500ms and 3000ms, a second stimulus epoch of duration Tstim2 = 500ms, and a decision 

epoch of duration Tdecision = 1000ms.

Stimuli and outputs.: During each stimulus epoch, the network received one of two stimuli 

A or B, which were randomly and independently chosen on each trial and stimulus epoch. 

These two stimuli were represented by two input vectors IA and IB, so that the feed-forward 

input to neuron i on trial k was:

Ii
FF(t) = uA

(k)(t)Ii
A + uB

(k)(t)Ii
B

(16)

where the inputs uA
(k)(t) and uB

(k)(t) were non-zero only when stimuli A or B are respectively 

received, in which case they were equal to one.

During the decision epoch, the target output value z in the loss function (Eq. (11)) was equal 

to +1 if the same stimulus was received in both stimulation epochs and −1 otherwise.

Regression analyses and selectivity space—We used multivariate linear regression 

to predict time-averaged neural firing rates ri = ϕ(xi) from task variables, using a linear 

model :

ri = Xβi + ϵi . (17)

Here ri = {ri,1, ... , ri,K} is a vector containing the time-averaged firing rates of neuron i in 

trials 1 to K, X is the design matrix where rows correspond to different trials and columns 

correspond to D task variables such as stimulus, context and decision in each condition 

(defined below for each task), βi is a D-by-1 vector of regression coefficients, and ϵi is a 

K-by-1 vector of residuals.

The regression coefficients defined the selectivity space (Fig. 1a–d) of dimension D where 

each axis corresponded to the regression coefficient with respect to one task variable, and 

each neuron was represented as point βi. The choice of task variables and window of 

time-averaging of firing rates depended on the task:

• For the DM task, two regressions were performed on different time windows, 

leading to D = 2 two coefficients per neuron: a regression of average firing rate 

during the first 100ms of stimulation period against mean stimulus which defined 

the coefficient βi
stim and a regression of average firing rate during the decision 

period against network choice which defined the coefficient βi
cℎoice. This was 

done to avoid ill-conditioning due to correlations between choice and stimulus.

• For the WM task, the mean firing rate during the decision period was regressed 

against both f1 and f2, leading to D = 2 two coefficients per neuron.
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• For the MDM task and the CDM task, the average firing rate during the 

stimulation period was regressed against both mean stimulus features uA
(k) and 

uB
(k) and both contextual input signals uctxA

(k)  and uctxB
(k) , leading to D = 4 

coefficients per neuron, βi
A, βi

B, βi
ctxA and βi

ctxB In Fig. 6, the selectivity to 

context was characterized by a single regression coefficient βi
ctx obtained by 

regressing the absolute value of the firing rate |ri|, averaged over the pre-stimulus 

period where only the contextual cues are non-zeros, against a regressor X that 

takes the value +1 in context A and −1 in context B. The context selectivity is 

extracted through the linear model for K trials

ri = Xβi
ctx + ϵ (18)

In order to characterize the changes in selectivity with context, we substracted 

the pre-stimulus firing rate to the firing rate averaged over the first 100ms of 

stimulus presentation, and regressed this quantity against uA
(k) and uB

(k) separately 

in each context to obtain the regression coefficients βctxA, i
A , βctxA, i

B , βctxB, i
A ,

βctxB, i
B . The change in selectivity is then given by

Δctxβi
A/B = |βctxA, i

A/B | − |βctxB, i
A/B | (19)

In Fig. 6 the analysis is presented for feature A, similar results are obtained for 

feature B (not shown).

• For the DMS task, the average firing rate during the decision period was 

regressed against both first and second stimulus identity (with Xk,s = 1 if 

stimulus s is A in trial k, 0 otherwise, s ∈ {0,1}), leading to D = 2 regression 

coefficients per neuron.

Connectivity space—For a low-rank network, the connectivity is specified 

by 2R+Nin+1 parameters for each neuron, corresponding to its entries 

{{ni
(r)}r = 1…R, {mi

(r)}r = 1…R, {Ii
(s)}s = 1…Nin, wi} on the input, connectivity and output 

vectors. The connectivity of each neuron can therefore be represented as a point in a space of 

dimension 2R + Nin + 1 that we term connectivity space. For each network, the distribution 

of points in this space is analysed for randomness in Figure 1, and used in the resampling 

procedures. Our mean-field theory shows that in the limit of large networks, the distribution 

of points in this space determines the low-dimensional latent dynamics of the network (see 

Analysis of latent dynamics in low-rank networks).

ePAIRS analysis—To statistically assess the presence of non-random population structure 

in the selectivity and connectivity spaces of trained networks, we implemented a version 

of the ePAIRS statistical test10, which is itself derived from the PAIRS test developed in17. 

We consider a point cloud X = (Xij)1≤i≤N,1≤j≤d, where the rows xi corresponds to different 
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points (here neurons) and columns correspond to different axes of the considered space 

(regression coefficients to different variables in the selectivity space, entries of different 

input, connectivity and readout vectors in the connectivity space), which is centered by 

removing the mean ( so that for each j,∑iXij = 0). The ePAIRS test examines the directional 

distribution of points, i.e. the empirical distribution of xi/∥xi∥, and determines whether it is 

statistically distinguishable from the null distribution generated by a multivariate Gaussian 

with a covariance matrix identical to the covariance of X. A significant outcome indicates 

of the ePAIRS test that the empirical distribution presents multiple ”preferred” directions 

incompatible with a Gaussian.

More specifically, the analysis proceeds as follows:

1. For each point xi, we determine its l nearest neighbors in terms of the cosine 

metric (ie. the l points for which cos xixj = xiTxj/ xi xj  are the highest, l 

being a hyperparameter set to 3 in our case).

2. For each neuron, we compute the mean angle αi with its l nearest neighbors, 

defining an empirical distribution pdata(α).

3. To generate the corresponding null distribution, a multivariate Gaussian 

distribution N(0, Σ) is fit to the cloud of points X, with Σ the empirical 

covariance of X, computed as Σ = 1
N XTX. Then the steps 1–2 are applied on 

500 samples of the multivariate Gaussian with the same number N of data points 

to compute a Monte-Carlo null distribution pnull(α).

4. Finally, the difference between the data and the null distributions is assessed 

using a two-sided Wilcoxon’s rank-sum test, giving a p-value, and the effect size 

c is computed as

c = μnull − μdata
σnull

, (20)

where μ and σ represent the means and standard deviations of pnull(α) and 

pdata(α) An effect size c > 0 indicates that angles between neighbors are smaller 

in the data than in the resampled point clouds, meaning that points are more 

highly clustered than expected. On the contrary, c < 0 indicates that points are 

more regularly dispersed than expected from random.

Resampling and clustering trained networks—For a given trained network, we 

first fitted a single multivariate Gaussian to its connectivity distribution by computing the 

empirical covariance matrix (matrix of size (Nin + 2R + 1)2). We then generated networks by 

resampling connectivity parameters from this distribution, and examined their performance 

(Fig. 1i and Extended Data Figure 3). In all trained networks we examined, the empirical 

means were close to zero, and we neglected them.

For the CDM and DMS tasks, we performed a clustering analysis in the connectivity space 

by fitting multivariate mixtures of Gaussians with an increasing number of clusters, and 
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by resampling from the obtained distributions until we found networks that were able to 

optimally perform the task, as defined by an accuracy higher than 95% for at least 95% 

of the sampled networks. We used variational inference with a gaussian prior for the mean 

with a precision equal to 105 to enforce a zero-mean constraint for all components of 

the mixtures, and a Dirichlet process prior for the weights with concentration 1 divided 

by number of components, using the model BayesianGaussianMixture of the package 

scikit-learn60.

Since the inference and resampling processes are susceptible to finite-size fluctuations, 

for the DMS task in Extended Data Figure 6 we complemented the clustering with some 

retraining of the covariance matrices found for each component. For this we developed 

a class of Gaussian mixture, low-rank RNNs, in which the covariance structure of each 

population is trainable. Directly training the covariance matrices is difficult given that 

they need to be symmetric definite positive; we therefore used a trick akin to the 

reparametrization trick used in variational auto-encoders61: the set of input, connectivity and 

readout vectors were defined as a linear transformation of a basis of i.i.d. normal vectors, 

such that for any connectivity vector a:

ai = (ba
(p))TXi, (21)

where p is the population index of neuron i (sampled from a categorical distribution 

with weights {αp}p=1...P i.i.d. derived by the variational inference), Xi
i.i.d. N(0, 1) are 

random normal vectors of dimension Nin + 2R + 1, and the vectors ba
(p) correspond to 

the rows of the Cholesky factorization of the covariance matrix (such that σab
(p) = (ba

(p))Tbb
(p)

see Supplementary Note 1 for more details). We then trained the vectors bv
(p), with the 

population indices being sampled only once, and the Xi being resampled at each training 

epoch.

Analysis of latent dynamics in low-rank networks—Here we provide an overview of 

the reduction of low-rank networks to low-dimensional latent dynamics. A more complete 

derivation can be found in36. For simplicity, we consider the noise free case (ηi(t) = 0 in Eq. 

(6)), and we assume the initial condition xi = 0 at t = 0 for all i = 1 … N.

Low-dimensional dynamics: The dynamics defined by Eq. (6) can be represented as a 

trajectory in the N-dimensional state space in which each axis corresponds to the activation 

xi of unit i. When the connectivity is constrained to be of low rank, the dynamics are 

restricted to a low-dimensional subspace of this state-space30. Indeed, inserting Eqs. (7) and 

(8) into Eq. (6), leads to

τ dxi
dt = − xi + 1

N ∑
r = 1

R
mi

(r) ∑
j = 1

N
nj

(r)ϕ xj + ∑
s = 1

Nin
Ii

(s)us(t) . (22)
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At any time t, the right-hand-side is confined to the linear subspace spanned by the vectors 

{m(r)}r=1 … R and {I(s)}s = 1…Nin Since we assumed xi = 0 at t = 0, the dynamics of x(t) 

= {xi(y)}i=1...N remain in that subspace for all t. The activation vector x can therefore be 

expressed in terms of R internal collective variables κr, and Nin external collective variables 

vs:

x(t) = ∑
r = 1

R
κr(t)m(r) + ∑

s = 1

Nin
vs(t)I⊥

(s) . (23)

The first term on the right-hand side in Eq. (23) represents the component of the activity on 

the recurrent space25;20 defined as the subspace spanned by the output connectivity vectors 

{m(r)}r=1 … R. The corresponding internal collective variables κr are defined as projections 

of the activation vector x on the m(r):

κr(t) = 1
m(r) 2 ∑

j = 1

N
mj

(r)xj(t) . (24)

The second term on the right-hand side in Eq. (23) represents the component of the activity 

on the input space defined as the sub-space spanned by {I⊥
(s)}s = 1…Nin, the set of input 

vectors orthogonalized with respect to the recurrent sub-space. The corresponding external 

collective variables vs are defined as projections of the activation vector x on the I⊥
(s):

vs(t) = 1
I⊥

(s) 2 ∑
j = 1

N
I ⊥ , j

(s) xj(t) . (25)

The dimensionality of the dynamics in state space is thus given by the sum of the dimension 

R of the recurrent sub-space, i.e. the rank of the connectivity, and the dimensionality Nin of 

the input space.

The dynamics of the internal variables κr are obtained by projecting Eq. (6) onto the output 

connectivity vectors m(r):

τ dκr
dt = − κr(t) + κrrec(t) + 1

m(r) 2 ∑
j = 1

N
mj

(r) ∑
s = 1

Nin
Ij

sus(t) (26)

where κrrec represents the recurrent input to the r-th collective variable, defined as the 

projection of the firing rate vector ϕ(x) onto the input-selection vector n(r):

κrrec(t) = 1
N ∑

j = 1

N
nj

(r)ϕ xj(t) . (27)
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Inserting Eq. (23) into κrrec leads to a closed set of equations for the κr:

κrrec(t) = 1
N ∑

j = 1

N
nj

(r)ϕ ∑
r′ = 1

R
κr′(t)mj

r′ + ∑
s = 1

Nin
I ⊥ , j

s vs(t) . (28)

The dynamics of the external variables vs is obtained by projecting Eq. (6) onto the 

orthogonalized input vectors I⊥
(s). They are given by external inputs us(t) filtered by the 

single neurons time constant τ

τ dvs
dt = − vs + us . (29)

Throughout the main text, we assume for simplicity that the stimuli us vary on a timescale 

slower than τ, and replace vs with us. We also assume throughout the main text that input 

vectors are orthogonal to the output connectivity vectors, ie. I(s) = I⊥
(s) for all s. Hence the 

third term on the r.h.s. of equation (26) equals zero.

Using Eq. (23), the readout value z can be expressed in terms of the collective variables as

z(t) = 1
N ∑

j = 1

N
wjϕ ∑

r′ = 1

R
κr′(t)mj

r′ + ∑
s = 1

Nin
I ⊥ , j

s vs(t) . (30)

Connectivity space and mean-field limit: The dynamics of the collective variables are 

fundamentally determined by the components of connectivity and input vectors through Eq. 

(28). Neuron i is therefore characterized by the 2R + Nin + 1 parameters

{{ni
(r)}r = 1…R, {mi

(r)}r = 1…R, {Ii
(s)}s = 1…Nin, wi} . (31)

Each neuron can thus be represented as a point in the connectivity space of dimension 2R 
+ Nin + 1, and the connectivity of the full network can therefore be described as a set of N 
points in this space. Note that the right-hand-side of Eq. (28) consists of a sum of N terms, 

where the term j contains only the connectivity parameters of neuron j. The connectivity 

parameters of different neurons therefore do not interact in κrrec, so that the r.h.s of Eq. (28) 

can be interpreted as an average over the set of points corresponding to all neurons in the 

connectivity space.

Our main assumption will be that in the limit of large networks (N → ∞), the 

set of points in the connectivity space is described by a probability distribution 

P n(1), …, n(R), m(1), …, m(R), I(1), …, I Nin , w : = P (n, m, I, w). In this mean-field limit, the 

r.h.s. of Eq. (28) becomes:
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κrrec(t) = ∫ dm dn dI dw P (n, m, I, w)n(r)ϕ ∑
r′ = 1

R
κr′(t)m r′ + ∑

s′ = 1

Nin
I⊥

s′ vs′(t) , (32)

where we have used the shorthand dm dn dI = ∏r′ = 1
R ∏s′ = 1

Nin dm r′ dn r′ dI s′ . The 

collective dynamics are therefore fully specified by the single-neuron distribution of 

connectivity parameters. Once this distribution is specified, any network generated by 

sampling from it will have identical collective dynamics in the limit of a large number 

of neurons.

The joint distribution of connectivity parameters P(n, m, I, w) also determines the values of 

the readout:

z(t) = ∫ dm dn dI dw P (n, m, I, w)wϕ ∑
r′ = 1

R
κr′(t)m r′ + ∑

s′ = 1

Nin
I⊥

s′ vs′(t) . (33)

Statistics of connectivity and sub-populations: To approximate any arbitrary joint 

distributions of connectivity parameters P(n, m, I, w), we used multivariate Gaussian 

mixture models (GMMs). This choice was based on the following considerations: (i) GMMs 

are able to approximate an arbitrary multivariate distribution62; (ii) model parameters can be 

easily inferred from data using GMM clustering; (iii) GMMs afford a natural interpretation 

in terms of sub-populations (iv) GMMs allow for a mathematically tractable and transparent 

analysis of the dynamics as shown below36.

In a multivariate Gaussian mixture model, every neuron belongs to one of 

P sub-populations. For a neuron in sub-population p, the set of parameters 

{{ni
(r)}r = 1…R, {mi

(r)}r = 1…R, {Ii
(s)}s = 1…Nin, wi} is generated from a multivariate Gaussian 

distribution with mean μp and covariance Σp, where μp is a vector of size 2R+Nin +1, and 

Σp is a covariance matrix of size (2R + Nin + 1)2. The full distribution of connectivity 

parameters is therefore given by

P (n, m, I, w) = ∑
p = 1

P
αpN μp, Σp (34)

: = ∑
p = 1

P
αpPp(n, m, I, w) (35)

where the coefficients αp define the fraction of neurons belonging to each sub-population.

Each sub-population directly corresponds to a Gaussian cluster of points in the connectivity 

space. The vector μp determines the center of the p-th cluster, while the covariance matrix 

Σp determines its shape and orientation. For a neuron i belonging to population p, we 
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will write as σab
(p) the covariance between two connectivity parameters a and b, with 

a, b ∈ {{n(r)}r = 1…R, {m(r)}r = 1…R, {I(s)}s = 1…Nin, w}. Note that because the output vectors 

m(r) (resp. input-selection vectors n(r)) are mutually orthogonal, the covariances between the 

parameters {mi
(r)}r = 1…R (respectively {ni

(r)}r = 1…R vanish.

Since every neuron belongs to a single population, the r.h.s of Eq. (28) can be split into P 

terms, each corresponding to an average over one population. As within each population the 

distribution is a joint Gaussian, Eq. (32) becomes a sum of P Gaussian integrals

κrrec(t) = ∑
p = 1

P
αp∫ dm dn dI dw Pp(n, m, I, w

)n(r)ϕ ∑
r′ = 1

R
κr′(t)m r′ + ∑

s′ = 1

Nin
I⊥

s′ vs′(t) .
(36)

Effective circuit description of latent dynamics: In the following, we focus on zero-

mean multivariate Gaussian mixture distributions for the connectivity parameters, and input 

vectors orthogonal to {m(r)}r=1...R, as distributions with these assumptions were sufficient to 

describe trained networks. The more general case of Gaussian mixtures with non-zero means 

is treated in36. Using Stein’s lemma for Gaussian distributions, the dynamics of the internal 

collective variables can be expressed as a dynamical system (see Supplementary Note 1)

dκr
dt = − κr + ∑

r′ = 1

R
σn(r)m(r′)κr′ + ∑

s = 1

Nin
σn(r)I(s)vs . (37)

In the main text, vs were replaced by us which amounts to assume that inputs vary slowly 

with respect to the single neuron time constant τ.

In Eq. (37), σn(r)m(r) represents the effective self-feedback of the collective variable κr, 

σn(r)m(r′) sets the interaction between the collective variables κr and κr′, and σn(r)I(s) is the 

effective coupling between the input us and κr. These effective interactions between the 

internal variables are given by weighted averages over populations

σab = ∑
p = 1

P
αpσab

(p) Φ′ p (38)

where σab
(p) is the covariance between connectivity parameters a and b for population p, and 

⟨Φ′⟩p is the average gain of population p, defined as

Φ′ p = Φ′ Δ(p)
(39)

with
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Φ′ (Δ) = 1
2π∫−∞

+∞
dze−z2/2ϕ′(Δz) (40)

and

Δ(p) = ∑
r′ = 1

R
(σm(r′)

(p) )2κr′
2 + ∑

s = 1

Nin
(σI(s)

(p) )
2
vs2 (41)

the standard deviation of activation variables in population p, where σa(p) is the variance of a 

vector a on population p.

In Eq. (37), the covariances σab
(p) are set by the statistics of the connectivity and input 

vectors, but the gain factors ⟨Φ′⟩p in general depend both on internal and external collective 

variables κk and vj. As a consequence, the dynamics in Eq. (37) is non-linear, and in fact it 

can be shown that given a sufficient number of sub-populations, the right-hand side in Eq. 

(37) can approximate any arbitrary dynamical system36.

In the special case of linear networks (i.e. Φ(x) = x), the gain is constant so that the effective 

couplings σab in Eq. 38 are equal to the overlaps σab of vectors a and b over the full 

population, as defined in Eq. 10. The population structure therefore only plays a role for 

non-linear networks.

The value of the readout (Eq. (33)) can also be expressed in terms of effective interactions as

z = ∑
r′ = 1

R
σm(r′)wκr′ + ∑

s = 1

Nin
σI(s)w(k)vs . (42)

Drivers and modulators of latent dynamics: Eq. (37) shows that feed-forward inputs to 

the network can have two distinct effects on the collective dynamics of internal variables 

κr. If the input vector I(s) overlaps with the r-th input-selection vector n(r), i.e. the 

corresponding covariance σn(r)I(s)
(p)

 is non-zero for population p, the input directly drives 

the latent dynamics, in the sense that vs acts as an effective external input to the dynamics of 

κr in Eq. (37).

In contrast, when all covariances between the input vectors and the input selection vectors 

are zero (i.e. σn(r)I(s)
(p) = 0 for all r, p), the corresponding input does not drive the latent 

dynamics, but can still modulate them by modifying the gain through Eq. (41) if the variance 

σI(s)
(p)

 of the input on some population p is non-zero.

The inputs can therefore play roles of drivers and modulators of latent dynamics, depending 

on whether the corresponding input vectors overlap or not with the input selection vectors 

n(r).
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Reduced models of latent dynamics for individual tasks

Perceptual decision making task: We found that computations in the rank-one, single 

population trained networks could be reproduced by a reduced model with two non-zero 

covariances σnI and σnm (Sup. Fig. S2a). For this reduced model, the dynamics of the 

internal collective variable is given by

dκ
dt = − κ + σnmκ + σnIv(t), (43)

where σnm = σnm Φ′ (Δ) and σnI = σnI Φ′ (Δ) with ⟨Φ′⟩(Δ) defined in Eq. (39), and the 

effective population variance Δ given by:

Δ = σm2 κ2 + σI
2v2 . (44)

Here v(t) corresponds to the integrated input u(t), see Eq. (29).

An analysis of nonlinear dynamics defined by Eq. (43) showed that adjusting these 

parameters was sufficient to implement the task, as additional parameters only modulate 

the overall gain. In particular the value of σmn, determines the qualitative shape of the 

dynamical landscape on which the internal variable evolves and sets the timescale on which 

it integrates inputs (see Supplementary Note 2.1for more details).

Parametric working memory task: We found that computations in the rank-two, single 

population trained networks could be reproduced by a reduced model with four non-zero 

covariances σn(1)m(1), σn(2)m(2), σn(1)I and σn(2)I (Sup. Fig. S3a). In particular covariances 

σn(1)m(2), σn(2)m(1) across the two vectors could be set to zero without performance 

impairment. For this reduced model, the dynamics of the two internal collective variables is 

given by:

dκ1
dt = − κ1 + σn(1)m(1)κ1 + σn(1)Iv(t)

dκ2
dt = − κ2 + σn(2)m(2)κ2 + σn(2)Iv(t)

(45)

where σab = σab Φ′ (Δ) with ⟨Φ′⟩(Δ) defined in Eq. (39), and the effective noise Δ given by:

Δ = σm(1) 2κ1
2 + σm(2) 2κ2

2 + σI
2v(t)2 . (46)

Here v(t) corresponds to the integrated input u(t), see Eq. (29).

The two internal collective variables are therefore effectively uncoupled, and integrate 

the incoming feed-forward inputs at two different timescales due to different levels of 

positive feedback. For the first collective variable, a strong, fine-tuned positive feedback 

σm(1)n(1) ≃ 1 leads to an approximate line attractor along κ1 that persistently encodes the 

first stimulus throughout the delay and the sum of the two stimuli at the decision epoch. 
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For the second internal variable, a weaker positive feedback σm(2)n(2) ≲ 1 leads to a shorter 

timescale of a transient response to stimuli along κ2, such that the first stimulus is forgotten 

during the delay and that the second stimulus is represented during the decision epoch (see 

Supplementary Note 2.2 for more details).

Context-dependent decision making task: We found that the computations in the unit 

rank, two populations network relied on the following conditions for the covariances in 

the two populations (Sup. Fig. S4a): (i) IctxA and IctxB were essentially orthogonal to the 

input-selection vector n, implying that σnIctxA
(p) ≃ 0 and σnIctxB

(p) ≃ 0 for both populations p = 

1,2; (ii) on each population, each of the two input-selection vectors was correlated with only 

one of the input-feature vectors, i.e. σnIA
(1) > 0 and σnI(B)

(2) > 0, while σnIB
(1) ≈ 0 and σnI(A)

(2) ≈ 0; 

(iii) each context-cue vector had a strong variance on a different sub-population, i.e. for the 

first population IctxA and IctxB had respectively weak and strong variance (i.e. σIctxA
(1) ≈ 0

and σIctxB
(1) > 1), and conversely for the second population σIctxA

(2) > 0 and σIctxB
(2) ≈ 0. The 

computation could therefore be described by a reduced model, in which the covariances 

σnI(B)
(1)

, σnI(A)
(2) σIctxtB

(2)
, σIctxtB

(2)
 were set to zero. The dynamics of the internal variable was then 

given by

dκ
dt = − κ + σnmκ + σnIAvA(t) + σnIBvB(t) (47)

with effective couplings

σnIA = 1
2σnIA

(1) Φ′ 1 (48)

σnIB = 1
2σnIB

(2) Φ′ 2 . (49)

The averaged gains for each population were given by equations (40), with the standard 

deviations of currents onto each population

Δ(1) = σm(1) 2κ2 + σIA
(1) 2

vA
2 + σIB

(1) 2
vB

2 + σIctxB
(1) 2

cB
2

Δ(2) = σm(2) 2κ2 + σIA
(2) 2

vA
2 + σIB

(2) 2
vB

2 + σIctxA
(2) 2

cA
2 .

(50)

Here vA(t) and vB(t) correspond to the integrated inputs uA(t) and uB(t), see Eq. (29).

As for the perceptual decision making task, the value of σmn, determines the qualitative 

shape of the dynamical landscape on which the internal variable evolves and sets the 

timescale on which it integrates inputs. Large values of the variances σIctxtB
(1)

 and σIctxtA
(2)
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allow the contextual cues to differentially vary the gain of the two populations in the two 

contexts, leading to an effective gating of the inputs integrated by the internal collective 

variable (see Supplementary Note 2.3 for more details).

Delayed-match-to-sample task: We found that the computations in the rank-two, two 

population network relied on the following conditions for the covariances in the two 

populations (Sup. Fig. S5a): (i) on one population, the two connectivity modes were 

coupled through σn(1)m(2)
(1)

, σn(2)m(1)
(1) ≠ 0, with a specific condition on their values to induce 

a limit cycle (that the difference |σn(1)m(2)
(1) − σn(2)m(1)

(1) | is large, see Supplementary Text 

4 and30;36); (ii) on the other population, the covariances were in contrast set to counter-

balance the first population, and cancel the rotational dynamics σn(1)m(2)
(2) ≃ − σn(1)m(2)

(1)
 and 

σn(2)m(1)
(2) ≃ − σn(2)m(1)

(1)
; (iii) the input-selection and output vectors for the second connectivity 

mode on the second population had a strong overlap 1
2σn(2)m(2)

(2) > 1 that led to strong positive 

feedback; (iv) the input vectors IA had a strong variance on population 2, σIA
(2) ≫ 1 while 

other input sub-vectors had small variances σIA
(1)

, σIB
(1)

,σIB
(2) ≃ 0.

For this reduced model, the dynamics of the two internal collective variables is given by:

dκ1
dt = − κ1 + σn(1)m(1)κ1 + σn(1)m(2)κ2

dκ2
dt = − κ2 + σn(2)m(1)κ1 + σn(2)m(1)κ2 + σn(2)IAvA + σn(2)IBvB,

(51)

with the effective couplings mediating inputs

σn(2)IA = 1
2σn(2)IA

(2) Φ′ 2 (52)

σn(2)IB = 1
2σn(2)IB

(2) Φ′ 2, (53)

and effective couplings governing the autonomous dynamics:

σn(1)m(1) = 1
2σn(1)m(1)

(1) Φ′ 1 (54)

σn(1)m(2) = 1
2σn(1)m(2)

(1) Φ′ 1 + 1
2σn(1)m(2)

(2) Φ′ 2 (55)

σn(2)m(1) = 1
2σn(2)m(1)

(1) Φ′ 1 + 1
2σn(2)m(1)

(2) Φ′ 2 (56)
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σn(2)m(2) = 1
2σn(2)m(2)

(1) Φ′ 1 + 1
2σn(2)m(2)

(2) Φ′ 2 . (57)

The average gains are given by Eq. (40), with standard deviations of currents onto each 

population

Δ(1) = (σm(1)
(1) )

2
κ1

2 + (σm(2)
(1) )

2
κ2

2 + (σIA
1 )

2
vA

2

Δ(2) = (σm(1)
(2) )

2
κ1

2 + (σm(2)
(2) )

2
κ2

2 .
(58)

Here vA(t) and vB(t) correspond to the integrated inputs uA(t) and uB(t), see Eq. (29).

Conditions (i) to (iv) on the covariances allow to implement the dynamical landscape 

modulation of Extended Data Figure 9f (see Sup. Fig. S5d). When stimulus A is present 

(uA = 1), the gain of population 2 is set to ⟨Φ′⟩2 ≃ 0 because of σIA
(2) ≫ 1 (see Eq. (58)), 

and the specific values of covariances for sub-vectors in population 1 induce a limit cycle 

(see Supplementary Note 2.5). In absence of inputs, or when input B was present, gains 

were approximately equal for the two populations (Sup. Fig. S5c), leading to a cancellation 

of the cross effective couplings σn(1)m(2) and σn(2)m(1), while positive feedback implemented 

through σn(2)m(2)
(2)

 shaped a dynamical landscape with two fixed-points.

Code availability

All codes used to train models and generate figures are available at https://github.com/

adrian-valente/populations_paper_code.

Data availability

Trained models are available at https://github.com/adrian-valente/populations_paper_code.

Extended Data

Extended Data Figure 1. Additional ePAIRS results.
(a) p-values given by the ePAIRS test on selectivity spaces for the full-rank networks 

displayed in Fig. 1d (two-sided ePAIRS test, 100 networks per task, n = 512 neurons for 

each network). (b) p-values given by the ePAIRS test on connectivity spaces for the low-rank 

networks displayed in Fig 1h (two-sided ePAIRS test, 100 networks per task, n = 512 
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neurons for each network). (c) ePAIRS effect sizes on the selectivity space for the same 

low-rank networks (two-sided ePAIRS test, 100 networks per task, n = 512 neurons for each 

network). (d) Corresponding ePAIRS p-values.

Extended Data Figure 2. Determination of the minimal rank for each task.
For each task and each rank R between 1 and 5, ten rank-R networks were trained with 

different random initial connectivity. For each task, a panel displays the performance of 

trained networks as function of their rank.
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Extended Data Figure 3. Analysis of trained full-rank networks.
(a)-(b) Analysis of full-rank networks trained with initial connectivity weights of variance 

1/N (100 networks for each task). (a) Performance of truncated-rank networks. Following35, 

we extract from full-rank networks the learned part of the connectivity ΔJ = J − J0 defined 

as the difference between the final connectivity J and the initial connectivity J0. We then 

truncate ΔJ to a given rank via singular value decomposition, and add it back to J0. 

For each task, a panel displays the performance of the obtained networks as function of 

the rank used for the truncation. (b) Resampling analysis of truncated networks. Starting 
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from the truncated networks in (a) we fit multivariate Gaussians to the distribution of 

their ΔJ in the corresponding connectivity spaces. We then generate new networks by 

resampling from this distribution, as done on the trained low-rank networks for Fig. 1i–l. 

For each task, a panel displays the performance of the obtained resampled network as 

function of the rank used for the truncation. (c)-(d) Same analyses as (a)-(b) for sets 

of networks trained with initial connectivity weights of variance 0.1/N (100 networks 

for each task, for DMS 49/100 networks that had an accuracy < 95% after training and 

were ignored). Networks with weaker initial connectivity are better approximated by their 

resampled low-rank connectivity. This is due to the fact that larger initial connectivities 

induce correlations between ΔJ and J0
35. The resampling destroys both this correlation 

and the population structure, leading to performance impairments even when the population 

structure is potentially irrelevant.

Extended Data Figure 4. Increasing the rank maintains the requirement for population 
structure.
For this figure we have trained low-rank networks with a rank higher than 1 on the CDM 

task, fitted a single Gaussian or a mixture of 2 Gaussians to the obtained connectivity 

space, and retrained the obtained distribution (Methods ) to obtain resampled networks with 

a performance as high as possible. Even with this additional layer of retraining of the 

fitted distributions (which is only present in the main text for the DMS task) the obtained 

single-population networks fell short of performing the CDM task with a good accuracy. 

Here, 10 draws of a single network for each combination of rank and number of populations 

are shown (line: median, box: quartiles, whiskers: range, in the limit of median ± 1.5 

interquartile range, points: outliers).
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Extended Data Figure 5. Alternative implementation of the CDM task.
A network trained with different hyperparameters offers an example of an alternative 

solution for the CDM task, using 3 effective population and a fourth one accounting 

for neurons that are not involved in the task (see Supplementary Text 3)). (a) Left: for 

each number of sub-populations, a boxplot shows the performance of 10 networks with 

connectivity resampled from a Gaussian Mixture Model (GMM) fitted to the trained 

network (line: median, box: quartiles, whiskers: range, in the limit of median ± 1.5 

interquartile range, points: outliers). Right: for the GMM with four sub-populations, size 
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of each component found by the clustering procedure. (b) Four 2d projections of the 7-

dimensional connectivity space. (c) Upper-right triangle of the empirical covariance matrices 

for each of the four populations. (d) Illustration of the mechanism used by the network 

at the level of latent dynamics. Populations 2 – 4 control one effective coupling each, 

indicated by the matching color. (e) Psychometric matrices similar to those shown in Fig. 4 

after inactivation of each sub-population. (f) Violin plots showing the gain distributions of 

neurons in each of the four sub-populations in each context.

Extended Data Figure 6. Multi-population analysis of networks performing the delayed match-
to-sample (DMS) task.
(a) Networks received a sequence of two stimuli during two stimulation periods (in light 

gray) separated by a delay. Each stimulus belonged to one out two categories (A or B), 

each represented by a different input vector. Rank-two networks were trained to produce an 

output during a response period (in light orange) with a positive value if the two stimuli 

were identical, and a negative value otherwise. Here we illustrate two trials with stimuli A-A 

and B-A respectively. (b) Psychometric response matrices. Fraction of positive responses for 

each combination of first and second stimuli, for a trained network (left) and for networks 

generated by resampling connectivity from a single population (middle) or two populations 

(right). (c) Average accuracy of a trained network and for 10 draws of resampled single-

population and two-population networks (line: median, box: quartiles, whiskers: range, in 

the limit of median ± 1.5 interquartile range, points: outliers).
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Extended Data Figure 7. Statistics of connectivity in trained networks.
Upper left corner of the empirical covariance matrix between connectivity vectors for 

networks trained on each task, after clustering neurons in two populations for tasks CDM 

and DMS. These covariance matrices are then used for resampling single-population and 

two-population networks that successfully perform each task.
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Extended Data Figure 8. Context-dependent decision-making state-space dynamics.
Here we reproduce figures akin to those presented in15 for the trained low-rank network 

used in figures 4 and 5. We generate 32 conditions corresponding to different combinations 

of context, signal A coherence and signal B coherence and then project condition-averaged 

trajectories either on the plane spanned by the recurrent connectivity vector m (which 

corresponds to the choice axis) and the input vector IA, or on the m − IB plane. Similarly 

to what was observed in15, signal A strength is encoded along the IA axis, even when it is 

irrelevant (lower left corner), and signal B strength is encoded along the IB axis, even when 

it is irrelevant (top right corner).
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Extended Data Figure 9. Low-dimensional latent dynamics in networks performing the delayed 
match-to-sample (DMS) task.
(a) Circuit diagram representing latent dynamics for a minimal network trained on the DMS 

task (Eq. 51). The network was of rank two, so that the latent dynamics were described by 

two internal variables κ1 and κ2. Input A acts as a modulator on the recurrent interactions 

between the two internal variables. (b) Dynamical landscape for the autonomous latent 

dynamics in the κ1 − κ2 plane (ie. the m(1)-m(2) plane). Colored lines depict trajectories 

corresponding to the 4 types of trials in the task (see Sup. Fig. S6 for details of trajectories). 

Background color and white lines encode the speed and direction of the dynamics in absence 

of inputs. (c) Two 2d projections of the seven-dimensional connectivity space, with colors 

indicating the two sub-populations and lines corresponding to linear regressions for each of 

them on the right panel. (d) Effective circuit diagrams in absence of inputs (left), and when 

input A (middle) or input B (right) are present (see Supplementary Note 2.4). Filled circles 

denote positive coupling, open circles negative coupling. Input A in particular induces a 

negative feedback from κ2 to κ1. (e) Distribution of neural gains for each populations 

(pop. 1: n = 3050, pop. 2: n = 1046), in the three situations described above. The gain of 

population 1 (green) is specifically modulated by input A. (f) Dynamical landscapes in the 

3 situations described above (see Methods). Filled and empty circles indicate respectively 

stable and unstable fixed points. The negative feedback induced by input A causes a limit 

cycle to appear in the latent dynamics.
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Extended Data Figure 10. Control for the strength of context cues in the MDM task.
Here the context input vectors have been multiplied by a factor five compared to the network 

analyzed in Fig. 6g. (a) Context cues are thus able to set the functioning point of some 

neurons closer to the saturating part of the transfer function, leading to the observation of 

non-linear mixed-selectivity between context and changes in sensory representation with 

context. (b) As opposed to the CDM task, this particular feature of selectivity is not 

functional as revealed by specifically inactivating neurons with a high selectivity to context 

A or B, showing a similar decrease in behavioral performance as for randomly selected 

neurons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identifying non-random population structure in selectivity, connectivity and 
computations.
(a) Recurrent neural networks (RNNs) were trained separately on five tasks. For each 

task, and each trained RNN, selectivity was first quantified by computing linear regression 

coefficients βi
var for each neuron i with respect to task-defined variables such as stimulus 

features or decision (see Methods ). Each neuron was then represented as a point in a 

selectivity space where each axis corresponds to the regression coefficient with respect 

to one variable. For each network, we then compared the resulting distribution of points 

with a random shuffle corresponding to a multivariate Gaussian with matching empirical 

covariance. (b) Illustration of the distribution of regression coefficients in selectivity space 

for two networks trained on respectively the multi-sensory (MDM) and context-dependent 
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decision-making (CDM) tasks which received identical inputs (two stimuli A and B and 

two contextual cues) but required different outputs. The full selectivity space was four 

dimensional. The plots show two-dimensional projections of the selectivity distribution 

onto the plane defined by regression coefficients with respect to stimuli A and B. Gray 

ellipses correspond to the 1 s.d. ellipse of a Gaussian distribution with matching mean 

and covariance. (c) Distribution of angles between each point and its nearest neighbor in 

the selectivity space illustrated in panel b (colored histograms), compared with that of a 

matching multivariate Gaussian (null distribution, black line). The mismatch between the 

two distributions was quantified using the ePAIRS test17;10 (two-sided, see Methods ). The 

mismatch was significant for the CDM task (p = 3 × 10−25, effect size c = 0.58 n = 

512 neurons; ***: p < 0.001), but not for the MDM task (p = 0.61, c = 0.01, n = 512). 

(d) Population structure in the selectivity space across networks and tasks: effect size of 

the ePAIRS test on the selectivity space for 100 networks trained on each of the tasks 

(see Extended Data Figure 1 for p-values). Black bars represent 95% confidence intervals 

for null distributions, centered around mean null effect size. (e) To assess for population 

structure in connectivity, we focused on low-rank networks, where connectivity is fully 

specified by vectors over neurons30. Each neuron is characterized by one parameter on 

each vector (illustrated in grayscale, entries for a specific neuron are outlined in red), and 

can be represented as a point in a connectivity space where each axis corresponds to the 

parameters on one vector. We assessed the presence of non-random population structure 

in that space using a procedure identical to the analysis of selectivity (c-d). (f) Illustration 

of the distribution of parameters in connectivity space for the two networks trained on 

respectively the MDM and CDM tasks. For these tasks, minimal trained networks were 

of rank R = 1 (Extended Data Figure 2), so that the connectivity space was of dimension 

7 (four inputs, two recurrent vectors and one readout). The plots show two-dimensional 

projections of the full connectivity distribution onto the plane defined by input parameters 

of contextual cues A and B. (g) Comparison of nearest-neighbor angle distributions in 

connectivity space for trained networks and the randomized shuffles as in c. The difference 

is significant for the CDM task (p = 2 × 10−142, c = 1.89, n = 512), but not for the 

MDM task (p = 0.72, c = 0.005, n = 512). (h) Population structure in the connectivity 

space across networks and tasks: effect size of the ePAIRS test on the connectivity space 

for 100 networks trained on each of the five studied tasks (see Extended Data Figure 1 

for p-values). (i) To identify the causal role of population structure on computations, we 

randomly generated new networks by resampling from the null distribution in connectivity 

space that preserved the mean and covariance structure but scrambled any non-random 

population structure. (j-k) In randomly resampled networks, the statistics of connectivity are 

by design identical to shuffles used for the ePAIRS test (MDM: p = 0.08, c = 0.05, n = 512; 

CDM: p = 0.68, c = −0.01, n = 512). (l) Performance of each randomly resampled network 

on its corresponding task as measured by accuracy.
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Figure 2. Reducing low-rank networks to low-dimensional latent dynamics to explain 
computations in low-rank RNNs.
(a) The connectivity parameters in a low-rank RNN (left) can be grouped in a matrix 

where each row contains the input, recurrent and output parameters (values illustrated in 

grayscale) of a given neuron (right). (b) The connectivity can therefore be represented in 

two complementary manners that together determine low-dimensional dynamics. Top-left: 

Columns of the matrix in (a) define specific directions (illustrated as arrows) in the activity 

state space, where each axis is the activity xi of neuron i. The connectivity constrains the 

trajectories of activity to lie in a low-dimensional subspace spanned by input vectors I(s) and 

recurrent vectors m(r). The activity trajectory (illustrated in blue) is parametrized along those 

directions by input variables us and internal variables κr. Bottom left: Each row of the matrix 

in (a) defines a point in the connectivity space (specific example in red), where each axis 

corresponds to entries along each connectivity vector. The full network is described by the 

distribution of the cloud of points. Here we illustrate a four-dimensional distribution by its 

pairwise two-dimensional projections. Bottom right: A Gaussian distribution in connectivity 

space is specified by its covariance matrix that describes the shape of the point cloud 

(regression lines shown in bottom left). Top right: The latent dynamics can be reduced to an 

effective circuit (Eq. 3), in which each internal variable is represented as a unit that receives 

external inputs, and interacts with itself (and other internal variables) through a set of 

effective couplings determined by the connectivity covariances illustrated in the bottom-left 

panel.

Dubreuil et al. Page 46

Nat Neurosci. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Low-dimensional latent dynamics in networks with a random population structure.
(a)-(e) Perceptual decision making task. (a) A rank-one network was trained to output 

the sign of the mean of a noisy input signal. Two example trials for a positive (red) 

and a negative (blue) input mean. (b) Two two-dimensional projections of the obtained 

four-dimensional connectivity space. Each point represents the connectivity parameters of 

one neuron. (c) Low-dimensional trajectories in the two-dimensional subspace spanned by 

vectors m and I for four trials. (d) The latent dynamics are equivalent to an effective circuit 

governed by 2 effective couplings (Eq. 3), which are determined by the overlaps σnI and 

σnm of the vector n with I and m (see vectors in panel c). The readout from the network 

is set by the overlap σmw between the vectors m and w. (e) Psychometric function showing 

the fraction of positive outputs for the trained network, and for a reduced network generated 

by controlling only three parameters corresponding to the effective couplings in f (see 

Supplementary Note 2.1). (f)-(j) Parametric working memory task. (f) A rank-two network 

was trained to compute the difference between two stimuli f1 and f2 separated by a variable 

delay. (g) Two projections of the obtained six-dimensional connectivity space. (h) Since 

the network is rank-two, the recurrent activity is parametrized by two internal variables, κ1 

and κ2 that correspond to activity along connectivity vectors m(1) and m(2). The variable 

κ1 acts as an integrator that encodes the stimuli persistently: it encodes f1 following the 

first stimulus, and f1 + f2 following the second one. The variable κ2 responds transiently 

to each stimulus, and therefore encodes f2 at the decision time. (i) The latent dynamics 

are described by an effective circuit where the two internal variables evolve independently, 

with different amounts of positive feedback (Eq. 45). (j) Psychometric response matrix for 
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the trained network, and a reduced network generated by controlling only six parameters 

corresponding to the effective couplings in i (see Supplementary Note 2.2). Each matrix 

displays the fraction of positive responses for each combination of stimuli f1 and f2.
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Figure 4. Multi-population connectivity structure captures the computational requirements for 
context-dependent tasks.
(a) Method for representing a low-rank connectivity structure in terms of multiple sub-

populations. The connectivity vectors (left) are represented as a set of points in connectivity 

space, each point corresponding to connectivity parameters of one neuron. The center panel 

shows an illustration of two-dimensional projections of the full distribution in connectivity 

space, which in this example is four dimensional. A mixture of Gaussians clustering 

algorithm assigns every neuron to a sub-population based on the full distribution in 

connectivity space. The green and purple colors denote the two identified sub-populations, 

which in this illustration have identical centers but different shapes. Each sub-population is 

therefore defined by a different set of covariances (right panel), that correspond to overlaps 

between vectors shown in green and purple colors in the left panel. (b)-(d) Application to the 

context-dependent decision making task. (b) Networks received stimulus inputs consisting 

of two noisy features along two different input vectors, together with one of two contextual 

cues in each trial. Unit-rank networks were trained to output the sign of the mean of the 

cued feature. Here we illustrate two example trials sharing the same stimulus inputs and 

opposite contextual cues (context A activated in dark red, context B in pale brown), leading 

to opposite outputs. (c) Psychometric functions and response matrices. Each psychometric 

matrix displays the fraction of positive responses for each combination of stimulus features. 

Each psychometric function represents the fraction of positive responses for the value of one 

feature, averaging over the other. The two rows show psychometric functions and matrices 

in different contexts, for a trained network (left column), and for networks generated by 

resampling connectivity from a single population (middle column) or two sub-populations 

(right column). (d) Average accuracy of a trained network and for 10 draws of resampled 
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single-population and two-population networks (line: median, box: quartiles, whiskers: 

range, in the limit of median ± 1.5 interquartile range, points: outliers).
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Figure 5. Mechanisms of computations based on a multi-population connectivity.
(a) Circuit diagram representing latent dynamics in the reduced model of context-dependent 

decision-making task (Eq. 5 and Supplementary Note 2.3). The internal variable κ is 

represented as a unit that integrates the two stimulus features uA and uB through effective 

couplings σnIA and σnIB Contextual inputs uctxA and uctxB modulate the gains of the two 

populations and therefore the effective couplings that govern which stimulus feature is 

integrated. Lines with round ends represent effective couplings, lines with straight ends 

represent gain modulation. (b) Projections of the six-dimensional connectivity space for a 

network trained on the task. Each point represents the parameters of one neuron, with the 

color shade indicating the probability that it belongs to each sub-population, as found by 

the clustering procedure (Fig. 4a). For the remaining analysis, the two sub-populations are 

defined by a hard threshold at 0.5 on this probability. Left: plane defined by components 

of the contextual-cue vectors IctxA and IctxB; right: two planes defined by components on 

the input-selection vector n and the two stimulus feature vectors IA and IB (lines show 

linear regressions for each population). (c) Effective circuits in each context (top) and 

corresponding gains of neurons in each population (bottom). For each neuron i, the gain is 

defined as the slope of ϕ(xi) during stimulation period. Violin plots show the distribution 

of gains for all neurons in each population (pop. 1: n = 2028, pop. 2: n = 2068) in context 

A (left) and B (right). In context A, the average gain of neurons in population 1 (green) 

is lower than population 2 (purple), which decreases the effective connectivity between 

input feature B and the latent variable (top left circuit). The opposite happens in context B 

(top right circuit). (d) Effective inputs to the latent variable κ in the two contexts (bottom) 

in response to the same stimulus input (top). Solid lines show inputs mediated by each 
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population (Methods Eq. (36)), the dashed line shows the total input, which changes signs 

between the two contexts, leading to opposite responses.
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Figure 6. Predictions for neural selectivity and inactivations.
(a-d) Predictions for the context-dependent decision-making task based on the minimal unit-

rank, two-populations network (Fig. 5a). (a) Context-dependent stimulus response for an 

example neuron. Top: response to an identical stimulus in two contexts (gray box: stimulus-

presentation period). The context response was defined as the change of pre-stimulus 

baseline across contexts (orange arrow). The stimulus response was defined in each context 

as the deviation from the pre-stimulus baseline (red arrows). Bottom: context-dependent 

responses of the same neuron to stimuli with increasing strength of feature A. In each 

context, we computed the regression coefficient with respect to feature strength (dashed 

lines), and the corresponding change in stimulus selectivity Δctxβstim (Methods Eq. (19)). 

(b) Interaction between context selectivity and the change in stimulus selectivity across 

neurons. Each point shows the change in stimulus selectivity versus selectivity to context 

for one neuron (see Methods Eq. (18)). Dot color corresponds to population determined 

from clustering procedure (Fig. 5). Red dot: example neuron in (a). (c) Inactivations based 

on context selectivity lead to specific performance deficits. Psychometric response matrices 

when inactivating the 256 out of 1024 neurons with highest positive context selectivity (left), 

highest negative context selectivity (middle) or randomly chosen across the whole network 

(right). (d) Summary of the effects of inactivations: average performance over incongruent 

stimuli corresponding to colored squares of the psychometric matrix in (c). Each dot 

represents an inactivation of a random subset of 256 out of 1024 neurons. Inactivated 
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neurons are chosen randomly among the neurons with either positive context selectivity (left 

column), negative context selectivity (middle column) or without constraint (right column). 

(e-g) Tests of the predictions for selectivity (left panels) and inactivations (right panels) 

on: (e) a unit-rank network consisting of three populations (Extended Data Figure 5); (f) 

a network trained without a rank constraint; (g) a network trained on the multi-sensory 

decision-making (MDM) task.
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Figure 7. Implications of multi-population structure for multi-tasking.
(a) A network performing three different tasks on the same set of stimuli consisting of two 

features uA and uB: decision-making based on uA (DM1), decision-making based on uB 

(DM2), decision-making based on integrating uA and uB (MDM). The model is obtained 

from the unit-rank network performing the CDM task based on three populations indicated 

in color. (b) Effects on the performance of individual tasks when specific populations 

are inactivated. In each case one third of the neurons in the network is inactivated, 

corresponding to one of the three populations. (c) Illustration of task specialization of 

different populations. The orange population plays the role of an integrator, and participates 

to all tasks. Green and purple populations respectively relay uA and uB. Different columns 

correspond to different tasks. Top three rows display stimulus and rule inputs. Bottom 
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three rows display single unit activities of three selected neurons (one in each population) 

in two trials of each task. (d) A network performing two different tasks on distinct sets 

of stimuli, the decision-making (DM) task on uDM, and the working-memory task on 

uWM. This network is obtained by superposing the low-rank recurrent connectivity matrices 

corresponding to the two tasks (illustrated at the bottom). (e) The two tasks rely on neural 

activity in orthogonal subspaces of the state space. Each subspace is determined by the 

input connectivity vectors of the corresponding task. (f) Illustration of multi-tasking of two 

example neurons.
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