Table 3.
Classifiers | Features | Measures | |||||
---|---|---|---|---|---|---|---|
EffNet | VGG16 | SL EffNet | SL VGG16 | Proposed | Accuracy (%) | Time (%) | |
Softmax | ✓ | 91.6 | 91.4534 | ||||
✓ | 89.4 | 94.3423 | |||||
✓ | 94.8 | 62.2322 | |||||
✓ | 93.5 | 64.5454 | |||||
✓ | 97.2 | 47.6654 | |||||
| |||||||
Naïve Bayes | ✓ | 90.1 | 85.3843 | ||||
✓ | 87.5 | 78.6434 | |||||
✓ | 92.2 | 51.5444 | |||||
✓ | 90.9 | 49.9845 | |||||
✓ | 94.6 | 41.9905 | |||||
| |||||||
MCSVM | ✓ | 90.6 | 82.5645 | ||||
✓ | 90.1 | 78.9964 | |||||
✓ | 94.2 | 59.4354 | |||||
✓ | 92.9 | 64.8634 | |||||
✓ | 96.9 | 48.6654 | |||||
| |||||||
ELM | ✓ | 93.3 | 71.5535 | ||||
✓ | 89.2 | 69.6543 | |||||
✓ | 95.8 | 52.5454 | |||||
✓ | 95.9 | 47.6543 | |||||
✓ | 98.2 | 39.6652 |