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Abstract

Objective.—Functional electrical stimulation (FES) involves artificial activation of skeletal 

muscles to reinstate motor function in paralyzed individuals. While FES applied to the upper 

limb has improved the ability of tetraplegics to perform activities of daily living, there are key 

shortcomings impeding its widespread use. One major limitation is that the range of motor 

behaviors that can be generated is restricted to a small set of simple, preprogrammed movements. 

This limitation stems from the substantial difficulty in determining the patterns of stimulation 

across many muscles required to produce more complex movements. Therefore, the objective of 

this study was to use machine learning to flexibly identify patterns of muscle stimulation needed 

to evoke a wide array of multi-joint arm movements.

Approach.—Arm kinematics and electromyographic activity from 29 muscles were recorded 

while a ‘trainer’ monkey made an extensive range of arm movements. Those data were used to 

train an artificial neural network that predicted patterns of muscle activity associated with a new 

set of movements. Those patterns were converted into trains of stimulus pulses that were delivered 

to upper limb muscles in two other temporarily paralyzed monkeys.

Results.—Machine-learning based prediction of EMG was good for within-subject predictions 

but appreciably poorer for across-subject predictions. Evoked responses matched the desired 

movements with good fidelity only in some cases. Means to mitigate errors associated with 

FES-evoked movements are discussed.

Significance.—Because the range of movements that can be produced with our approach is 

virtually unlimited, this system could greatly expand the repertoire of movements available to 

individuals with high level paralysis.
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INTRODUCTION

Current attempts to restore limb function following spinal cord injury (SCI) rests on 

four main strategies: surgical reconstruction - often involving tendon transfers from non-

paralyzed to paralyzed muscle.[1], repair the injury using a variety of neuroprotective and 

neuroregenerative agents including cell transplantation [2–6], artificially enable movement 

with powered exoskeletons [7–9], or activate paralyzed muscles, either by exciting spinal 

circuits below the level of the lesion [10–19] or by directly stimulating motor axons 

innervating muscle [20–25]. Therapeutic approaches, such as movement training [11, 26–29] 

and sustained electrical stimulation spanning (and upstream) of the injury site [30–33] have 

also been used effectively to enhance recovery in SCI, presumably by promoting axonal 

outgrowth [30] and synaptic plasticity [34]. Most of these approaches have focused on 

reinstating patterned rhythmical movements of the legs (or hindlimbs) for locomotion. The 

challenges associated with attempts to restore upper limb function are more significant, 

given the inordinate mechanical and coordinative complexity, episodic nature, and abundant 

variety of arm movements. As such, functional electrical stimulation (FES), involving 

excitation of motor axons with implanted electrodes [20–25] provides the only feasible 

means to selectively control individual muscles needed to enact a wide array of motor 

behaviours of the arm and hand.

Despite its promise, the total number of tetraplegics who have benefited from such FES 

is meager (< 300 [22]) compared to ~ 250,000 new cases of SCI-related tetraplegia each 

year worldwide [35, 36]. Paradoxically, one reason underlying such limited use of upper 

limb FES is the restricted range of motor behaviors that can be elicited with these systems. 

Indeed, a key barrier to more versatile control of FES is identifying the complex spatio-

temporal patterns of muscle stimulation needed to evoke a large repertoire of movements. 

To overcome this limitation, here we use machine learning to predict patterns of muscle 

stimulation needed to evoke a wide range of complex movements in paralyzed upper 

limbs. We show that for some cases, evoked movements matched desired trajectories with 

good accuracy. However, substantial errors were evident in others, the causes of which are 

explored.

METHODS

An overview of our approach that combined four sequential stages is depicted in Fig. 1A. In 

stage 1, we recorded limb kinematics and the associated electromyographic (EMG) signals 

from 29 upper limb muscles (Suppl table 1) using chronically implanted intramuscular 

electrodes (Fig. 1B) while a monkey made a variety of arm movements (Fig 1C). The 

recorded EMG signals (Fig. 1D) were rectified, low pass filtered, and normalized to the 

peak value detected within a recording session (Fig 1E). Kinematics included 3-dimensional 

positions, velocities, and accelerations of hand and elbow relative to the shoulder, and pitch, 

roll, and yaw angular orientations, velocities, and accelerations of the hand. These signals 

were then used as inputs to train a machine-learning algorithm (an artificial neural network, 

ANN, stage 1, Fig. 1A) that characterized the relationship between kinematics and muscle 

activity. In stage 2 (Fig. 1A), the trained ANN predicted muscle activity associated with a 

new set of desired movements not included in the training set. In Stage 3, predicted patterns 
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of muscle activity were transformed into stimulus pulse trains. In Stage 4, the stimulus 

pulses were delivered to muscles through the implanted electrodes to evoke upper limb 

movements in two other implanted ‘test’ monkeys that were temporarily paralyzed (i.e., 

under general anesthesia). We used different ‘trainer’ and ‘test’ monkeys because paralyzed 

humans would not be able to provide the signals needed to train such an ANN. The details of 

these stages are given below.

Surgical procedures

All procedures complied with guidelines for the use of non-human primates in research and 

was approved by the institutional animal care committee. Under isoflurane anesthesia and 

sterile conditions, three adult male monkeys (Macaca mulatta, 10 – 13.5 kg, ages 7 – 11 

yrs) had 29 muscles chronically implanted with intramuscular electrodes. Because we were 

interested in movement of the hand in 3D space and its orientation (pitch, roll, yaw), any 

of the joints of the upper limb from the scapula to the wrist could influence that motion. 

Therefore, we attempted to implant all the muscles that contribute significant torque at any 

of these joints. The extrinsic finger muscles, while mainly causing motion of the digits 

(not tracked in this study), also contribute significant torque at the wrist joint. As such, 

we also implanted those muscles. A total of 58 electrode leads (two for each muscle to 

enable bipolar EMG recording), consisting of Teflon coated, multi-stranded stainless-steel 

wires (Cooner AS633, outside diameter 0.33 mm), were soldered to a 64-channel electrode 

interface board (Neuralynx EIB-36–16TT). The interface board was mounted within a 

protective cylindrical encasement and the entire implant was sterilized prior to surgery. 

In monkey E (trainer monkey), the encasement was attached to the exposed skull using 

dental acrylic anchored to bone screws. This encasement ultimately failed due to untreatable 

Methicillin-resistant Staphylococcus aureus infection possibly secondary to cytotoxic effects 

of the acrylic. In the other two monkeys (A and M, test monkeys), we used acrylic-less 

implants [37], in which titanium baseplates (Fig. 1B, Gray Matter, Inc.) with undersurfaces 

fabricated to conform to the contours of the animals’ crania were mounted to the skulls 

using titanium screws. The baseplates were then allowed 6 – 8 weeks to osseointegrate 

before electrode implantation surgery. The connector encasement was then secured with 

screws to a footprint in the baseplate during the implant surgery.

Leads originating from the encasement were routed posteriorly under the skin on the back of 

the skull to an incision between the scapulae. A ground/return electrode (1 cm diameter) was 

tucked into a subcutaneous pocket at this incision site (Fig. 1B). Electrode leads (identified 

by a four-band color code painted on the distal ends) were tunneled under the skin to 

incisions over target muscles. A low impedance, insulated, tungsten electrode was used to 

deliver brief trains of 40-Hz intramuscular stimuli (biphasic, 250 μs/phase, 1 – 3 mA) to 

evoke muscle contractions and identify optimal locations for implanting an electrode. The 

exteriorized lead was then cut to length, a small amount of insulation was removed from 

the end of the lead with a thermal wire stripper, and a gold anchor (~ 1 × 6 mm) was 

crimped to the lead. The anchor consisted of a crimp terminal pin (3922 Mill-Max) with the 

pin removed. Anchors were used to increase shear friction and surface area to help prevent 

electrode migration. The anchor was then fed into the opening of a custom-built insertion 

device that consisted of a 14-guage needle with a narrow slot cut along on the length through 
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which the lead passed. This device was then inserted alongside the tungsten electrode that 

served as a guide before the tungsten electrode was removed. Stimuli were then delivered 

through the insertion device (fully insulated except for the tip of the needle) using the same 

parameters as used with the tungsten electrode to verify placement before deploying the 

anchor with a plunger pushed through the needle. The insertion device was removed, and 

stimuli were then delivered through the lead to the anchor to verify robust contraction in 

the target muscle. This process was repeated for a second electrode inserted into the target 

muscle ~ 1 cm away from the other electrode, and then repeated for every muscle. After 

closing incisions, and before recovering the animal from surgery, the implanted arm was 

immobilized. Immobilization was maintained for 7 – 14 days to allow fibrous tissue to 

encapsulate electrodes, helping to stabilize their placements [38].

Behavior

Prior to surgery, monkeys were trained to reach to food morsels with their right arm while 

seated in an open primate chair. The left arm was restrained with Velcro straps. Monkeys 

initiated each reach with their hand resting on a switch-instrumented start box. When the 

hand was on the box, a tone played, indicating to the monkey that a new trial could be 

initiated. After 1 – 2 s with the hand on the start box, the experimenter presented a small 

food morsel to the monkey. The monkey grasped the morsel, brought it to his mouth, 

and returned his hand to the start position. On each trial, food morsels were positioned 

at different locations within the reach space of the monkey. To increase the types of arm 

movements, on most trials the experimenter moved the food morsel through a complex 

trajectory (e.g., see Fig. 1C). Monkeys invariably tracked the position of the experimenter’s 

hand with their hand and grasped the morsel only when the motion of the experimenter’s 

hand was halted. This tracking occurred without contact between the monkey’s hand and 

the experimenter’s hand. During the grasping phase, touch between the monkey and the 

experimenter’s hand was avoided (as much as possible) to minimize unaccounted contact 

forces. Monkeys readily performed this task for 15 – 30 minutes until sated. These 

procedures were repeated over several sessions during which EMG and kinematic data were 

recorded. Data sampled in these sessions were used to train the ANN.

Kinematics and EMG

Electromagnetic sensors (Polhemus) were used to record (120 Hz/channel) six degrees-of-

freedom (x, y, z positions, and roll, pitch, and yaw orientations) motion of the right hand 

and elbow. Small sensors (0.7 cm × 0.5 cm × 0.5 cm) were attached with elastic wrap to the 

back of the hand and lateral elbow, and with tape to the shoulder. The shoulder was used 

to represent the origin of a reference frame for measuring hand and elbow positions. An 

additional sensor was placed on the opposite shoulder to account for trunk rotations.

To record EMG activity, lightweight cables were attached to the connectors within the skull-

mounted encasement. These cables were routed to a set of four eight-channel differential 

amplifiers (Neuralynx). EMG signals were amplified at a gain of 1000, band-pass filtered 

from 100 – 475 Hz, and digitally sampled at ~3000 Hz per channel using a computerized 

data acquisition system (Spike2). A TTL pulse generated by the Polhemus system was 

recorded by the data acquisition system to enable synchronization of kinematic with EMG 
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data. In addition, the switch signal from the start box was recorded and used to indicate 

when the limb was in the start configuration.

Signal processing

In off-line processing (MATLAB, Mathworks), EMG signals were full-wave rectified, low-

pass filtered (3 Hz), and down-sampled to 120 Hz/signal to match kinematic data. EMG 

amplitude was normalized to the maximum value recorded during a session. We refer such 

processed EMG signals as ‘activation’. Three-dimensional coordinates of the hand and 

elbow were lowpass filtered (6 Hz), calculated with respect to the right shoulder location, 

and normalized to arm length. Hand orientation data were converted from yaw-pitch-roll 

angular representations to quaternions to remove rotational discontinuities. Velocities and 

accelerations were obtained through differentiation (and double differentiation) of position 

and orientation data using finite difference methods.

Artificial neural network (ANN)

We used ANNs to predict activation patterns from kinematics [39,40]. The structure of the 

ANN used here was a multilayer perceptron involving a feed-forward network created in 

the Neural Networks Toolbox of MATLAB. Inputs to the network were kinematic signals 

(3-dimensional positions, velocities, and accelerations of hand and elbow relative to the 

shoulder, and pitch, roll, and yaw angular orientations, velocities, and accelerations of the 

hand) and outputs were the activation signals of the 29 muscles. The network was fully 

connected such that in every layer, all neural units received the outputs from units involved 

in the previous layer. The network possessed one hidden layer with 50 units. A tan-sigmoid 

was used as the activation function for each neural unit. In the output layer, all units were 

fully connected to all outputs using a linear activation function. Network initialization was 

done with random weights and biases. Training used resilient backpropagation with gradient 

descent, momentum weight, and bias learning functions. Mean squared error was used as the 

performance function. Training data were obtained from one session for each monkey and 

included 8 minutes of concatenated complex reaches to food morsels (see Behavior above). 

Data obtained while monkeys were at rest in the start position were excluded. As shown 

in Suppl. Fig. 1, increasing the amount of training data beyond ~ 6 minutes yielded little 

improvement in predictions.

Data Analysis - Prediction of Activation from Kinematics

Nine trials from each of the two test monkeys (A and M) were selected to test the ability 

of the trained ANNs to predict activation patterns from kinematics. These test movements 

were selected from many trials to be generally representative of the complexity, duration, 

and reach space explored across trials. These trials were not used in the training of the 

ANNs. The kinematics associated with these trials served as inputs to two ANN: that trained 

on data from the same monkey (within) and that trained on data obtained from a different 

monkey (monkey E) (across). Predictions of activation patterns for all 29 muscles were 

compared to the actual activation patterns recorded during the test movements using two 

measures: coefficient of variation (R2) and the root mean squared error (RMSE –percentage 

of peak activation). Accurate predictions have R2 value approaching one and RMSE values 

approaching zero.
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Conversion of Activation to Stimulation

In broad terms, to use activation signals as templates for FES, they need to be converted 

into trains of stimulus pulses that replicate (to a reasonable degree) the active states 

of the muscles. The magnitude of isometric force provides a good indicator of muscle 

active state [41]. Therefore, the relationship between stimulation intensity and evoked 

isometric force was first determined for each electrode. As detailed below, once those 

were determined, they were readily transformed into relations between stimulus intensity 

and activation (normalized EMG) because activation varies as a near linear function of 

isometric force for many muscles [42–44]. Time-varying activation signals associated with 

desired movements were then converted into pulse trains with pulse amplitudes modulated 

based on the identified relations between stimulus intensity and activation. This approach to 

convert activation signals into stimulus pulse trains has previously been shown to accurately 

reproduced complex patterns of torque and displacement for a simple joint system [45].

Predicted activation signals (based on training data obtained both from the same and 

different monkey) and the actual activation signals for the 9 test trials were transformed 

into amplitude modulated trains of 40 Hz stimulus pulses (biphasic, cathodic phase leading, 

250 μs/phase). Forty Hz stimuli were used because force-frequency curves obtained in the 

monkey indicated that this is the lowest frequency that produces near maximal force with 

minimal force fluctuations [46]. The somewhat wide duration of our pulses (250 μs/phase) 

was used because our stimulator had an upper current limit of 32 mA. Wider pulses enabled 

larger pulse areas (i.e., greater charge) to be delivered to ensure maximum forces could be 

evoked in the target muscles.

The relation between stimulus intensity and evoked isometric force was obtained using 

a previously described approach [46]. Monkeys were sedated in their home cage with 

Ketamine HCL (10–15 mg kg −1 IM). Atropine (0.04 mg kg −1 IM) was given to reduce 

hyper-salivation common with Ketamine sedation. Carprofen (2.2 mg kg −1 SQ) was also 

given to reduce inflammation associated with endotracheal intubation. An intravenous 

catheter was placed in the saphenous or cephalic vein to deliver lactated Ringers (5–

10 ml/kg/h) to maintain hydration. Anesthesia was induced with isoflurane via mask 

insufflation. Following induction, an endotracheal tube was inserted to maintain airway 

patency and deliver anesthesia (1–2% isoflurane in 100% oxygen, ~1 l min−1). An 

esophageal thermometer measured core temperature and was maintained at ~36.7 °C via 

a forced warm air blanket, bubble wrap, and blankets placed over the torso. Heart rate, 

respiratory rate, electrocardiogram, SpO2, end-tidal CO2, and non-invasive blood pressure 

were monitored throughout the experiment.

Monkeys were placed into a modified infant car seat in a seated position. A neonatal cervical 

collar was used to maintain the head in an upright position. The cervical collar was secured 

to the car seat with cable ties. Straps situated midway between the neck and shoulder and 

across the torso secured the animal to the chair. An isometric transducer (JR3) was fixed to 

the wrist/hand, forearm, and upper arm to record the 3-dimensional components of evoked 

isometric forces associated with muscles acting on each of those segments. Limb segments 

proximal to the tested segments were immobilized with Velcro straps.
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Stimuli were delivered through the skull-mounted connector to each electrode separately 

using a programmable multi-channel stimulator (STG4008, MultiChannel Systems). Stimuli 

were single 500 μs biphasic rectangular pulses delivered at 1 second intervals, from 0.2 

mA to 2.0 mA in 0.2 mA steps, then from 3 mA to 32 mA in 1 mA steps. We used small 

increments of current at the low end of stimulus intensities to ensure that we captured, with 

good resolution, the minimum current needed to just evoke a contractile response. From our 

previous work, such thresholds typically occur between 0.2 and 2.0 mA. We used single 

stimuli and evoked twitches rather than responses to tetanic stimulation to reduce the time 

monkeys were under anesthesia and minimize the possibility of fatigue. Previous work has 

shown that the normalized relation between stimulus intensity and force is practically the 

same for twitches and tetanic responses [47]. For scapular, shoulder, and elbow muscles, the 

return was the subcutaneous disk electrode situated between the scapulae, while for wrist 

and digit muscles, the other electrode situated in the same muscle acted as the return.

In postprocessing (using MATLAB), the force signals were bandpass filtered (0.05 – 20 Hz). 

The signal from a breathing sensor, worn during the experiments, was used to trigger and 

average artifacts in the force signals recorded during periods without stimulation associated 

with respiration. This template was then subtracted from the force signals, aligned to each 

breath cycle during stimulation, to help remove this artifact. Resultant twitch forces were 

visually examined and the minimum current that elicited a just noticeable response was 

identified. To identify the maximum current, the lowest stimulus intensity needed to achieve 

~95% of the maximum resultant force and which did not cause a clear change in force 

direction (see Results) was used as the upper limit for stimulation. A logistic curve was 

fit to the peak resultant forces between the minimum and maximum currents. Because the 

relation between activation and isometric force is practically linear for most muscles [42–

44], we substituted activation for force in these logistic curves. For muscles that used the 

subcutaneous disk electrode as the return electrode for stimulation (i.e., scapular, shoulder, 

elbow), we selected the one electrode of the two whose data best fit the logistic curve 

and that exhibited a reasonably wide range of stimulus intensities over which force was 

modulated. The inverse of the logistic curve identified for the selected electrode (or for the 

bipolar pair in forearm muscles) was then used to convert activation at each time sample 

into the associated amplitude of biphasic current pulses running at 40 Hz. Stimulus pulses 

associated with actual, within-predicted, and across-predicted activation patterns for the 9 

test movements were stored in computer memory for later playout.

Electrical stimulation to evoke movements

As described above (Conversion of Activation to Stimulation), test monkeys were sedated 

and secured in an infant car seat for experiments to evoke movements in the paralyzed 

upper limb. The unrestrained implanted arm was instrumented with Polhemus movement 

sensors, and the hand was placed in a position like the start position for voluntary 

reaching. A custom MATLAB script controlled the playout of stimulus patterns associated 

with predicted and actual activations of 29 muscles using four, 8-channel programmable 

stimulators (STG4008, MultiChannel Systems). To help minimize fatigue and enhance the 

strength of three shoulder muscles (anterior, middle, posterior deltoids) crucial for the types 

of movements involved, we used two independent sources of stimulation, one arising from 
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each of the two electrodes implanted in those muscles, as has been done previously [46,48]. 

Prior to delivery of stimuli associated with the test movements, brief trains of stimuli were 

delivered separately to each muscle to verify evoked responses in the target muscles. In one 

monkey, one of the two implanted anterior deltoid electrodes produced only weak responses 

to strong stimulation. Therefore, in each stimulation session in this monkey, we inserted a 

percutaneous, temporary, hook-wire electrode into anterior deltoid to serve as the second 

source of stimulation.

In each of five sessions, 27 stimulus patterns (9 test movements × 3 sources of activation 

signals [actual, within-, across-predicted]) were delivered to the paralyzed upper limb and 

the evoked movements recorded. About one minute of rest was provided between trials. 

The order of stimulus patterns was varied across sessions. At least one week separated 

consecutive sessions for each monkey and these experiments were initiated 18 – 22 weeks 

following the initial implant surgeries in the two monkeys. RMSE and R2 values were 

calculated for the x, y, and z positions of the hand for each evoked movement relative to the 

desired trajectory. In one session for each of the two test monkeys, after completing the set 

of 27 stimulation trials, one pattern was replayed 10 times with ~ 1 minute between trials 

to evaluate the reliability of stimulation. In addition, in one other session for each of the 

test monkeys, stimulus patterns based on actual activation signals were shuffled such that 

stimuli were delivered to randomly selected muscles rather than to the target muscles. This 

was repeated nine times, once for each test movement.

RESULTS

The ability of the ANN to predict muscle activity was evaluated for a set of desired 

movements recorded from the two test monkeys. Nine representative movements were 

selected for each test monkey (Fig. 2A) from a large set of movements recorded in both 

monkeys. Each test movement started and ended with the hand resting on an instrumented 

start box. Fig. 2B shows examples traces of actual and predicted normalized EMG signals 

(‘activation’) for four muscles during the nine movements in one monkey. Activation signals 

associated with each movement (labeled 1 – 9 in Fig. 2B) are concatenated for illustration 

purposes. Predictions based on ANNs trained on data collected from the same subject 

(within – green trace) and from the trainer monkey (across – blue trace) are compared to the 

actual activation signals (red trace).

For these proximal muscles (Fig. 2B), within predictions were excellent, having large 

coefficient of determination (R2) values (range 0.78 – 0.92) and small root mean squared 

errors (RMSE, range 2.9 – 4.8% of peak activation). In itself, such accuracy is remarkable, 

given the complexity of the movements and muscle activity patterns. Across predictions 

(blue traces, Fig. 2B) for these muscles were not as accurate but were still quite good (R2 

range 0.29 – 0.85, RMSE range 5.6 – 9.2%). When averaged across both monkeys and all 

movements (Figs. 2C, D) –within predictions were significantly better than across, like what 

has been reported previously for human subjects [39,40,49,50]. In addition, correlations 

between actual and predicted activations (Fig. 2C) were significantly greater for proximal 

muscle groups (those mainly acting on the scapula, shoulder, and elbow) than for distal 

muscles (those primarily operating at the wrist and digits). This likely reflects the more 
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direct involvement of proximal muscles in producing the limb movements recorded in these 

experiments. Interestingly, the RMSE was greater for scapular than for other muscle groups 

(Fig. 2D). This seems related to the higher overall activity levels for scapular muscles than 

other muscles during the tested movements (Suppl. Fig. 2). In terms of kinematic parameters 

used to train the ANN, only a modest number (primarily those related to hand position and 

velocity) were needed to obtain the best predictions (Suppl. Fig. 3).

To gain a better understanding of the relatively poor performance of the across-subject 

predictions of activation, we simply compared actual activation patterns across three 

monkeys during the same reaching task. This task involved repeated reaches to the same 

target location where the monkey grasped a small food morsel, transported the morsel to 

the mouth, and then returned the hand to the start box. The target location was positioned 

directly in front of the monkey at roughly eye level. Our assumption was that the patterns 

of muscle activity would be, for all practical purposes, the same for the three monkeys 

when performing this task. Fig. 3 shows mean activation traces (± SD) for 16 example 

muscles across the three monkeys (different colors) for this task. Panels are arranged with 

most distal muscles in the upper left and progressing to the most proximal muscles in 

the lower right of Fig. 3. Despite some clear similarities in the patterns across animals, 

there were also substantial differences. Such differences in EMG for a given task with 

nearly identical kinematics has been reported previously both within [51] and across [52–55] 

human subjects. Consequently, the poorer prediction accuracy across subjects (Fig. 2C,D) 

was likely due (in part) to the somewhat faulty assumption that the same movement will be 

associated with the same patterns of muscle activities in different subjects.

Nevertheless, we converted both the within- and across- predicted, and actual muscle 

activations associated with the test movements into stimulus pulse trains to be delivered 

to the implanted muscles in anesthetized test monkeys. For the present application, we used 

amplitude-modulated, biphasic current pulses running at 40 pulses/s. For each of the 58 

implanted electrodes (2 in each muscle), we first needed to identify the range of stimulus 

intensities that activated the target muscle without exciting neighboring muscles. To do this, 

monkeys were sedated and secured in a modified infant car seat (Fig. 4A). A transducer 

was fixed to the wrist/hand (Fig. 4B), forearm, or upper arm to record the 3-dimensional 

components of evoked isometric forces associated with muscles acting on each of those 

segments.

Single pulses were then delivered (1 pulse/s) in an incrementing fashion through each 

electrode and the evoked twitches recorded. As examples, Figs. 4C and 4E show the time-

courses of the resultant twitch forces at each stimulus intensity for teres major and flexor 

carpi radialis. Figs. 4D and 4F show the force vectors associated with the peak resultant 

force at each intensity. For teres major (Fig. 4C), evoked responses showed two phases, that 

leading up to an initial plateau, and a subsequent rise to a second plateau. Such intermediate 

plateaus could be due to activation of distant nerve branches within the same muscle [48, 

56] or to activation of neighboring muscles. To distinguish these possibilities, we examined 

the direction of the resultant force vectors. As shown in Fig. 4D, the direction of the 

resultant force began to change for stimulus intensities above 17 mA, which we attributed 

to excitation of neighboring muscles. We used the largest stimulus intensity prior to such 
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changes in force direction as the upper limit of stimulus intensity for each muscle. Lower 

limits were discerned as the minimal current that just evoked a noticeable response.

The muscles in the forearm are relatively small and their stimulation can readily cause 

nearby muscles to be activated. Furthermore, detecting changes in force direction can 

be challenging, particularly for neighboring synergists. To address this, we used bipolar 

stimulation in forearm muscles (current passing between active and return electrodes both 

within the same muscle) rather than monopolar stimulation (current passing between active 

electrode in muscle and the large return electrode between the scapulae) used for larger, 

more proximal muscles. This seemed to be an effective way to restrict current spread and 

minimize activation of neighboring muscles. Figs. 4E, F show an example of such bipolar 

stimulation of a forearm muscle wherein little change in force direction occurred up through 

the maximum current delivered. In these cases, we identified the lowest intensity needed to 

achieve ~95% of the maximum force as the upper limit for stimulation (bold line, Fig. 4E).

For each electrode, the peak resultant force was fit as a logistic function of stimulus 

intensity between the minimum and maximum current levels. Knowing that the relation 

between EMG activity and isometric force is roughly linear, we substituted normalized 

EMG (activation) for force in the logistic stimulus intensity curves [45]. Then for each of 

the 9 test movements, actual and predicted (within and across) activation signals for all 

muscles were transformed offline into 40 Hz trains of stimulus pulses with current amplitude 

modulated as an inverse logistic function of activation.

Then to test the degree to which the 9 test movements (different movements for the two 

monkeys) could be elicited artificially, both test monkeys were sedated in five sessions each 

and secured to infant car seat. Their implanted arm was unrestrained, instrumented with 

movement sensors, and positioned similar to the start position during awake reaching. The 

intramuscular electrodes were connected to a bank of programmable stimulators holding 

the stimulus pulse patterns for each test movement associated with actual, within-predicted, 

and across-predicted activation signals. Then in each session, each stimulus pattern (9 

movements × 3 sources of activation) was delivered to the muscles and the resulting 

movements recorded. The order of stimulus patterns was varied across sessions.

A video depicting a test movement and the associated evoked movement is shown in Fig. 

5. The evoked movement was smooth, complex (including a lateral reach, followed by 

transport of the hand near the mouth, and a return to start position), and generally captures 

the profile of the desired movement. Fig. 6A shows the set up for these experiments and 

Figs 6B, C show example trajectories of a desired and evoked trajectories for a different 

test movement. The time varying x, y, z positions of the hand (relative to the shoulder) for 

this example are depicted in Fig. 6D. For this case, while the vertical (z) dimension was 

reasonably well re-produced, an initial lateral (positive y) displacement of the hand during 

electrical stimulation led to clear differences between desired and evoked trajectories in the 

first half of the movement. Likewise, a posteriorly directed (decreasing x direction) hand 

motion during stimulation in the second half of the trial also led to notable error. As this 

example highlights, it could be that even modest imbalances in muscle forces applied to the 

unloaded limb may lead to significant displacement errors.

Hasse et al. Page 10

J Neural Eng. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When averaged across both test monkeys, all test movements, and x, y, z directions, the 

average R2 values between evoked and desired trajectories were all > 0.3 (Fig. 6E). These 

were all significantly greater than that associated with movements evoked by random 

shuffling of the stimulus patterns such that each muscle received a stimulus pattern 

designated for a different muscle. Likewise, the RMSE was greater for the shuffled trials 

than for the other trials (reaching significance, however, only for the within and across 

conditions). Such shuffling provides a reasonably stringent comparison as the underlying 

temporal patterns were maintained and there were significant correlations in activity patterns 

across muscles. Surprisingly, there were no significant differences in the accuracy of 

evoked movements across the three main sources of activation (actual, within predicted, 

across predicted). Therefore, despite substantial differences in the quality of the activation 

predictions (Fig. 2), evoked movements based on these predictions were no worse than that 

using the actual activation signals. This implies that a dominant source of error was that 

related to the fidelity with which delivered stimulus pulses replicate the targeted active states 

within muscles.

Some insight into the nature of those errors can be obtained by examining trajectories 

evoked by repeated delivery of the same stimulus pattern. Fig. 7A shows hand trajectories 

elicited upon 10 repeated trials in one session in one monkey. In this case, the evoked 

movements were consistent across trials. Despite this reliability, < 50% of the variability 

in the desired movement was accounted for in the evoked movement (R2 = 0.45 ± 0.02, 

mean ± SD). This implies that there existed systematic errors in the conversion of activation 

signals into desired muscle contraction with electrical stimulation. There can be several 

sources of such errors. For example, the relation between stimulus intensity and evoked 

force was obtained at one limb configuration only. However, as joint angles change during 

movement, the effectiveness of stimulation can vary due to changes in the distance between 

the electrode and motor nerve branches within a muscle [57]. Also, maximum stimulus 

intensity, identified as that which evoked maximal force prior to activation of other muscles 

(Fig. 4), was mapped to the peak EMG detected during a recording session. Such peak EMG 

values, however, may not actually reflect the maximal activation of the muscle, as implied in 

our mapping.

As shown in Fig. 7B, we also encountered less reliable responses to repeated stimulation 

within a session. In this case (obtained in the other monkey), there was a progressive 

reduction in the extent of movement with repeated trails, likely due to mounting muscle 

fatigue. A key muscle involved in these upper limb movements is the anterior deltoid, which 

supports the arm’s weight against gravity. To enhance the magnitude of evoked forces and 

to help minimize fatigue, we used two electrodes in this muscle as independent stimulus 

sources [46,48]. Perhaps due to non-optimal electrode placements, stimulation may not have 

been effective in enlisting the full complement of muscle fibers in anterior deltoid (and other 

muscles). In such a case, muscle loads are carried by a smaller fraction of muscle fibers than 

would normally occur, increasing the susceptibility to fatigue.

Variability in evoked responses across sessions to the same stimulation pattern could also be 

substantial (Fig. 7C). It might be that small differences in initial conditions (such variations 

in body position or starting configuration of the limb) contributed to such variability. Indeed, 
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remounting an animal in a test apparatus within a session has previously been shown to 

cause significant changes in isometric forces in response to nerve cuff stimulation [58]. It is 

also possible that changes over time in electrode position and degree of tissue encapsulation 

may have contributed to across session variability. However, our experiments involving 

evoked movements occurred at least 18 weeks following implant surgery, well past the ~8 

weeks needed for stimulating electrodes to stabilize physically and electrically [58].

Finally, it is important to point out that monkeys underwent repeated sessions of general 

anesthesia to induce upper limb paralysis in these experiments. Previously we showed in 

two other monkeys that underwent 13 and 15 sessions of such general anesthesia that no 

adverse events occurred in any of the sessions [46]. Evoked maximum isometric forces of 

arm muscles in that study were similar across sessions. Those animals, as well as those 

in this study, recovered within ~ 45 min following cessation of anesthesia, exhibiting fully 

coordinated movements, eating and drinking. The animals remained healthy throughout the 

entire testing period and showed no long-term effects of repeated anesthesia. As such, this 

method can reasonably be used to repeatedly and safely evaluate aspects of FES delivered 

with percutaneous or chronically implanted electrodes in macaque monkeys.

DISCUSSION

Here we have shown that machine learning can be used to predict EMG signals associated 

with complex upper limb movements with reasonable fidelity, particularly for proximal 

muscles. When using such predicted (or actual) activation signals as stimulation templates, 

evoked movements matched desired trajectories well in some cases. As a proof a principle, 

these results demonstrate that such an approach could provide a flexible means to stimulate 

large numbers of muscles needed to produce a wide range of upper limb movements in 

paralyzed individuals.

Oftentimes, however, the evoked movements only moderately matched desired movements. 

Additional developments, therefore, are needed to reduce errors before such an approach 

could be implemented in paralyzed human patients. Systematic errors and those leading to 

trial-by-trial and across-session errors could be addressed in different ways. For systematic 

errors, one promising approach might be to use the evoked movements (rather than those 

produced during voluntary movements) and the associated stimulation patterns (rather than 

EMG signals) to train machine learning algorithms [59]. In this way, the algorithms would 

directly learn the relation between stimulation and movement, effectively bypassing errors 

associated with stage 3 shown in Fig. 1A. Furthermore, this approach would be tailored to 

the idiosyncrasies of electrode placements and the particular deficits of each SCI individual 

(such as those associated with muscle atrophy, joint stiffness, etc.). Nevertheless, initial 

stimulation patterns based on actual EMG patterns recorded in healthy subjects would 

provide a more efficient means to obtain the needed training data than using arbitrary 

stimulation for this approach. This is because it would use activity patterns already identified 

by the CNS as natural solutions as to how multiple muscles are activated in the elaboration 

of complex movements.
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For trial-by-trial and session-by-session errors, such as those due to fatigue, unexpected 

perturbations, and unaccounted body/limb position changes, it seems crucial to combine 

on-line feedback control [12,60,61] with the open loop control system used here. A 

significant challenge for feedback control in the present context, however, is enacting real-

time adjustments over large numbers of muscles based on sensed discrepancies between 

actual and desired trajectories.

It is also important to recognize that predicting muscle activity patterns associated with 

free arm movements, as we did here, represents only one general type of motor behavior 

that tetraplegics would hope to have re-instated. Indeed, the major motor deficit in most 

tetraplegics relates to inadequate control of the hand and fingers. Restoration of complex 

behaviors to the hand and fingers with FES is a significant challenge because of the many 

small muscles and movement degrees of freedom. Nevertheless, we believe that the general 

approach taken here could provide a framework for that application. Also, the practical 

utility of a system for controlling FES necessitates that it predicts patterns of muscle 

stimulation needed for manipulation and transporting objects in the environment. Previously, 

we partly addressed this issue and included grip force signals along with limb kinematics to 

predict muscle activation when human subjects moved loads of different masses held in the 

hand through complex trajectories [40]. By including grip force (as a proxy for object load) 

EMG prediction was equally as good for tasks involving interactions with external loads as 

for unloaded movements.

In addition, it is important to consider how a paralyzed individual would supply the desired 

movement trajectory as the input to a trained FES algorithm. The most notable approach 

would be to identify intended movement trajectories from neural recordings obtained 

through electrodes implanted in the brain [62–70]. Alternatively, various non-invasive 

approaches are being developed that enable individuals with high-level paralysis to convey 

movement intentions to robotic arms [e.g., 71–74]. Ultimately, such signals representing 

intended motion could be transformed into the appropriate patterns of muscle stimulation 

using the approach described here to produce diverse movements in a paralyzed limb rather 

than in a robotic device.

However, a feasible alternative to the approach described here might be to use synergies 

to reduce the dimensionality of the FES control problem. In this way, users would 

directly control muscle stimulation via a relatively small set of muscle synergies [75,76] 

or kinematic synergies [77] to enact a wide array of movements [78,79]. Furthermore, 

adopting a synergy-based approach might aid in identifying optimal interactions among 

muscles [79]. In practice, however, the synergy approach might nevertheless be challenging 

for a user to control. Most investigations indicate a minimum of three (and typically more) 

dominant synergies are needed to capture a significant proportion of the variance in EMG 

[75, 76, 78, 79] or kinematic [77, 80] signals recorded during a variety of motor tasks. As 

such, this would require users to simultaneously control at least three separate channels (for 

example, via myoelectric signals from retained muscles, if available), each modulating a 

different synergy to command FES to produce movements. But simultaneous control over 

even two such command signals can represent a substantial cognitive load. Users could 

partially overcome this cognitive challenge by controlling one synergy at a time [78, 81] – 
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but this could lead to jerky, inefficient, and robot-like motions. Furthermore, muscle [78, 82] 

and kinematic [83] synergies are surprisingly individual and may not be readily transferable 

from an able-bodied subject (from whom the synergies would need to be determined) to a 

paralyzed individual – a problem like what we encountered here (Fig. 3), wherein patterns 

of muscle activities could be markedly different across subjects for ostensibly the same 

movement.

The advantage of the approach described here is that users would need only to supply 

information related to the desired trajectory of motion. That information would then be 

converted by a trained algorithm into the patterns of muscle activity needed to generate the 

trajectory. This would seem to be a more intuitive approach than having to simultaneously 

control different muscle synergies. Indeed, it is well established that populations of neurons 

in the primate motor cortex appear to encode desired movement trajectories [e.g., 84–86] 

that can be used effectively to control robotic arms via brain-machine interfaces [e.g., 

62,64]. If coupled to an FES system like the one detailed here, such an integrated approach 

might ultimately reinstate a wide range of voluntary arm movements, accruing health 

benefits associated with increased muscular activity, and increasing independence and well-

being in paralyzed individuals.
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Fig. 1. 
(A) Steps involved in the approach. Stage 1: EMG and kinematics from voluntary 

movements are used to train an ANN. Stage 2: the trained ANN is used to predict EMG 

signals associated with a new set of desired movements. Stage 3: predicted EMG signals are 

converted into trains of stimulus pulses. Stage 4: stimulus pulses are delivered to muscles 

in temporarily paralyzed monkeys to evoke movements. (B) Radiograph showing titanium 

plate on skull to which electrode-connector encasement was mounted. Electrode bundle 

emerged posteriorly from encasement and was routed to a site between the scapulae. From 
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there, electrodes (2 electrodes/muscle) were tunneled to target muscles where gold anchors 

were attached and inserted into target muscles. Disk over spinous processes is an implanted 

ground/return electrode. (C) small segment (~ 30 s) of hand trajectory (measured relative to 

shoulder location, sampling rate 120 Hz) used for training artificial neural network (ANN). 

(D) Raw EMG signals recorded during the movement shown in c from 29 muscles that 

act primarily on the digits of the hand, wrist, elbow, shoulder, and scapula. Acronyms of 

muscles defined in Supplement Table 1. (E) Rectified, lowpass filtered, and normalized (to 

peak EMG recorded in a session) representations of the signals shown in (D). These signals 

were used in the training of the ANN. All traces shown on the same normalized scale.
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Fig. 2. 
(A) Nine test movements for one monkey used to evaluate capability of machine learning 

to predict patterns of muscle activity. Hand position relative to shoulder position (diamond) 

was sampled at 120 Hz and normalized to arm length (as shown for movement 5). Color 

indicates time of movement, with time progressing from cool to hot colors. All movements 

began and ended with hand on an instrumented start box. (B) Actual (red) and predicted 

(green – within subject ANN, blue – across subject ANN) EMG (activation) signals in four 

proximal muscles for each of the 9 test movements. (C) Mean (SD) R2 values between 
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actual and predicted activation signals. Two-way ANOVA significant for training data source 

(p < 0.001) and muscle group (p < 0.001) but no interaction (p = 0.66). Holm-Sidak 

post-hoc analysis indicated that scapular, shoulder, and elbow muscle groups had higher R2 

values (p <0.05) than wrist or digit muscle groups. (D) Mean (SD) root mean square error 

(RMSE) between actual and predicted activation signals. Two-way ANOVA significant for 

training data source (p < 0.001) and muscle group (p < 0.001) but no interaction (p = 0.13). 

Holm-Sidak post-hoc analysis indicated that RMSE for scapular muscle group was greater 

(p < 0.05) than other muscle groups.
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Fig. 3. 
Mean activations of 16 example muscles obtained from three different monkeys (red: n = 8 

trials, blue: n =26 trials, green: n = 22 trials) during the same task. Shaded regions indicate 

± 1 SD. Monkeys started with their hand on a start box (rest, upper left panel) then reached 

to a food morsel positioned inside a small opening of a barrier. The opening was about 

3 cm in diameter and was directly in front of the animal at eye level. After grasping the 

morsel, monkeys transported the food morsel to their mouths, then returned their hands to 

the start box until the next food morsel was presented. Each phase of the movement (periods 

between vertical dashed lines, see upper left panel) was first time normalized to the duration 

of that phase. Then, the across-monkey averages of the actual durations (in seconds) for 

each phase were assigned to each. The overall average duration of the entire task was about 

2.4 s. During the ‘rest’ periods, monkeys tended to extend the elbow and adduct the arm to 

position the hand correctly in the start box. While there were similarities in the patterns of 

muscle activities across animals, there were also substantial intra-subject difference for this 

relatively simple task.
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Fig. 4. 
(A) Set up for identifying stimulus current range for each muscle electrode. Monkeys were 

sedated and secured upright in an infant car seat. An isometric transducer was fixed to the 

wrist/hand (B), forearm, or upper arm to record the 3-dimensional components of evoked 

isometric forces associated with muscles acting on each of those segments. Limb segments 

proximal to the tested segments were immobilized with Velcro straps. (C) Example resultant 

twitch force responses in teres major and associated (D) force vectors for stimulus pulses 

that incremented in amplitude in 0.2 mA steps from 0 to 2 mA and in 1.0 mA steps from 

3 – 32 mA. The return electrode was a large subcutaneous disk between the scapulae (Fig. 

1b). No responses were seen (blue traces, c) until the stimulus amplitude reached 1.4 mA 

(min). Evoked responses then increased and had a consistent direction up to a stimulus 

amplitude of 17 mA (max, bold line) whereupon the force vector began to change direction 

and showed a second rise in magnitude (red traces, C, D). Changes in force direction were 

Hasse et al. Page 25

J Neural Eng. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



attributed to the activation of nearby muscles. (E, F) Same as for panels (C) and (D) except 

for a different muscle, flexor carpi radialis. In this forearm muscle, both active and return 

electrodes were situated within the muscle. In this case, little change in force direction 

was observed (F). The upper limit of stimulus intensity (max) was identified as the lowest 

current that evoked ~95% of the maximum force (bold trace).

Hasse et al. Page 26

J Neural Eng. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Frame from video (in supplemental materials) depicting example evoked movement. Actual 

(desired) movement is shown on the left and associated evoked movement, based on 

predicted activation patterns is shown on the right. The movies are first shown in real time 

and then slowed down by 50%.

Hasse et al. Page 27

J Neural Eng. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
(A) Set up for evoking movements in anesthetized monkeys. Monkeys were secured upright 

in infant car seat with implanted arm instrumented with movement sensors and free to move. 

Example set of stimulus pulses associated with actual activation patterns recorded for one of 

the test movements. Only above threshold, cathodic phases (shown positive for illustration 

purposes) of biphasic pulses are shown. All stimuli shown on the same scale. Example (B) 

desired and (C) evoked hand trajectories for stimulus pattern shown in (A). Length of each 

scale bar represents 0.55 arm-length displacement. (D) Time courses of desired and evoked 

hand displacement in x (anterior-posterior), y (medial-lateral), and z (vertical) directions for 

examples shown in (B) and (C). (E) Mean (SD) R2 and RMSE values of evoked relative to 

desired movements, averaged across two test monkeys, nine test movements, and five test 

sessions using actual and predicted (within and across) activations as stimulus templates. 

Shuffled trials involved using actual activation signals but delivered to randomly selected 

muscles other than the target muscles. One-way ANOVA showed a significant effect (p < 

0.001) of activation source on R2, with shuffled trials significantly less (p < 0.05 Dunn’s 

post-hoc method) than the other three. There was a significant effect of activation source on 

RMSE (p < 0.001), with shuffled greater than within- and across-predicted (p < 0.05) but not 

actual.
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Fig. 7. 
Within and across session variability in evoked movements. (A) evoked hand trajectories for 

10 repeated trials of one test movement in monkey A and (B) in monkey M. Trials were 

recorded within the same session with about 1 minute rest between trials. (C) evoked hand 

trajectories for one test movement recorded in five separate sessions in monkey M. Cold 

colors indicate early trials, warm colors later trials. Diamond indicates shoulder location. 

Axes are set up as shown in Fig. 2A, except shown in absolute rather than normalized units.
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