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Abstract

Lepidopteran insects provide important model systems for innate immunity of insects, particularly 

for cell biology of hemocytes and biochemical analyses of plasma proteins. Caterpillars are 

also among the most serious agricultural pests, and understanding of their immune systems 

has potential practical significance. An early response to infection in lepidopteran larvae is the 

activation of hemocyte adhesion, leading to phagocytosis, nodule formation, or encapsulation. 

Plasmatocytes and granular cells are the hemocyte types involved in these responses. Infectious 

microorganisms are recognized by binding of hemolymph plasma proteins to microbial surface 

components. This “pattern recognition” triggers phagocytosis and nodule formation, activation of 

prophenoloxidase and melanization and the synthesis of antimicrobial proteins that are secreted 

into the hemolymph. Many hemolymph proteins that function in such innate immune responses 

of insects were first discovered in lepidopterans. Microbial proteinases and nucleic acids released 

from lysed host cells may also activate lepidopteran immune responses. Hemolymph antimicrobial 

peptides and proteins can reach high concentrations and may have activity against a broad 

spectrum of microorganisms, contributing significantly to clearing of infections. Serine proteinase 

cascade pathways triggered by microbial components interacting with pattern recognition proteins 

stimulate activation of the cytokine Spätzle, which initiates the Toll pathway for expression of 

antimicrobial peptides. Aproteinase cascade also results in proteolytic activation of phenoloxidase 

and production of melanin coatings that trap and kill parasites and pathogens. The proteinases 

in hemolymph are regulated by specific inhibitors, including members of the serpin superfamily. 

New developments in lepidopteran functional genomics should lead to much more complete 

understanding of the immune systems of this insect group.

INTRODUCTION

Moth larvae have proven to be extremely useful for experiments providing insights on the 

innate immune systems of insects. Many hemolymph proteins with immune functions were 

first studied in caterpillars by biochemical methods.1–11 Lepidopteran larvae have also been 

important for experiments aimed at characterizing immune functions of insect hemocytes.12 
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Much of the research on lepidopteran immunity has made use of large moth species, 

including the tobacco hornworm, Manduca sexta and wild silkmoths such as Hyalophora 
cecropia. The domestic silkmoth, Bombyx mori has also provided significant discoveries 

about immunity in moths and with the advantage of a sequenced genome,13 it continues 

to serve as an important model organism. The wax moth, Galleria mellonella, was one of 

the earliest species used for research in insect immunity14,15 and is the subject of much 

current research. In addition to these laboratory model species, research on immunity is 

also underway to investigate the immune systems of moths whose larvae are among the 

most destructive agricultural pests worldwide, particularly including species in the family 

Noctuidae. In comparison, there has been relatively little research on immunity in butterflies, 

perhaps because they can be more difficult to rear or due to lower agricultural impact.

In this review, we describe selected developments in research on innate immunity in 

lepidopteran insects, with an emphasis on aspects discovered through biochemical and 

cell biological approaches and potential new insights that may be gained from functional 

genomics methods. Several recent reviews with a focus on lepidopteran immunity are 

available.16–23

HEMOCYTES

With a large hemolymph volume in many lepidopteran larvae and pupae, it is possible 

to collect 104–106 hemocytes from a single individual, making feasible the use of 

cell biological techniques such as flow cytometry and cell sorting that have advanced 

mammalian immunology. The most abundant hemocyte types typically described in 

Lepidopteran larvae are granular cells and plasmatocytes, which are capable of adhesion 

and phagocytosis.12 Nonadherant hemocyte types include oenocytoids, which synthesize 

prophenoloxidase (proPO), and spherule cells, whose functions are poorly understood. 

Monoclonal antibodies are very useful reagents for distinguishing lepidopteran hemocyte 

populations based on antigenicity rather than morphology,24–26 which can vary considerably, 

especially for plasmatocytes. Two subpopulations of plasmatocytes have been distinguished 

based on monoclonal antibody markers in Pseudoplusia includens26 and in M. sexta,27 

which may indicate different stages in differentiation or functional specialization. The 

composition of hemocyte populations varies through larval development.28,29 Hematopoesis 

in lepidopteran larvae28,31 and the embryonic origin granular cells and plasmatocytes30 have 

been described.

Granular cells and plasmatocytes function in immunity through responses that involve 

adherence of cells to foreign surfaces or to other hemocytes.22,32 Both granular cells and 

plasmatocytes can be phagocytic and in different lepidopteran species either cell type may 

be the predominant contributor to phagocytosis as a defense.12 A hyperphagocytic cell 

type, very large cells capable of phagocytosing 500 bacteria, has been described in M. 
sexta.33 These cells are morphologically similar to a neuroglian-positive subpopulation of 

plasmatocytes, which can act as a focus for attachment of hemocytes to foreign surfaces34 

and perhaps are the same hemocyte type.
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Adhesion of granular cells and plasmatocytes leads to two related responses to infection: 

nodule formation, in which hemocytes cluster to entrap aggregated microorganisms, and 

encapsulation, in which hemocytes form a multi-layered cellular capsule around a larger 

eukaryotic parasite.12 Adhesion of hemocytes to injured body wall also probably helps 

to seal wounds to prevent bleeding.32 Cytokines have been identified in lepidopterans, 

which promote these hemocyte functions. A hemocyte chemotactic peptide from Pseudaletia 
separata stimulates directed movement and aggregation of hemocytes.35 This peptide is 

structurally similar to lepidopteran cytokines called ENF peptides, which have multiple 

biological activities, including the stimulation of plasmatocyte adhesion and spreading, 

reduced bleeding and the stimulation of oenocytoid lysis to release proPO.36–40 RNAi 

results indicate that the M. sexta plasmatocyte spreading peptide from this family promotes 

hemocyte nodule formation as a protective response to bacterial infection.41 The active 

ENF peptides are produced by proteolytic processing of a larger protein present in 

hemolymph.36,37 In M. sexta hemolymph, a serine proteinase with trypsin-like specificity is 

responsible for this activation, but has not yet been identified due to its instability (Kanost 

et al, unpublished results). Eicosanoids such as prostaglandins can also simulate hemocytes 

to aggregate to form nodules.42,43 Prostaglandins can also elicit the lysis of oenocytoids, 

releasing proPO into the plasma.44 ProPO is activated by plasma proteinases and participates 

in formation of melanin, which coats nodules and encapsulated objects. This response is 

discussed in more detail below.

Hemocyte attachment during encapsulation and nodulation is mediated by cell surface 

adhesion proteins. Lepidopteran hemocytes have cell surface integrins, which function 

as adhesion molecules.45–50 Plasmatocytes of M. sexta express a specific integrin that is 

required for efficient encapsulation.47,50 The adhesive properties of this hemocyte-specific 

integrin derive at least in part from binding to neuroglian and a tetraspanin on neighboring 

hemocytes.49,51

RECOGNITION OF MICROORGANISMS

Plasma proteins that bind to components on the surface of microorganisms are a key 

component of the innate immune system of insects. Such proteins stimulate responses 

including phagocytosis and activation of proteinase signaling cascades. Some of these 

“pattern recognition” proteins were first discovered in silkworms and then found to occur in 

immune systems of other insect groups, whereas others appear to be unique to lepidopterans.

Hemolin is a 48 kDa plasma protein first identified in Hyalophora cecropia52,53 and 

Manduca sexta.54,55 Hemolin is composed of four I-set immunoglobulin (Ig) domains 

commonly found in cell adhesion proteins of vertebrates and invertebrates. Hemolin also 

exists in other lepidopteran species including B. mori, Hyphantria cunea, Lymantria dispar, 
Antheraea pernyi, Antheraea mylitta, Plutella xylostella, Samia cynthia.13,56–61 Hemolin has 

not been identified in isects from any other order, suggesting that it may have evolved after 

the split of the Lepidoptera from other insect groups. Hemolin shares structural features 

with neuroglian,62 a transmembrane Ig-domain protein located on the surface of Manduca 
glial and neuronal cells63 and the developing embryonic prothoracic gland,64 as well as a 

subpopulation of M. sexta plasmatocytes.34,51 Hemolin expression is induced by bacteria 
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or their surface components injected into the hemocoel. In H. cecropia, this transcriptional 

activation is controlled via an intronic enhancer that contains a κB motif.65 Developmental 

and hormonal signals (e.g., 20-hydroxyecdysone) also affect hemolin production.58,66,67 It 

has been speculated that hemolin may have an antiviral function.68 Baculovirus exposure 

up-regulates hemolin transcription in A. pernyi,69 but not in B. mori, Helicoverpa zea, 

or Heliothis virescens.13,70 A possible role for hemolin in antiviral responses remains 

to be established. On the other hand, several lines of evidence support the idea that 

hemolin functions in immune responses to bacterial infection. Hemolin binds to bacterial 

lipopolysaccharide (LPS) and lipoteichoic acid71,72 and associates with hemocytes.55,73,74 

The horseshoe-shape structure of hemolin suggests that one or more of its Ig domains may 

interact through domain swapping with Ig domains of cell adhesion molecules such as 

neuroglian on hemocyte surfaces.75 Interaction of hemolin with molecules on the surface 

of bacteria and with hemocyte membranes suggests that it may bring microorganisms 

to hemocyte surfaces, promoting phagocytosis or nodule formation. RNAi knockdown of 

hemolin expression in M. sexta larvae significantly reduced phagocytosis and nodulation of 

E. coli.76

Peptidoglycan recognition proteins (PGRPs) associate with bacterial peptidoglycans through 

a conserved domain homologous to T4 bacteriophage lysozyme.77 PGRPs were first 

discovered in lepidopterans. B. mori PGRP-S1 was isolated from plasma of silkworm 

larvae as a 19 kDa protein that binds to Micrococcus luteus peptidoglycan and triggers the 

proPO activation system.8 Molecular cloning of PGRPs from Trichoplusia ni,10 B. mori,13,78 

M. sexta,79–81 G. mellonella,82 S. cynthia,83,84 P. xylostella,60 and Ostrinia nubilalis85 

suggests that multiple PGRPs are present in every lepidopteran species. In addition to 

binding to peptidoglycan, these proteins may hydrolyze peptidoglycan if the residues for 

Zn2+-binding and amidase activity are present.86 The B. mori genome has six short (S) 

and six long (L) PGRP genes: S3 through S6 are putative amidases; L1 and L4 possess 

a transmembrane region; L6 is likely cytosolic.13 Constitutive expression of PGRP-S1 is 

up-regulated in larvae after injection of Enterobacter cloacae.78 E. coli or Bacillus subtilis 
treatment increases the mRNA levels for PGRP-S1, -S2 and -S5, whereas Staphylococcus 
aureus injection enhances transcription of B. mori PGRP-S1, -S5, -L1, but not -S2.13 

Microbe-induced transcription of PGRPs also occurs in other lepidopteran species.10,79,82,84 

The T. ni, S. cynthia and M. sexta PGRPs bind to Bacillus meso-diaminopimelic acid-type 

peptidoglycans and M. luteus Lys-type peptidoglycans.10,83,87 This M. sexta PGRP can 

stimulate proPO activation.88 Knockdown of M. sexta PGRP1 synthesis increased larval 

susceptibility to infection by Photorhabdus luminescens.89,90 So far, the level of knowledge 

on structures and functions of moth PGRPs is significantly less than for Drosophila 
PGRPs.91,92 Furthermore, molecular details of how peptidoglycan binding by PGRPs 

promotes the activation of serine proteinases involved in proPO and spätzle activation are 

unknown.

Insect β-1,3-glucan recognition proteins (βGRPs) and Gram-negative bacteria binding 

proteins (GNBPs) are a family of ~55 kDa plasma proteins with an amino-terminal glucan-

binding domain and a carboxyl-terminal region similar to β-1,3-glucanases. B. mori βGRP1, 

M. sexta βGRP1 and βGRP2 and Plodia interpunctella βGRP bind to β-1,3-glucans and 

to bacteria and stimulate the proPO activation cascade.9,93–97 The amino-terminal domain 
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of B. mori βGRP1 adopts an Ig-like β-sandwich fold and residues have been identified 

that may form a glucan-binding site.98 M. sexta βGRP1 and βGRP2 gene expression in 

fat body is differentially regulated: βGRP1 is constitutively expressed, whereas βGRP2 

transcripts become highly abundant in the early wandering stage prior to pupation or after 

an immune challenge.94,95 M. sexta βGRP2 is also present in cuticle of wandering stage 

larvae.95 Binding of βGRP1 or βGRP2 to curdlan and M. sexta hemolymph proteinase-14 

precursor (proHP14) stimulates autoactivation of HP14 to initiate an immune proteinase 

cascade leading to proPO activation.99,100 B. mori GNBP binds to E. cloacae but not 

Bacillus licheniformis or curdlan.101 An orthologous M. sexta GNBP recognizes LPS and 

laminarin (a β-1,3-glucan with β-1,6 branches) and initiates melanization (Y. Wang and 

H. Jiang, unpublished results). An active glucanase related in sequence to the GRPs was 

isolated from midgut extract of Helicoverpa armigera larvae. It hydrolyzes β-1,3-glucan but 

not β-1,4-glucan or glucans with mixed β-1,3 and β-1,4 linkages102 and probably functions 

as a digestive enzyme.

C-type lectins (CTLs) from animals are a large group of carbohydrate-recognition molecules 

that bind ligands in a calcium-dependent manner.103 B. mori LPS-binding protein (LBP 

or CTL20),104,105 Hyphantria cunea Hdd15,106 and M. sexta immulectin-1107 were among 

the first C-type lectins identified in plasma of lepidopteran larvae. They all contain two 

carbohydrate-recognition domains. CTLs with this dual-domain structure also include: M. 
sexta immulectins-2, -3 and -4,108–110 B. mori MBP (CTL10),111 immulectin (CTL11),112 

LEL-1 and -2,113 CTL19, CTL21,13 and H. armigera Ha-lectin.114 GenBank currently 

contains more than 30 additional similar CTL cDNA sequences from eleven other 

lepidopteran species in five families. The only other dual-domain CTL identified in any 

other insect species is TcCTL3115 from a beetle, Tribolium castaneum. Hence, such tandem 

domain CTL genes appear to be fairly unique to Lepidoptera and their emergence and 

expansion may have occurred early in evolution of this insect group. Expression of at least 

some of these CTL genes is induced microbial infection.106,108–110,114

Many of the lepidopteran CTLs bind to bacterial LPS and some to lipoteichoic 

acid.105,106,108–110 They can cause agglutination of bacteria and yeast,107,109–111 

presumably due to each of the molecule’s two carbohydrate-binding domains binding to 

carbohydrates on the surface of adjacent microbial cells. This activity most often requires 

the presence of calcium. Such clustering of microorganisms may result in more efficient 

clearance of pathogens by hemocytes through nodule formation.105 Experiments have 

demonstrated that M. sexta immulectin-2 enhances clearance of Serratia marcesens,116 and 

suppression of immulectin-2 expression by RNA interference reduced larval survival of a 

Photorhabdus infection.90 In addition, the immulectins can promote proPO activation and 

melanin deposition at the surface of objects encapsulated by hemocytes,107,108,110,117,118 

which may also promote killing of pathogens and parasites.

Lipophorins are insect hemolymph proteins that transport lipids between tissues.119 The 

lipophorin particle contains two protein subunits, apolipophorin-I and apophorin-II. When 

the neutral lipid load is high, an exchangeable plasma protein, apolipophorin-III (apoLpIII) 

also associates with low density lipophorin to cover hydrophobic surfaces. In lepidopterans, 

apoLpIII concentration in hemolymph is generally much lower in larvae than in adults, 
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where it functions in transporting lipids from fat body to flight muscles during prolonged 

flight. Lipophorins and apoLpIII have been implicated in several defense mechanisms.32 

Lipophorin appears to be involved in hemolymph clotting in at least some species,20 and 

may in this way participate in physical trapping of invading microorganisms. There may 

also be an association of proteins from the melanization cascade with lipophorin or other 

clotting components, which could contribute to defense.120–122 The affinity of lipophorin 

and apoLpIII for hydrophobic ligands is consistent with their reported binding of bacterial 

LPS and lipoteichoic acids,123–128 and the partitioning of these microbial membrane lipids 

into complexes with lipophorin or apoLpIII may contribute to reducing their toxicity to 

insect hosts. Lipophorin and apoLpIII have been reported to stimulate other humoral or 

cellular immune responses in G. mellonella,129–133 and research toward understanding 

molecular mechanisms underlying such observations is needed.

Pathogenic bacteria and fungi produce proteinases to utilize lepidopteran host proteins as a 

source of nutrients and to degrade immunity-related defense molecules such as antimicrobial 

peptides. Thermolysin-like metalloproteinases associated with entomopathogenic bacteria 

and fungi are essential virulence factors.134–137 However, the presence of microbial 

proteinases may also be recognized as a signal of infection and stimulate immune defenses 

in the host. Evidence for sensing of microbial proteinases and their regulation during 

innate immune responses has been reported from G. mellonella.138 Thermolysin is a 

potent activator of the serine proteinase cascade that controls proPO activation leading 

to melanization. Thus, this virulence factor also directly triggers an immune response. In 

addition, the activity of microbial metalloproteinases within the body of G. mellonella 
generates peptide fragments that strongly elicit the synthesis of antimicrobial peptides.139 

The immune-stimulatory peptides were identified as collagen IV fragments containing 

the RGD/RGE motif, which bind to integrins of immune-compentent hemocytes.140 The 

stimulation of two innate immune responses, proPO activation and antimicrobial peptide 

synthesis, in response to microbial metalloproteinases provides evidence that lepidopteran 

innate immune responses include reaction to danger-associated molecules produced by 

microbial virulence factors.141 Furthermore, G. mellonella hemolymph contains an inducible 

metalloproteinase inhibitor (IMPI), the only specific peptidic inhibitor of thermolysin-like 

metalloproteinases reported to date from any animal.142 The IMPI gene encodes two distinct 

metalloproteinase inhibitors that putatively contribute to the regulation of metalloproteinases 

associated with invading pathogens.143,144

Nucleic acids released from damaged or necrotic cells form another danger signal to 

enhance insect immune responses. Injection of synthetic oligonucleotides induced attacin 

expression in B. mori larvae.145 Co-injection of purified host nucleic acids with heat-

inactivated P. luminescens into G. mellonella larvae synergistically elevated the level 

of antimicrobial activity, reduced the total number of hemocytes (a consequence of the 

attachment of immune-competent cells to tissues during cellular responses) and prolonged 

the survival of insects infected by P. luminescens.146 DNA and RNA released from damaged 

cells may interact with lipophorin to trigger clot formation and entrap invading pathogens 

in hemolymph. In Pseudaletia separata, nucleic acids as well as cytoplasmic proteins (e.g., 
proPO) are released from oenocytoids through cell lysis induced by the growth-blocking 

peptide.40
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ANTIMICROBIAL PEPTIDES AND PROTEINS

Many insect antimicrobial plasma proteins were first identified and isolated from 

lepidopteran hemolymph. Expression of antimicrobial peptides and proteins is often induced 

by microbial infection, with strongest expression usually occurring in fat body, although 

hemocytes also contribute to the pool of antimicrobial peptides secreted into hemolymph 

plasma.147 Antimicrobial peptides are also expressed in the midgut of lepidopteran 

prepupae and secreted into the lumen, perhaps as a prophylaxis against infection during 

metamorphosis.148 Antimicrobial peptides can also be expressed in extraembryonic tissues 

of lepidopteran eggs, providing protection against infection for the developing embryo.149

Lysozyme, the first antimicrobial protein reported from insects, was identified more than 

forty years ago in G. mellonella150 and, like other insect lysozymes, shares structural 

similarity with C-type (chicken) lysozyme.151 Its activity against Gram-positive bacteria 

has been attributed to its ability to degrade cell wall peptidoglycan by hydrolysis of 

the β-1,4 linkages between N-acetylglucosamine and N-acetylmuramic acid residues.2 

Besides moderate activity against Gram-negative bacteria,152–154 lepidopteran lysozyme 

also exhibits antifungal activity.155 Lyozyme also appears to negatively regulate activation of 

proPO in M. sexta.156

Insects produce a variety of amphipathic peptides with antimicrobial activity attributed to 

their ability to damage cell membranes of pathogens. The first antimicrobial peptide from 

insects, isolated from the hemolymph of the silkmoth H. cecropia, was named cecropin.4 

Families of cecropin genes have now been found in many lepidopteran (and dipteran) 

species. Thirteen cecropin genes were identified in the B. mori genome.13 Cecropins 

are typically ~4 kDa basic peptides, which have an amphipathic α-helical structure. The 

moricins constitute another group of amphipathic α-helical antimicrobial peptides,157,158 

first discovered in B. mori.159 Nine moricin genes are present in the B. mori genome.13 

Eight moricin homologs identified in G. mellonella have activity against Gram-negative and 

Gram-positive bacteria, as well as against yeast and filamentous fungi.160

Lepidoptera possess glycine-rich AMPs (attacins and gloverins) and proline-rich AMPs 

(lebocins). H. cecropia has two 20 kDa attacin isoforms, an acidic and a basic attacin, with 

80% sequence identity.5,161 The B. mori genome also contains two attacin genes,13 and 

attacin cDNAs have now been cloned from many lepidopteran species. Treatment of E. coli 
with H. cecropia attacins leads to an increase in outer-membrane permeability, preceding 

any increase in inner-membrane permeability by at least one generation time. Inhibition of 

outer-membrane protein synthesis is achieved on the transcriptional level and triggered by 

binding of attacin to the cell surface without entering the inner membrane or the cytoplasm. 

Primary binding occurs on LPS, explaining why basic attacin is more active against E. coli 
than the acidic form. Another family of proline-rich AMPs, the gloverins, appears to exert 

a similar mechanism of inhibition of outer-membrane protein synthesis.162 Expression and 

evolution of four B. mori gloverin genes have been investigated,163,164 and gloverins have 

been studied in several other lepidopteran species,16,165–168 but no homologs have been 

identified to date in insects from other orders. A family of proline-rich AMPs called lebocins 

has been characterized in lepidopterans.16,147,169–173 A somewhat puzzling aspect of this 
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family is that the 3.5 kDa active lebocin peptide is processed from a larger precursor and 

in some members of the family, the amino-terminal pro-region of the protein is conserved 

in sequence, but the carboxyl-terminal sequence corresponding to the original antimicrobial 

peptide is not, suggesting that the pro-region may have a function not yet discovered.

AMPs stabilized by intramolecular disulfide bonds are widely distributed in insects. Those 

with three or four disulfide bonds are commonly referred to as insect defensins because 

of overall structural similarities to mammalian α and β defensins.174 Insect defensins can 

be grouped into peptides with an α-helix/β-sheet mixed structure and peptides forming 

triple-stranded antiparallel β-sheets. Defensin-like AMPs with antibacterial and antifungal 

activities from several lepidopteran species have been investigated.175–180 Two cysteine-

rich defensin-like peptides from G. mellonella specifically inhibit growth of filamentous 

fungi.179,180 A group of atypical defensin-like peptide named x-tox identified in G. 
mellonella and two Spodoptera species is characterized by imperfectly conserved tandem 

repeats of cysteine-stabilized αβ motifs, the structural scaffold characteristic of invertebrate 

defensins and scorpion toxins.181–183 They are induced upon activation of the immune 

system but lack detectable antimicrobial activity, suggesting that they may have an immune 

function yet to be discovered.

EXTRACELLUAR AND INTRACELLULAR SIGNAL TRANSDUCTION 

STIMULATING ANTIMICROBIAL PEPTIDE SYNTHESIS

Genetic investigations in Drosophila have revealed three major immune signaling pathways 

(Toll, Imd-JNK and JAK-STAT) that are conserved in mammals.184 Genomic analyses 

suggest similar pathways exist in other holometabolous insects, including B. mori.13 

Additional bioinformatic and experimental evidence described below supports the existence 

of functional Toll and Imd pathways in lepidopterans.

There are fourteen Toll-like receptor genes in the silkworm genome: six in group A with 

Drosophila Toll and eight in group B with Drosophila 18-wheeler.13 BmToll and BmToll2 
are group B genes highly expressed in ovary and their transcripts become more abundant in 

fat body after injection of microorganisms,185 suggesting possible involvement in embryonic 

development and immune response. BmToll3, BmToll4, BmToll9 and BmToll10 mRNA 

levels in fat body also increase after injection of some microbes. In M. sexta, a Toll-like 

receptor is present in hemocytes, fat body, epidermis, midgut and Malpighian tubules.186. Its 

mRNA level increased in hemocytes, but not in fat body, after injection of microorganisms.

Spätzle, the ligand which activates Toll, has been identified and functionally characterized in 

B. mori and M. sexta.187,188 Spätzle is synthesized as an inactive precursor, proSpätzle, 

which is secreted as a disulfide-linked homodimer into the hemolymph and requires 

proteolytic processing to form the active Toll ligand. Expression of proSpätzle is 

significantly greater in M. sexta hemocytes than in fat body.188 In B. mori, expression 

was detected primarily in fat body and midgut, but hemocytes were not tested.187 B. 
mori and M. sexta proSpätzle proteins are only ~20% identical to Drosophila proSpätzle, 

but have slightly greater similarity (~26% identity) in the carboxyl-terminal 108 residues 

corresponding to the active form of Drosophila Spätzle known to bind to Toll. Recombinant 
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B. mori and M. sexta Spätzle were active when injected into larvae, inducing fat body 

expression of attacins, cecropins, gloverin, moricin and lebocin in B. mori187 and attacin, 

cecropin, moricin and hemolin in M. sexta, with corresponding strong induction of plasma 

antimicrobial activity.188 Howevever, injection of proSpätzle had little effect, indicating the 

need for proteolytic activation of this cytokine in response to infection.

Hemolymph proteinase-8 (HP8) is a clip-domain proteinase demonstrated to activate 

proSpätzle in M. sexta by specific cleavage to produce the carboxyl-terminal 108 residue 

fragment, as a disulfide-linked homodimer.188 The Drosophila proteinases most similar 

to HP8 are Easter and Spätzle processing enzyme, both of which function to activate 

proSpätzle.189 Injection of active HP8 into larvae stimulates expression of attacin, cecropin, 

gloverin and moricin and elevates plasma antibacterial activity, consistent with a role for 

HP8 as an activator of proSpätzle.189 HP8 is present in plasma as a zymogen, proHP8 and 

is activated by another clip-domain proteinase, HP6, an apparent ortholog of Drosophila 
Persephone. Injection of recombinant HP6 also promoted expression of antimicrobial 

peptides in larvae.189 ProHP6 is activated in plasma exposed to bacteria or the β-1,3-

glucan curdlan, but a hemolymph proteinase responsible for activation of HP6 has not 

been identified yet. It is apparent that recognition of microbial pattern molecules triggers 

activation of a proteinase cascade to generate the cytokine Spätzle, leading to expression of a 

suite of antimicrobial peptides as an innate immune response in this moth (Fig. 1).

Two rel-family transcription factors participate in immunity-related gene expression in B. 
mori.190–192 BmRel encodes, via alternative splicing, RelA and RelB, which are orthologous 

to Drosophila Dorsal. BmRelish also encodes two splicing isoforms, Relish1 and Relish2. 

RelA activates the lebocin-4 gene strongly and an attacin gene weakly.190 RelB, lacking 

the first 52 residues of RelA, activates the attacin gene strongly and other genes to a lesser 

extent. The Rel homology domain in RelA and RelB binds specifically to κB sites in attacin 

and lebocin-4 genes. In transgenic silkworms whose BmRel expression is knocked down, 

expression of antibacterial peptide genes fails to be induced by M. luteus. Knockdown 

of BmRelish expression abolishes antimicrobial peptide production elicited by E. coli.191 

Intact Relish1 and Relish2 do not activate promoters of B. mori attacin, cecropin B1, 

lebocin-3 and lebocin-4 genes. Removal of the ankyrin repeats in Relish1 is necessary for its 

transcriptional activation of antibacterial peptide genes. However, Relish2, which lacks the 

repeats and the transactivation domain, serves as a dominant negative factor to suppress the 

function of active Relish1. Relish1 binds to the κB sites in attacin and cecropin B1 genes, 

while the sites for activating lebocin-4 promotor differ between Relish1 active form and 

RelA. Meso-diaminopimelic acid- and Lys-type peptidoglycans can stimulate differential 

expression of antimicrobial peptide genes in the silkworm, which is affected by the level, 

binding affinity and transactivation activity of Relishes and Rels.192 Relish1 is inhibited by 

its own ankyrin repeats and RelA and RelB are negatively regulated by B. mori Cactus.193 

Cactus interacts with the DNA-binding domain in the Rels but not with Relish1 or Relish2. 

Taken together, these data strongly suggest that the Toll and Imd pathways are functional in 

the silkworm to regulate immunity-related gene expression.
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PROPHENOLOXIDASE ACTIVATION SYSTEM

PO-catalyzed quinone and melanin formation is a universal response in arthropods 

for killing and entrapping pathogens or parasites.194,195 PO in insect hemolymph has 

tyrosinase-like activities, including o-hydroxylation of monophenols and oxidation of o-

diphenols to quinones.18 Tyrosine, DOPA and dopamine are substrates in insect hemolymph 

that contribute to PO-catalyzed quinone formation and subsequent melanin synthesis. 

Tyrosine hydroxylase and dopa decarboxylase are upregulated in fat body after injection 

of bacteria and probably contribute to provision of hemolymph dopamine for the innate 

immune response.80,196–198 Oxidation of dopamine by PO leads to production of 5,6-

dihydroxyindole, which has antimicrobial activity toward bacteria and fungi.199 PO is 

produced as a zymogen that requires a specific proteolytic cleavage to gain activity. This 

regulatory mechanism protects the host insect from potentially harmful effects of the 

reactive chemicals produced by PO, as the enzyme is activated only when elicited by 

wounding or infection. Understanding of insect PO and its activation was pioneered through 

detailed biochemical investigations with B. mori,11 and the M. sexta model system is 

providing new insights into lepidopteran PO function and regulation.17,19

ProPO from B. mori and M. sexta exists in plasma as a heterodimer of two related subunits, 

each ~80 kDa.200,201 Insect proPO sequences are related to arthropod hemocyanins, 

and copper-binding motifs in the two groups of proteins are conserved.202 ProPO is 

synthesized constitutively by oenocytoids.197,201,203 ProPOs lack secretion signal peptides 

and are released from oenocytoids by lysis of the cells.40,44 Activation of the proPO 

zymogen requires cleavage of a conserved Arg-Phe bond about 50 residues from the 

amino-terminus.11,18 The crystal structure of the M. sexta proPO heterodimer suggests that 

the proteolysis between Arg51 and Phe52 induces a conformational change to dislodge a 

specific Phe residue in each subunit and open up the active site for substrate binding.204 

The active site contains a canonical type-3 di-nuclear copper center, with each copper ion 

coordinated by three conserved His residues. Glu395 of the subunit-2 may act as a general 

base to deprotonate monophenols, a key step in the o-hydroxylation of tyrosine by PO.

Extracellular serine proteinase pathways have evolved in animals to stimulate rapid 

responses to tissue damage, pathogen invasion, or physiological cues.205 A few eliciting 

molecules, via specific recognition and cascade amplification, lead to sequential proteolytic 

activation of a large number of pathway components within minutes. This type of proteinase 

pathway results in activation of proPO in response to infection. Many of the proteinases 

that function in such cascade pathways in arthropods contain a carboxyl-terminal serine 

proteinase domain similar trypsin or chymotrypsin and one or two amino-terminal clip 

domains, which have likely regulatory functions.206 The proteinases from lepidopterans 

known to activate proPO and most of the proteinases upstream in the activation pathway 

are clip domain proteinases. Fifteen clip domain proteinase genes were identified in the B. 
mori genome,13 and fourteen such enzymes are expressed in fat body or hemocytes of M. 
sexta.207

In lepidopterans, proPO activating proteinases (PAPs) have been well characterized in 

M. sexta208–211 and B. mori.212 They are present in hemolymph as zymogens at low 
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concentration in naïve larvae, and their expression in fat body is upregulated in response 

to injection of bacteria. M. sexta PAP1 contains a single clip domain, whereas PAP2 and 

PAP3 and B. mori proPO activating enzyme each contain two clip domains. The solution 

structure of the region of PAP2 containing the dual clip domains suggests a potential 

proPO-binding site, a bacteria-interacting region and a surface for activator/adaptor docking 

in each domain.213 Purified M. sexta PAP1, PAP2 and PAP3 do not efficiently generate 

active PO activity, even after a significant amount of proPO is cleaved at Arg51, without 

the presence of protein cofactors from hemolymph, identified as serine proteinase homologs 

(SPHs). SPHs also contain clip domains but lack proteinase activity due to substitution of 

the active site Ser residue with Gly.214,215 M. sexta SPH1 and SPH2 also require proteolytic 

processing to gain function, which leads to their assembly into the active, high Mr cofactor 

required in the reaction with proPO and PAP to generate high levels of PO activity.215,216 

This interesting interaction, which does not seem to be required for the silkworm proPO 

activating enzyme,212 is not well understood and requires further investigation.

The M. sexta proPO activation system includes at least four other serine proteinases 

(Fig. 1). An initiatiing hemolymph proteinase (HP14) contains five low-density lipoprotein 

receptor class A repeats, one Sushi domain, one Wonton domain and one proteinase 

catalytic domain.217 Adding recombinant proHP14 to larval plasma greatly enhances proPO 

activation in response to M. luteus. The HP14 proenzyme, with its first domain truncated, 

was isolated from plasma of larvae injected with bacteria.99 After incubation with β-1,3-

glucan and βGRP1 or βGRP2, the proHP14 was converted to a two-chain active form, which 

significantly enhanced plasma proPO activation. The activation of proHP14 results from an 

autoactivation cleavage after Leu387, occurring when proHP14 interacts with β-1,3-glucan 

and βGRP. Characterization of individual domains and truncation mutants of HP14 showed 

that the amino-terminal regulatory region of HP14 participates in the specific binding of 

microbial polysaccharides and βGRP1.100 Proteins orthologous to M. sexta HP14 also 

function at the top of proteinase cascades in immune responses of Drosophila and a beetle, 

Tenebrio molitor.218,219

HP14 activates a clip domain proteinase HP21, which can then activate proPAP2 and 

proPAP3,220,221 resulting in activation of proPO. ProPAP1, which differs from proPAP2 

and proPAP3 in having only one clip domain, is activated by HP6.189 HP6 also functions 

in the proSpätzle activation pathway,188,189 providing cross-talk between these two immune 

cascades in M. sexta. Addition of active PAP1 to hemolymph stimulates the proteolytic 

activation of HP6, HP8, SPH1 and SPH2.222 PAP1 directly activates proSPH2, but 

processing of the other precursors is probably indirect, depending on other plasma factors. 

Consequently, a minute amount of PAP1 added to plasma from naïve larvae stimulates a 

remarkably high level of PO activity in a short period of time, as a result of a positive 

feedback loop (Fig. 1). Some gaps in this pathway still need to be filled. To date, it is 

not clear which HP generates active HP6, leading to both PAP1-mediated melanization and 

HP8-mediated Toll pathway activation. The proteinase which activates SPH1 has not been 

identified and the possible involvement of HPs in Gram-negative bacteria-induced defense 

responses is not yet well understood.
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INHIBITORY REGULATION OF HEMOLYMPH PROTEINASES BY SERPINS

Immune responses can produce molecules that are harmful to the host. Serine proteinases 

and the molecules they activate have potentially toxic effects. Proteinase inhibitors of 

different families can exist constitutively at relatively high levels in plasma of naïve 

insects and may also be produced in response to physiological or pathological stimuli.223 

Serpins are ~50 kDa proteins, many of which are irreversible inhibitors and key modulators 

of immune proteinase pathways.224 Serpins occur as plasma proteins in vertebrates and 

invertebrates. They have been purified and studied by molecular cloning from lepidopteran 

insects including B. mori,225,226 M. sexta,7,227–232 H. cunea,56 Mythimna unipuncta,233 and 

Mamestra configurata.234 The B. mori genome contains 34 serpin genes, which have been 

analyzed with regard to molecular evolution of this gene family.13,235 Serpin biochemical 

and physiological functions in lepidopterans have been characterized most extensively in M. 
sexta.17,236

The M. sexta serpin-1gene encodes twelve protein isoforms, each having the same amino-

terminal 336 residues and a variable region consisting of the carboxyl-terminal ~40 residues, 

including the reactive center loop that interacts with a serine proteinase during an inhibition 

reaction. The variable region is produced by mutually exclusive alternative splicing of 

twelve different versions of the ninth exon of the gene,237,238 resulting in a group of 

serpin proteins with diverse inhibitory selectivity.227 Serpin genes that employ alternative 

splicing at the same position to generate multiple serpin isoforms have been studied in other 

moth species. These include B. mori serpin genes 1 (3 isoforms) and 28 (4 isoforms),235 

M. configurata serpin-1 (9 isoforms),239 and Choristoneura fumiferana serpin-1 (at least 4 

isoforms).240 This mechanism for expanding serpin functional diversity, first discovered in 

Lepidoptera, been observed in other insect orders and in nematodes.241

Physiological functions have been identified for a few of the M. sexta serpin-1 

isoforms. Serpin-1A, -1E and -1J can inhibit HP8, and serpin-1J appears to be a 

physiologically relevant regulator of HP8 activity during immune responses87 (An, Ragan, 

Kanost, unpublished results). Serpin-1J also inhibits all three PAPs to regulate proPO 

activation210,216 (Jiang, unpublished data). Serpin-1I can inhibit HP14.99 Serpin-1K was 

identified in hemolymph in a compex with a midgut chymotrypsin,87 suggesting a potential 

role for serpin-1 proteins in protection from digestive proteinases that escape into the 

hemocoel.

A putative orthologous group of serpins including M. sexta serpin-3,229 B. mori serpin-3,235 

and an H. cunea serpin56 are synthesized in response to infection and form a clade with 

Drosophila serpin-27A and Anopheles gambiae and Aedes aegypti serpin-2, which have 

immune regulatory functions.235 M. sexta serpin-3 contains a reactive site sequence (Asn-

Lys-Phe-Gly) highly similar to the proteolytic activation site (Asn-Arg-Phe-Gly) in both 

proPO subunits. By mimicking these natural substrates, serpin-3 acts as an efficient inhibitor 

of all three PAPs.229 M. sexta serpin-4 and serpin-5230 are closely related to each other and 

form a clade with B. mori serpins 4, 5, 7, 8, 14, 31 and 32.235 Serpin-4 suppresses proPO 

activation by inhibiting HPs upstream of the PAPs, such as HP1, HP6 and HP21, while 

serpin-5 forms complexes with HP1 and HP6.231 M. sexta and B. mori serpin-6 are apparent 
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orthologs. M. sexta serpin-6 can inhibit PAP3 to block proPO activation and it also inhibits 

HP8 to potentially regulate the Toll pathway.242

LEPIDOPTERAN IMMUNE RESPONSES TO DIFFERENT TYPES OF 

INFECTION

Herbivorous lepidopteran caterpillars consume enormous amounts of plant diet and are 

capable of increasing their body weight up to 20% per day. Plant leaves harbor microbial 

communities, which enter the alimentary canal with the ingested food. The midgut of 

caterpillars can sense bacterial contamination of the diet and trigger immune responses, 

which are accompanied with life history tradeoffs.243,244 Bacteria can also naturally 

enter and infect lepidopterans through wounds. Phagocytosis by granular hemocytes or 

plasmatocytes, depending on the species is probably the earliest response,245 and when 

numbers of bacteria are relatively low, can efficiently clear infection, particularly with 

bacteria of low virulence. Larger numbers of bacteria lead to hemocyte aggregation and 

formation of hemocyte nodules, probably aided by plasma pattern recognition proteins that 

agglutinate bacteria. Activation of lepidopteran hemocytes to become adhesive involves 

cytokines from the ENF family245 and eicosanoid signaling.42 Hemocyte nodules often 

become melanized, as products of PO polymerize to form a melanin coat around the 

aggregated hemocytes and bacteria. This response also generates quinones and reactive 

oxygen species that may help to kill the entrapped bacteria. The humoral response, synthesis 

of antibacterial peptides, occurs more slowly than the initial hemocyte response, requiring 

several hours before significant concentrations of antimicrobial molecules accumulate. This 

broad-spectrum antibacterial activity, comprised of a mixture of different antibacterial 

peptides, is an effective protective response that can last up to a few days.

Entomopathogenic fungi can invade insect hosts directly via their sclerotized chitinous 

integument. Penetration and lateral growth within the inner part of the integument is 

achieved by joint action of physical pressure and secreted enzymes among which proteinases 

play a predominant role.246 Most, if not all, entomopathogenic fungi develop in the 

hemocoel as cells known as protoplasts or hyphal bodies, which lack a fully developed 

cell wall. The absence of typical fungal cell wall components such as β-1,3-glucan may 

allow these fungi to evade the host immune surveillance. However, hyphal bodies of the 

entomopathogenic fungus Metarhizium anisopliae are ingested by plasmatocytes in G. 
mellonella during an early phase of infection,247 even though they lack β-1,3-glucan on their 

surface. Ingested hyphal bodies are not killed, but propagate and grow within phagocytic 

vacuoles of the plasmatocytes, which are likely occupied as a vehicle for dispersal within 

the hemocoel. Survival of hyphal bodies within the hemocytes as well as overcoming of 

multicellular encapsulation have been attributed to fungal secondary metabolites (toxins), 

such as destruxins and cyclosporins which suppress cellular and humoral responses within 

the infected hosts.248,249 Similar to bacteria, fungal cells are recognized, phagocytosed or, if 

too large or too numerous, encapasulated by hemocytes in the hemcoel of Lepidoptera.250 

Eicosanoids have been implicated as mediators in cellular antifungal defense.251 The 

lepidopteran antifungal response also encompasses proPO activation, production of reactive 

oxygen species,252 and synthesis of potent antifungal peptides including cecropins253 and 
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gallerimycin.254 However, the humoral responses upon infection with parasitic fungi such as 

Beauveria bassiana is different from that observed after challenge with bacteria.255

Larger eukaryotic parasites such as nematodes and parasitic wasps provoke hemocytic 

encapsulation and melanization,245 but little is understood about molecular mechanisms for 

recognizing such parasites as foreign.256 Successful parasites are able to disrupt or suppress 

the host insect’s immune response. Entomopathogenic nematodes have a mutualistic 

relationship with virulent bacterial pathogens of insects, in which the bacteria produce 

virulence factors that disable cellular and humoral immune responses of their insect host.257 

Parasitoid wasps that use lepidopteran larvae as hosts inject venom and accessory fluid 

components that disrupt the host immune system. In braconid and ichneumonid parasitoid 

wasps, this adaptation includes the injection of polydnaviruses, which infect host hemocytes 

and express immunity-disrupting proteins, but do not replicate.258 Among these are gene 

products which cause apoptosis of hemocytes, disrupt signal transduction pathways in the 

humoral immune response and block melanization.259–261

Some aspects of immunity to viral infection in lepidopterans are now becoming 

understood.262 Baculoviruses are the most commonly studied viral pathogens of these 

insects. These viruses enter the larva by first infecting the gut epithelial cells. A response 

that can protect caterpillars from these infections is apoptosis of infected midgut cells. 

Infected cells die before viral replication can be completed, thus preventing spread of the 

virus to other cells or tissues.263 Baculoviruses encode gene products that inhibit caspases 

responsible for initiating apoptosis, allowing the infection cycle to proceed.263 Hemocytic 

encapsulation of infected tracheal cells is another immune response to baculoviruses that has 

been observed in lepidopterans.262 In addition, hemolymph PO is correlated with virucidal 

activity toward baculoviruses,264 and thus, the proPO activation cascade may help protect 

against baculoviral infection.

CONCLUSION

Lepidopteran insects have some important advantages as model systems for immunological 

research, including a depth of knowledge developed so far and the availability of large 

hemolymph samples from individual insects for studies of hemocytes and plasma proteins. 

With the recent exception of B. mori, studies on moths and butterflies have been hampered 

by a lack of genomic information, which would facilitate proteomics investigations and 

also lead to more ready identification of candidate genes for experimental study. This 

situation is likely to change dramatically in the next few years, as it is anticipated that 

genome sequences for several additional lepidopteran species will soon become available. 

Transgenic technology for silkworms is now well developed and may yield new fundamental 

information on immunity and perhaps strains with improved disease resistance. Furthermore, 

more complete understanding of lepidopteran immune responses could lead to future 

developments of enhanced strategies for regulating insect pest populations through use of 

specific pathogens and parasites.
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Figure 1. 
A current model of the hemolymph proteinase system in M. sexta larvae. An initiation 

proteinase precursor, proHP14, is autoactivated in response to Gram-positive bacterial or 

fungal infection. HP14 activates proHP21; HP21 activates proPAP2 or proPAP3; PAP2 or 

PAP3 then cleaves proPO to form active PO in the presence of SPH1 and SPH2. Activation 

of proPO can also be catalyzed by PAP1 when the high Mr SPH complex is present 

simultaneously. PAP1 also activates proSPH2 directly and can indirectly lead to proHP6 

activation. HP6, whose direct activator is unknown, cleaves proPAP1 and proHP8. PAP1 and 

HP6 form a positive feedback loop, in which PAP1 indirectly stimulates activation of HP6. 

HP8 activates Spätzle to induce antimicrobial peptide synthesis via Toll receptor. Active 

proteins, including HPs, PAPs, SPHs, PO, Spätzle and plasmatocyte-spreading peptide 

(PSP), are labeled “*” and unknown HPs are marked with “?”.
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