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Nutrient-Based Appetite Regulation
Jose M. Moris, Corrinn Heinold, Alexandra Blades, Yunsuk Koh* 
Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA

Regulation of appetite is dependent on crosstalk between the gut and the brain, which is a pathway described 
as the gut-brain axis (GBA). Three primary appetite-regulating hormones that are secreted in the gut as a re-
sponse to eating a meal are glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), and peptide YY (PYY). When 
these hormones are secreted, the GBA responds to reduce appetite. However, secretion of these hormones and 
the response of the GBA can vary depending on the types of nutrients consumed. This narrative review de-
scribes how the gut secretes GLP-1, CCK, and PYY in response to proteins, carbohydrates, and fats. In addition, 
the GBA response based on the quality of the meal is described in the context of which meal types produce 
greater appetite suppression. Last, the beneficiary role of exercise as a mediator of appetite regulation is high-
lighted.
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INTRODUCTION

Blunted appetite regulation is a hallmark of an advanced obeso-
genic state that hinders weight loss harder.1 The link between food 
intake and the drive to eat is the gut-brain axis (GBA), where appe-
tite is regulated. The GBA is interconnected in the medulla of the 
brainstem, where the nucleus tractus solitarius (NTS) receives the 
vagus nerve (VN) afferent fibers input originating from the gut.2 
For context, the gut is comprised of the stomach, small intestine, 
and large intestine. Distension and secretion of hormones elicited 
by food intake in the gut3 cause a signal that is received by the affer-
ent branch of the VN. This signal is transmitted by the VN to the 
NTS,4 where subsequent upper brain regions (superior to the 
brainstem) are stimulated to suppress appetite and induce meal ter-
mination.2,5 A representation of GBA signaling to the brain is pre-
sented in Fig. 1.

In contrast, during a fasted state, the GBA can stimulate the VN 

to increase the desire to eat.6 Although the GBA is tightly regulated, 
there is evidence suggesting that people with obesity have a dysreg-
ulated GBA that predisposes them to greater food cravings and in-
creased food intake due to a lack of appetite regulation.7,8 For opti-
mal appetite regulation, fully functional neurotransmitter activity is 
required. For example, dopamine can promote cravings that lead to 
eating, while it is also required to induce the feeling of “reward” that 
is required to suppress appetite.5,7,9 Because dopamine has a potent 
role in regulating eating behavior, downregulation of its prefrontal 
cortex receptors that is driven by overstimulation of reward-like be-
haviors is a major factor of a dysregulated GBA.10-13 In the context 
of food intake, stimulation of the GBA and subsequent NTS signal 
and dopamine release differ based on the type of nutrient con-
sumed. Because the GBA has many interrelated mechanisms to 
correctly regulate appetite,5,14 the scope of this narrative review is to 
describe the connection between the GBA and nutrient intake 
while elaborating how nutrient type can affect appetite regulation.
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BASICS OF ENERGY INTAKE AND 
SIGNALING FOR APPETITE REGULATION

We briefly described modulation of appetite controlled by the 
GBA. However, appetite and hunger are not the same. Appetite re-
fers to the cephalic (upper brain regions) regulation of eating,15 
whereas hunger is a process or physiological drive that aims to initi-
ate eating and is signaled by an array of physiological stimuli, such 
as the “growling and emptiness of the stomach”, a decrease in blood 
glucose, and an increase in ghrelin concentration.16-19 Based on 
these definitions, appetite can be experienced at any point, whereas 
hunger is experienced only under fasted conditions. Herein, 
throughout this review, we will only describe GBA responses as 
they relate to appetite (drive to eat).

A common weight loss approach is to follow a hypocaloric diet 
that restricts overall nutrient intake. From an energy balance point 
of view, such an approach is logical and practical because consum-
ing fewer calories than what is expended daily should lead to weight 
loss over time. However, this paradigm regularly contradicts itself, 
because a hypocaloric diet can lead to a reduction in energy expen-
diture. This concept is referred as the metabolic set point,20 where 
the body reduces the nonessential energetic demands to prevent 
energy deficiency and meet metabolic demands. Therefore, main-
taining the weight loss achieved via a hypocaloric diet can be diffi-
cult. The challenges to sustaining a hypocaloric diet to achieve 

weight loss are related to the physiological abilities of our body to 
respond to energy intake. In essence, regardless of meal size, the 
GBA is not capable of sensing or determining caloric intake at a 
given meal.21 In contrast, meal content (macro and micronutrients) 
is the primary mediator of GBA stimulation. For example, a sugar-
based snack might have the same caloric content as a protein-based 
snack. However, the protein-based snack will produce greater sati-
ety signaling and reduce food intake in comparison to the sugar-
based snack.22 That is why the nutrient content rather than the ca-
loric intake, in combination with the stretching of gastrointestinal 
walls, determines the ability of the cells in the gut to secrete appe-
tite-regulating hormones. Herein, a dysregulated GBA that cannot 
adequately sense the hormonal secretions from the gut will have a 
blunted capability to regulate appetite23,24 and can be associated 
with hedonic eating and promote an obesogenic state. 

MACRONUTRIENT DIFFERENCES IN  
GUT-BRAIN AXIS SIGNALING

Protein intake
High consumption of protein or amino acids is a good method 

to reduce total energy intake by increasing satiety in comparison to 
that gained from carbohydrates and fats.25,26 Based on this, it is ex-
pected that the GBA can effectively sense the intake of protein and 
inhibit appetite accordingly. Specifically, when protein is con-
sumed, enteroendocrine cells located in the small intestine secrete 
cholecystokinin (CCK),27 glucagon-like peptide 1 (GLP-1),28,29 
and peptide YY (PYY).28-30 These three are defined as anorexigenic 
(appetite suppressant) hormones. When CCK is released, the 
nearby region of the small intestine that holds the VN afferents re-
ceives the signal from CCK when it binds to its CCK type 1 recep-
tors (CCK1).31,32 When CCK binds to CCK1, the GBA mediates 
the passage of a satiety signal from the gut to the brain and sup-
presses appetite to help reduce food intake. Similarly, GLP-1 and 
PYY have the same effect of binding to their receptor located in 
VN afferents and producing an anorexigenic signal.33

Although the overall effect of protein intake is an anorexigenic 
response, the composition of the protein molecules is important. 
For example, the satiating effects of protein intake can be further 
increased by consuming proteins that contain specific amino acids 

Figure 1. Illustration denoting the connection between the gut and brain through 
vagus nerve afferent fibers that subsequently signal appetite regulation once 
stimulated.
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like arginine,34,35 lysine,35 and glutamic acid.35 Compared to other 
amino acids, these have shown a greater ability to produce an an-
orexigenic response.35 This is an important consideration because 
it exemplifies how not only macronutrient type, but also quality in 
terms of composition are important. Leucine is an amino acid of-
ten thought to be a major precursor of an anorexigenic response. 
However, it is speculated that leucine acts differently than other 
amino acids, which produce an anorexigenic response by stimulat-
ing the GBA.36 In contrast, leucine stimulates protein synthesis and 
growth that are only possible if there is sufficient energy available. 
Therefore, it indirectly inhibits appetite by signaling that there are 
enough nutrients to synthesize proteins but does not react to nutri-
ent type.35,37,38 More research is warranted to better understand 
how specific amino acids affect appetite regulation.

Carbohydrate intake
In contrast to protein intake, carbohydrates have a lower capabil-

ity to stimulate the secretion of CCK.39 Furthermore, a carbohy-
drate-rich meal has a lower duration in its satiety-inducing effect 
compared to a protein-based meal. In part, the difference is attrib-
uted to gastric emptying, where carbohydrates can be digested fast-
er than proteins.39,40 Therefore, from a satiety point of view, CCK 
will signal the GBA for longer and promote a longer satiety response 
when consuming protein rather than carbohydrates. Furthermore, 
a carbohydrate-rich meal elicits lower secretion of both GLP-1 and 
PYY and a shorter anorexigenic state compared to a protein-based 
meal.41 On this basis, if CCK, GLP-1, and PYY are secreted to a 
lesser extent under a carbohydrate-rich meal, then it is expected 
that long-term intake of a diet that favors carbohydrates would not 
be ideal to maintain good appetite control.

Carbohydrate is a broad term. A carbohydrate-rich meal implies 
that, from a given meal, the majority of the macronutrient content 
is allotted to carbohydrates and a lesser extent to proteins and fats. 
Therefore, a carbohydrate-rich meal yields a high concentration of 
its glucose building block upon digestion. As such, a food that has a 
high glycemic index is used to describe a carbohydrate-rich meal 
that has a low anorexigenic action.39 However, similar to the way 
amino acids determine the quality of proteins,42 the quality of car-
bohydrates is attributed to their digestibility. Digestible carbohy-
drates are metabolized into glucose,43 while non-digestible carbo-

hydrates have minimal to no contribution to blood glucose and 
help to increase the bulk of food in the colon and to slow digestion.44 
In the colon, non-digestible carbohydrates undergo fermentation, 
causing the release of short-chain fatty acids (SCFA).45 When pro-
duced, SCFA bind to nearby receptors that elicit secretion of GLP-
146 and PYY.46,47 Even though SCFA does not promote the release 
of CCK because their carbon chains are too short,48 SCFA help to 
maintain an optimal GBA functionality by increasing the availabili-
ty of enterocytes45 that help to reduce gut permeability. Well-con-
trolled gut permeability prevents leakage of pro-inflammatory mol-
ecules that can trigger systemic inflammation and reduce the func-
tionality of the GBA.49,50 Thus, simple carbohydrates (digestible) 
should be limited and complex carbohydrates (non-digestible) 
should be prioritized to maximize gut health and appetite suppres-
sion. Non-digestible carbohydrates remain longer within the gut 
and, like with protein intake, will induce a longer satiety response 
than digestible carbohydrates.51 In contrast, abundant consumption 
of digestible carbohydrates (those high in glycemic index) is associ-
ated with inability to regulate appetite, obesity, and other comor-
bidities,52 further warranting the need to prioritize non-digestible 
carbohydrates during meals.

Fat intake
As with protein and carbohydrate intake, consuming fat elicits 

the secretion of CCK, GLP-1, and PYY. However, a chronic high 
fat intake is associated with a reduced satiety effect by secretion of 
CCK53,54 and GLP-1.55 In contrast, PYY has shown the opposite re-
sponse to a high-fat meal, where a high fat intake increases its secre-
tion and effect.56,57 As such, with a high-fat diet, PYY can promote 
satiety, but the roles of CCK and GLP-1 will be limited. Important-
ly, like carbohydrates, fat can be categorized based on its molecular 
type. The two main categories of interest are saturated fats and 
polyunsaturated fats. For simplicity, saturated fats are considered 
“bad” for health, whereas polyunsaturated fats are generally consid-
ered “good” for health.58,59 As an example, consuming fried foods 
would primarily contribute saturated fats, whereas consuming avo-
cados would primarily contribute polyunsaturated fats. In this con-
text, a high intake of saturated fats is associated with excess eating 
and high blood glucose,58 along with metabolic derangements.60

Another aspect to consider is that availability of CCK, GLP-1, 
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and PYY is associated with other factors. For example, in mice fed a 
high saturated fat diet, CCK concentration was chronically high af-
ter 18 weeks. However, the increase in CCK was not associated 
with an appetite regulatory response but, instead, to excess liver 
damage due to excess fat metabolism61 and hepatic cancer.62 Simi-
larly, at the onset of type 2 diabetes, both a high-fat meal and a 
high-carbohydrate meal showed no increase in PYY postprandial-
ly,63 suggesting that the GBA is not regulating feeding responses 
normally. In contrast, consuming a meal that has been artificially 
sweetened causes no change in GLP-1,64 suggesting that long-term 
consumption of foods that distribute nutrients abnormally could 
chronically affect how the GBA regulates appetite by eliciting inad-
equate secretion of CCK, GLP-1, and PYY. However, novel evi-
dence in gut physiology has demonstrated that GBA activity can 
differ based on the population of enteroendocrine cells irrespective 
of the type of nutrient intake. In other words, the ability for the 
GBA to regulate appetite, irrespective of gut hormones, is to some 
extent determined by the speed at which the VN is stimulated.65 As 
such, fast signal conductivity is critical within the GBA, which is 
why enteroendocrine cells in the gut are now known as neuropod 
cells.66,67 Therefore, the GBA not only relies on adequate gut hor-
monal release to regulate appetite, but also in the sensing of nutri-
ents and subsequent signaling to the VN afferent fibers.

EXERCISE AND APPETITE REGULATION

The appetite regulatory response to exercise is extensive and in-
tricate,68 but this narrative review focuses on a few basic aspects. In 
general, frequent engagement in exercise improves appetite regula-
tion by increasing the availability of CCK, GLP-1, and PYY.69 De-
pending on the intensity of exercise, adaptation of appetite-sup-
pressing hormones can differ.70 In addition, the positive body com-
position changes attributed to exercise adaptations, i.e., reduced fat 
mass and increased fat-free mass, are associated with increased 
availability of appetite-regulating hormones.69,71-73 Therefore, fre-
quent engagement in exercise is recommended to improve satiety 
and overall appetite control. An overall summary of recommenda-
tions for improved appetite control is presented in Fig. 2. 

CONCLUSION

The process of appetite regulation is complex and multifactorial, 
and this review aimed to facilitate the understanding of this topic 
based on effects of nutrient type on the GBA and appetite regula-
tion. A diet that contains adequate amounts of protein, non-digest-
ible carbohydrates, and polyunsaturated fats is important to pro-
mote the availability of CCK, GLP-1, and PYY, which are critical to 
controlling appetite. Combining that type of diet with frequent ex-
ercise would be an effective approach for improving appetite regu-
lation and body composition, which will provide long-term health 
improvements. 
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Figure 2. Summary of recommendations that aim to improve appetite regulation.
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