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Abstract

Each year, approximately 18 million new cancer cases are diagnosed worldwide, and about 

half must be treated with radiotherapy. A successful treatment requires treatment planning with 

the customization of penetrating radiation beams to sterilize cancerous cells without harming 

nearby normal organs and tissues. This process currently involves extensive manual tuning of 

parameters by an expert planner, making it a time-consuming and labor-intensive process, with 

quality and immediacy of critical care dependent on the planner’s expertise. To improve the 

speed, quality, and availability of this highly specialized care, Memorial Sloan Kettering Cancer 

Center developed and applied advanced optimization tools to this problem (e.g., using hierarchical 

constrained optimization, convex approximations, and Lagrangian methods). This resulted in both 

a greatly improved radiotherapy treatment planning process and the generation of reliable and 

consistent high-quality plans that reflect clinical priorities. These improved techniques have been 

the foundation of high-quality treatments and have positively impacted over 4,000 patients to 

date, including numerous patients in severe pain and in urgent need of treatment who might 

have otherwise required longer hospital stays or undergone unnecessary surgery to control the 

progression of their disease. We expect that the wide distribution of the system we developed will 

ultimately impact patient care more broadly, including in resource-constrained countries.
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Memorial Sloan Kettering Cancer Center

Memorial Sloan Kettering Cancer Center (MSK) is a geographically diverse patient-care 

network consisting of a main campus in Manhattan (in New York City) and 20 facilities 

in New York and New Jersey. MSK is the largest and oldest private cancer center in 
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the world and is regarded as one of the world’s leading cancer centers with a tri-fold 

mission of patient care, research, and training. Each year, MSK treats more than 25,000 

patients, including patients suffering from all types of cancer (approximately 400) and trains 

over 3,000 medical students, residents, postdoctoral researchers, and PhD and MD-PhD 

candidates. MSK annually treats about 11,000 new patients with radiotherapy.

What is Radiotherapy Cancer Treatment?

Radiation therapy (radiotherapy), which uses radiation to sterilize cancer cells by damaging 

their DNA, is one of the major modalities of cancer treatment. Radiotherapy can be 

prescribed as the main treatment or can be given in combination with surgery and/or 

chemotherapy, depending on the details of the disease and the overall health of the patient. 

Radiotherapy is often preferred when surgery is unlikely to be well-tolerated. It can also be 

given prior to surgery to reduce the size of the tumor to be resected (i.e., cut out or partially 

cut out), thereby making the surgery safer. Another emerging use is to ablate (i.e., destroy) 

isolated metastatic tumors that have spread from the original tumor. In addition, radiotherapy 

is often given to provide palliative (i.e., noncurative) care for patients, using reduced-dose 

treatments with the goal of decreasing pain or the impact of disease on normal functions, 

thereby improving the quality and dignity of the end-of-life process.

Radiotherapy uses precisely shaped, high-energy beams to kill cancer cells, and is usually 

given from a machine (medical accelerator) outside the body (external-beam radiation 

therapy), most commonly by photons (i.e., X-rays). External-beam radiation therapy is 

the most common form of radiotherapy treatment. Intensity-modulated radiation therapy 

(IMRT), which is the most commonly used form of external-beam radiation therapy, is 

implemented using advanced computer programs to design and deliver converging radiation 

beams from different angles using complex patterns of radiation intensity.

Computerized radiotherapy planning allows the delivery of effective doses of radiation while 

intricately shaping the dose distribution to each patient’s unique tumor anatomy, leading to 

limited morbidity in nearby healthy tissues and organs. Multileaf collimators (MLCs) are 

used to control the shape and intensity (amount per unit time of exposure) of the radiation 

coming from each beam that the medical accelerator delivers (see Figure 1). This highly 

complex pattern of shape and radiation intensity is determined during the planning process 

and is unique for each patient. The MLC is mounted on the head of a rotating linear 

accelerator gantry and uses a set of metal fingers or “leaves” (which are thick in the beam 

direction but thin in cross section) that can move laterally in and out. Analogous to how 

a window shade blocks or emits sunlight depending on the shade’s position, a leaf will 

block or emit radiation transmission depending on the leaf’s position. Such leaf motions, 

with the radiation beam on, thereby build up a pattern of delivered, modulated radiation 

to the patient. Typically, the gantry rotates around the patient and makes multiple stops 

at predetermined angles (typically 7–11) to deliver an angle-specific modulated pattern of 

radiation via moving the leaves while the radiation beam is ‘on’ (this technique is known 

as sliding window). An expert treatment planner determines the beam angles according to 

the patient’s geometry and location of the tumor and surrounding organs and subsequently 

algorithms optimize the leaf movements for all the angles together. The total radiation 
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delivery time varies significantly depending on many factors, including prescription dose 

and machine capability, but it is typically less than 10 minutes.

MSK helped pioneer the development of IMRT and was one of the first institutions to 

clinically deploy IMRT delivery on conventional linear accelerators. It has used IMRT to 

treat prostate, breast, and other cancers since the mid-1990s (Leibel et al. 2002).

The radiotherapy process comprises four main steps, as we illustrate in Figure 2.

1. Imaging (Figure 2A): Patient imaging is performed, typically using computed 

tomography (CT), magnetic resonance imaging (MRI), positron emission 

tomography (PET) imaging, or a combination of these techniques, to obtain a 

detailed digital representation of the patient’s body and the location and extent of 

the disease. For ease of explanation, we will write this paper as if the disease has 

one contiguous location (one tumor) although the work applies to multiple-tumor 

treatment.

2. Contouring (Figure 2B): The tumor and surrounding healthy tissue are accurately 

localized by drawing their borders (contours) on the digital image.

3. Treatment planning (Figure 2C): This step customizes the delivery-machine 

parameters (radiation beams angles, MLC leaf movements) for each patient. The 

leaf movements include the speed of the leaves and thus determine the duration 

of radiation delivery. An expert treatment planner customizes the machine 

settings using FDA-approved treatment planning software, and later consults 

with a physician for final approval or instructions to change the plan. This step, 

which is the focus of this project, is time consuming and labor intensive, and 

plan quality is heavily dependent on the planner’s experience and skill.

4. Treatment delivery (Figure 2D): To deliver the treatment plan, the radiation 

delivery machine rotates around the patient and delivers radiation with different 

MLC leaf positions and shapes from different directions. Treatments are 

typically fractionated, ranging anywhere from a single session in which a high-

dose is delivered, to many weeks of more modest dose delivery per session.

Radiotherapy Treatment Planning

The main objective of radiotherapy is to deliver a sterilizing dose of radiation to the tumor 

to kill cancerous cells without harming the surrounding healthy organs and tissues. Each 

cancer patient’s tumor is unique in terms of its shape and location and the surrounding 

healthy tissue. The machine settings, including the beam angles and beam shapes (defined 

by MLC leaf movements), must be customized based on the patienťs image data and the 

physician's dose prescription for both the tumor and nearby healthy normal tissue. This 

process, referred to as radiotherapy treatment planning, is performed by a medical physicist 
or dosimetrist (hereafter referred to as the “planner”), a highly trained medical professional 

with a physics and medical educational background. This process is a crucial step impacting 

both the treatment outcome and the patient’s quality of life.
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Radiotherapy Treatment Plan Metrics

For a given set of machine settings (accelerator and MLC parameters), the delivered 

radiation dose is simulated using a FDA-approved treatment planning system and is usually 

presented to the user (planner) in terms of dose distribution (Figure 3A) and dose volume 

histograms (DVH) (Figure 3B) for evaluation.

The dose distribution is shown as a three-dimensional (3D) color map laid on top of the 

digital image, representing in a color-coded fashion the amount of radiation dose delivered 

to each part of the patient’s body (Figure 3A). Ideally, we want all parts of the tumor 

to receive the prescribed radiation dose (40 Gy for the example in Figure 3). However, 

because of the need to avoid nearby normal tissue, some loss of uniformity is unavoidable. 

Instead, some parts of the tumor receive more or less than the prescribed radiation dose, 

within an acceptable deviation. We want nearby healthy tissue to receive as little radiation 

as possible. However, due to the steady attenuation of radiation beams as they traverse 

the body, this is not possible. The optimization problem is to achieve the needed tumor 

dose while minimizing the dose given to healthy tissue. The problem is further complicated 

because different tumors require more or less radiation for control, and healthy tissue have 

different inherent tolerances to radiation.

The planner can visually inspect the dose distribution by scrolling through different images. 

A DVH is a convenient two-dimensional (2D) plot for plan evaluation and can be easily 

calculated from the 3D delivered dose. As Figure 3B shows, a DVH curve is associated 

with each organ or tissue specifying the fraction of the volume of the organ (y-axis) that 

receives more than the dose indicated on the x-axis. For example, for the left lung, the point 

indicated by the star shows that 10% of the left lung receives at least a 20 Gy radiation 

dose (V(10%) = 20Gy). It is important that the DVH curve for each organ is below the 

physician’s prescribed DVH points of that organ; in this example, for the left lung, the DVH 

curve should be below the point indicated by the star, which means that at most 10% of 

the left lung should receive a dose of 20 Gy or more. For tumor target volume, the point 

indicated by the star shows that 90% of the tumor receives at least 40 Gy (the prescribed 

dose in this example). Given that the tumor should receive its target volume, the curve 

should be above that prescribed DVH point.

Current Clinical Practice and the Need for the New Paradigm

In modern radiotherapy machines, MLCs usually have 60 leaf pairs with the leaf width 

as small as 0.25 cm and as large as 1.0 cm projected to the patient distance. Each leaf 

can be positioned with sub-millimeter accuracy. In the 1980s, Anders Brahme and others 

recognized that high-dose regions could be shaped more closely to the tumor target if 

modulated beams of radiation were designed carefully using computer algorithms (Brahme 

et al. 1982). This led to the development of IMRT and the associated treatment planning 

process in which a mathematical model and optimization algorithm determine the machine 

parameters (including MLC leaf positions and movements) to best achieve the specified 

clinical goals.
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From the 1990s until today, the most common IMRT planning optimization technique, 

which is still used in most current FDA-approved treatment planning systems, is the 

weighted-sum formulation, wherein the algorithm optimizes the machine parameters that 

minimize the deviation of the realized dose distribution beyond the physician’s prescribed 

clinical goals (i.e., the weighted summation of the deviations of all the specified goals). 

Although IMRT planning has represented a paradigm shift in radiotherapy, and working 

with the optimization parameters (i.e., clinical goals and their weights) is more intuitive 

than working with the machine parameters, it still involves a tremendous amount of trial-

and-error work and the manual tuning of the goals and weights. Accordingly, the treatment 

planner defines a set of goals and weights and runs the optimization algorithm. Then, the 

resultant dose distribution and DVH are generated for evaluation. If they are not satisfactory, 

the planner typically tweaks the parameters and runs the optimization problem again until 

a satisfactory plan is generated, or the process is truncated due to time constraints. For 

example, if the mean dose to the lung exceeds the physician’s tolerance value, then the 

planner might increase the weight associated with the lung mean dose to reduce it, despite 

the possibility that doing so might introduce undesirable issues with the plan (e.g., an 

increase to the esophagus mean dose).

The current treatment planning process thus requires extensive iterative manual tuning of 

the parameters to generate an acceptable plan, and often requires hours of active trial-and-

error experimentation by the planner. Consequently, the quality of treatment plans can vary 

extensively among planners because the process is heavily dependent on the planner’s skill 

and experience. Thus, the entire planning process (which includes other steps not described 

here) is time consuming and labor intensive, and typically requires multiple days. The 

resulting delays can prolong patient hospitalization, or even necessitate surgery to control 

tumor progression or pain for patients in need of urgent treatment.

For the foregoing reasons, the main objective of this project was to develop a fast, 

inexpensive, high-quality, and unbiased treatment planning system, as we outline below.

1. Fast: Reduce the time needed to generate a high-quality plan, particularly for 

patients in severe pain and in urgent need of treatment.

2. Inexpensive: Reduce healthcare costs and resource usage.

3. High quality: Maximize the clinical outcome by delivering sufficient radiation to 

the tumor and minimize the treatment side effects (e.g., swallowing problems, 

rectum bleeding, lung damage) by reducing unintended radiation to the 

surrounding healthy organs. This should be accomplished in a mathematically 

inarguable way, so that planners and physicians have confidence that the solution 

is the best possible.

4. Unbiased: Reduce the variability of treatment quality across clinics and among 

planners within each clinic.

Our method is based on hierarchical constrained optimization. We internally refer to 

this method and our project as expedited constrained hierarchical optimization (ECHO). 

Other methods that have been developed to speed up treatment planning include (1) 
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multiple-criteria optimization (MCO) (Craft and Bortfeld 2008, Monz et al. 2008), and 

(2) knowledge-based planning (KBP) (Appenzoller et al. 2012, Ge and Wu 2019). MCO 

generates a pool of Pareto optimal plans based on a small number of key clinical objectives 

that require a trade-off. A user then navigates among the Pareto plans, selecting a preferred 

plan. Although MCO improves the planning process, the planner still must do the planning 

and the plan quality is therefore dependent on that planner’s experience. KBP, in contrast, 

uses artificial intelligence (AI) and statistical methods to improve the radiotherapy planning 

process. In the AI-based solution, an expert system learns characteristics of previously 

accepted plans to set planning parameters. Such a solution has been shown to increase 

efficiency and reliability above the current clinical practice (i.e., the trial-and-error, open-

loop formulation). The AI-based solution is computationally faster than ECHO, because it 

does not require solving large-scale constrained optimization problems. However, important 

drawbacks of the AI-based approach are that it does not guarantee clinical optimality for 

individual patients, and it relies heavily on the quality of a reference dataset, which it seeks 

to mimic. More importantly, ECHO is easily adaptable to dynamic and changing clinical 

practices in terms of prescription doses and healthy organ criteria; in an AI-based system, 

such changes would require retraining of the entire system.

History of Operations Research in Radiation Therapy

Given that so many journal and publication resources are available today, accurately tracking 

the developments in any field is difficult. We provide a brief history developments of 

operations research (OR) in radiotherapy, which is accurate to the best of our knowledge. 

The use of OR in radiotherapy predates the advent of IMRT. Figure 4 provides an estimate 

of the number of OR publications on radiotherapy. The search was performed on the Scopus 

website (www.scopus.com) using the following terms:

TITLE-ABSTRACT-KEYWORD ((“radiation therapy” OR “radiotherapy”) AND 

(“optimization” OR “operations research”) ).

We highlight some important publications and events in Figure 4. In the 1980s, IMRT 

was developed (Brahme et al., 1982) and the medical physics community applied OR to 

optimize IMRT (Webb 1989). In the 1990s, members of the OR community became aware 

of the application and their interest gained momentum after the Siam Review published 

Shepard et al. (1999) and NCI/NSF held the workshop discussed in Lee et al. (2003a). Up 

to 2020, Siam Review journals included more than 40 publications about radiotherapy and 

INFORMS journals included more than 60 articles. For detailed information, we refer the 

reader to review papers published on this topic (Bortfeld 2006, Ehrgott et al. 2010, Romeijn 

and Dempsey 2008).

Our project has benefited significantly from the previous developments in the field. As a 

result of this work, new ideas and OR techniques have been introduced, and these techniques 

have been implemented clinically so that patients can benefit from advanced OR tools. In the 

Patient Safety and FDA Considerations section, we review the OR tools developed for this 

project and in the Summary of Scientific Contributions section, we summarize the scientific 

contributions of this project. Most of the scientific contributions have been published in 

peer-reviewed journals and we refer the reader to thefor detailed information (Dursun et 
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al. 2021, Hong et al. 2019, Mukherjee et al. 2020, Taasti et al. 2020a, Taasti et al. 2020b, 

Zarepisheh et al. 2019b). Zarepisheh et al. (2019a) describe a published patent application.

Automated Treatment Planning: Challenges and OR Solutions

Table 1 summarizes our six biggest challenges and the OR solutions we developed before 

implementing ECHO in the clinic. We have clinically implemented solutions to the first 

three challenges and are using them to treat patients in our daily clinical routine. We review 

them in this section. The second set of three challenges are in the research and development 

process; we review them in Appendix B. The details can be found in the peer-reviewed 

journals cited in the last column of Table 1.

Challenge 1: Conflicting Objectives

Challenge: As radiation travels through the body, it is delivered to the tumor and also to 

nearby tissue through which it passes. Therefore, there is an intrinsic conflict between the 

goals of delivering enough radiation to the tumor and minimizing the unintended radiation to 

healthy organs. An optimal plan must achieve clinically meaningful trade-offs between these 

conflicts to cure the tumor without unacceptable side effects to the healthy organs.

Solution: This conflict is formulated as a hierarchical constrained optimization problem 

(internally ECHO). For each patient, the machine parameters are optimized by solving two 

large-scale sequential constrained optimization problems. Figure 5 provides a high-level 

description of the optimization problems. The first-level optimization problem (Step 1) 

guarantees an adequate radiation dose to the tumor; the second-level optimization problem 

(Step 2) minimizes high radiation doses to critical healthy organs. Some tissue-tolerance 

dose values are considered as medically so important that they are implemented in 

the optimization problem as firm constraints (with maximum values). The plan delivery 

feasibility and efficiency are ensured using a smoothness constraint, which controls the 

total variation of intensities among the neighboring beamlets. We provide the detailed 

mathematical formulations of Step 1 and Step 2 in ECHO Mathematical Formulation in 

Appendix A.

Novelty: Hierarchical constrained optimization (also called prioritized optimization or 

lexicographic optimization) is a classic optimization technique used to address many 

complex multicriteria optimization problems. The applicability of this technique in 

radiotherapy optimization was introduced in Deasy (2000) and Deasy (2002). It was later 

expanded to four-step optimization models in Wilkens et al. (2007) and Clark et al. (2008). 

Their objectives were to (1) maximize tumor coverage, (2) minimize doses to high-priority 

noncancerous organs, (3) minimize doses to other noncancerous organs, and (4) smooth out 

the intensity profile (also known as the fluence map). Breedveld et al. (2009) introduce 

another variation of this technique—the so-called wish-list where a series of optimization 

problems is solved to meet, as much as possible, the predefined clinical goals, and is 

followed by solving another series of optimization problems.
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Our approach consists of two steps, thus making it computationally more attractive. 

Furthermore, we clinically implemented, validated, and seamlessly integrated our technique 

with our existing FDA-approved clinical software.

Challenge 2: Computational Issues and Modeling Inaccuracies

Challenge: The resultant optimization problems are large with hundreds of thousands 

of variables and constraints (typically approximately 100,000 variables and 500,000 

constraints). To ensure a rapid turnaround and timely patient treatment, the problem must 

be solved in a clinically reasonable time frame (one to two hours). The optimization model 

also has unavoidable, but well-understood, inaccuracies. For example, the optimal beamlet 

intensities may not be perfectly reproduced using MLC leaf movements due to mechanical 

limitations. There are nonnegligible radiation leakage effects through the leaves, which 

cannot be captured and modeled upfront and will only be realized after calculating the final 

dose. Such inaccuracies could degrade the result and lead to a suboptimal plan.

Solution: An influence matrix contains the dose delivered to each voxel from each beamlet 

of unit intensity. The original influence matrix is dense and large with tens of thousands 

of columns (corresponding to beamlet intensities) and hundreds of thousands of rows 

(corresponding to tissue voxels), making it computationally expensive and challenging. 

To address this, we truncate small elements of the matrix to zero to speed up the 

optimization. However, this introduces inaccuracies in the model. We later compensate 

for the discrepancies between the optimization results and the final results by solving 

an equivalent unconstrained optimization problem counterpart generated using Lagrangian 

multipliers (Figure 6).

After solving Step 1 and Step 2 (nonlinear constrained optimization problems), the 

optimal beamlet intensities are then imported into an FDA-approved treatment planning 

system for MLC leaf-movement calculations and accurate final-dose calculations. Then, 

we calculate the discrepancy between the final dose and the optimization dose, solve a 

correction step (Step C) optimization problem, and import the optimal beamlet intensities 

into the FDA-approved treatment planning system for final-dose calculations (Figure 6). In 

ECHO Mathematical Formulation in Appendix A, we provide the detailed mathematical 

formulation.

Novelty: The dose-discrepancy issue is well-known as part of the conventional weighted-

sum method and is usually handled by periodically performing a full-dose calculation during 

the iterative optimization process and incorporating the discrepancy into the optimization 

(Siebers et al. 2002). However, this is not consistent with the constrained hierarchical 

optimization approach because updating the dose values could invalidate the constraints 

added in the previous steps and thus make the problem infeasible. To the best of our 

knowledge, using Lagrangian multipliers to address this issue is a novel solution.

Challenge 3: Nonconvexity of Objective Functions and Constraints

Challenge: Some plan-quality metrics and constraints, that is, DVH constraints (e.g., no 

more than x% of organ Y shall receive more than dose D), are inherently combinatorial 
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and nonconvex, resulting in computationally intractable large-scale mixed-integer nonlinear 

programming (MINLP) problems that cannot be solved in the restrictive clinical timeline.

Solution: We introduce an auxiliary optimization problem, referred to as Step 0, to the 

two-step optimization model. Step 0 essentially solves Step 1 but supplements it with a 

convex approximation of the nonconvex DVH constraints (i.e., relaxing the integrality of the 

binary variables in the corresponding MINLP). Although this convex approximation does 

not guarantee the satisfaction of the constraints, it provides crucial initial information about 

which voxels are likely to receive doses of radiation below that particular DVH-constraint 

dose threshold. Subsequently, maximum-dose constraints are imposed on these low-dose 

voxels to ensure the fulfillment of the DVH constraints in Steps 1 and 2 (Figure 7).

The proposed algorithm is computationally tractable and provides a solution in the 

proximity of the MINLP-based ground truth solution, often in less than one hour. For a 

low-resolution case of a spine tumor, we obtained the ground truth solution by solving 

the MINLP problem in 15 hours, whereas the proposed algorithm converged in only two 

minutes with an equivalent solution (Figure 8).

Novelty: The MINLP has been introduced in the past to handle DVH constraints (Langer et 

al. 1990). Lee et al. (2003b) proposed using a specialized branch-and-bound MINLP solver 

to improve the performance of the MINLP. Despite these advances, solving the MINLP 

problem for an actual large-scale clinical-data problem in an acceptable amount of time 

remained a difficult and unsolved problem. Combining the relaxed MINLP problem with 

an effective heuristic, by taking advantage of the special characteristics of the problem and 

the underlying nonconvex constraint, to solve the real clinical problem within the acceptable 

clinical timeframe is a novel approach. To the best of our knowledge, this is also the first 

time the performance of a heuristic algorithm to handle the DVH constraint has been verified 

by comparing it against the ground truth.

Our clinical implementation of ECHO includes all the technical solutions mentioned in 

Challenges 1–3 and solves Steps 0–2 and the correction step for each patient. All the 

resultant optimization problems are constrained nonlinear problems with only continuous 

variables and are solved using AMPL and the interior point algorithm implemented in 

Knitro.

Patient Safety and FDA Considerations

Any new technique used in a clinical environment should be FDA compliant and safe for 

patients. To resolve this issue, we have integrated our new algorithm (ECHO) with an 

FDA-approved commercial treatment planning system named Eclipse (Varian 2021) (Figure 

9). We use the application programming interface (API) of Eclipse to extract patient data 

needed for optimization; we then send the optimal beamlet intensities back into the system 

after optimization for a final, accurate, dose calculation and plan review. The ultimate plan 

evaluation and delivery are performed in the FDA-approved planning system; therefore, 

additional FDA approval to use ECHO is unnecessary.
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The Department of Medical Physics at MSK has a long tradition of developing and clinically 

deploying fit-for-purpose technical processes for radiotherapy and other biomedical 

engineering challenges, including an early IMRT planning system. It follows software 

quality assurance (QA) methods and performs extensive predeployment testing to ensure 

safe usage. In addition, the challenge of building an IMRT planning engine that is 

dosimetrically accurate is extensive in that many minor aspects must be considered. MSK 

has a rigorous QA procedure to ensure the safe delivery of radiotherapy to all patients. For 

example, all plans for patients who will receive their entire radiation treatment in a single 

session are delivered first on the treatment machine without the patient present using an 

experimental setup to measure and assess the dose accuracy. After each IMRT treatment 

fraction, the machine delivery logs (including all the delivery information) are analyzed to 

ensure that the radiation has been delivered according to the plan.

Benefits

In this section, we review the main benefits provided by ECHO to our patients and to MSK. 

Table 2 provides a summary of the benefits.

Patient-care Quality: Consistent High-quality Plans

Introducing any new radiotherapy regimen into a clinic requires rigorous preclinical study 

and testing. For each cancer tumor site (e.g., paraspinal, prostate, lung), before deploying 

ECHO in our clinic, we run a preclinical study to ensure that ECHO’s use improves 

workflow, saves resources, and improves planning quality. To this end, we randomly identify 

a set of patients who have received treatment in the past using the previous clinical system 

(i.e., manually generated plans) and compare their results with automatically generated 

ECHO plans. We perform this comparison using some common, established clinical metrics 

to evaluate the radiation dose. As an example, for plans for spinal tumors, as part of our 

preclinical study, when we compared 75 ECHO plans with manually generated plans that 

were used for treatment, we found that ECHO typically resulted in better, more consistent 

plans (Figure 10).

Figure 11 illustrates how ECHO can improve the quality of treatment plans by comparing 

an ECHO plan with a manually generated plan in terms of dose distribution and the 

resulting DVHs. The dose distribution demonstrates that an ECHO plan gives less dose 

to the esophagus. The DVH plots illustrate that ECHO delivers more uniform dosage to the 

tumor (i.e., dosage closer to the prescription).

Addressing Patient Needs: Expedited Treatment for Patients in Pain

The optimal management of spine tumors is often time sensitive because of the delicate 

nature of the spinal cord. Even a mild compression of the cord can result in spinal cord 

dysfunction, and permanent disability can result from if cord compression is not relieved 

within 24 hours, thus representing an oncologic emergency. Hence, clinical management can 

be influenced by the time required for a treatment plan. In cases where rapid progression 

of disease near the spinal cord is a concern, patients who otherwise might not need spinal 

surgery may undergo surgery if radiotherapy cannot be planned and executed in a timely 
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manner. With the advent of ECHO planning, high-quality plans can be generated rapidly, 

sparing some patients from spinal surgery. Prior to ECHO planning, some patients were 

kept in the hospital for additional days to allow the treatment planning process to run its 

course before starting radiotherapy. Hence, the time savings resulting from ECHO’s use 

have reduced the number of hospital days in such cases, generating meaningful savings in 

healthcare dollars and a better patient experience. Another advantage of the ECHO process 

is that treatment plans are of equally high quality independent of the planner, thereby 

effectively expanding the resource pool of planners. Furthermore, in healthcare networks 

with multiple facilities, an ECHO plan could be generated at any site within the network, 

independent of where the patient’s images were generated, the planner is located, or at 

which site in the network the patient will receive treatment. This flexibility allows for an 

efficient utilization of resources, and no time is lost waiting for an available planner.

Since 2017, ECHO has been used to produce more than 2,800 clinical plans on an expedited 

schedule for patients with tumors near the spinal cord, enabling quicker commencement 

of treatment, which positively impacted the patients’ quality of life. The ability of ECHO 

to produce a high-quality optimal plan quickly and reliably enabled some patients to be 

treated on the same day of their CT image acquisition and further improved the patients’ 

clinical experiences. The ability to provide same-day imaging and treatment has allowed the 

development of new treatment paradigms, such as using radiation instead of, or in tandem 

with, surgical intervention. For example, preoperative radiation may offer advantages over 

postoperative radiation for hip-metastases patients who are at high risk for hip fracture and 

who require urgent surgical stabilization. Preoperatively, the gross hip tumor is intact, and a 

more compact radiation treatment volume can be used instead of the postoperative setting, 

when the tumor area has been surgically violated and more tissue must be irradiated to 

control any remnants of disease. Patients need not return for postoperative imaging and 

treatment, because imaging, planning, and treatment were performed in one day, just prior 

to surgery. This is particularly useful when postoperative patients require rehabilitation after 

surgery because radiotherapy cannot be administered during the period of postoperative 

rehabilitation, a process that typically lasts several weeks. Hence, the rapid high-quality 

treatment planning that ECHO provides has meaningfully impacted patient care, by reducing 

the number of surgeries performed and length of inpatient hospital stays, and by increasing 

the flexibility of planning resources.

Financial and Resource Benefits

Prior to implementing ECHO, MSK, like many cancer centers, used a commercial planning 

solution that required the manual tuning of the optimization weights of different tissue 

volumes in the planning problem. Because the clinical trade-offs between different types 

of healthy tissue can be patient specific, extensive iterative manual tuning is required to 

generate a satisfactory plan. Using ECHO, all the critical clinical criteria are enforced as 

constraints and satisfied without any manual tuning. The desirable criteria, including more 

dose to tumor and less dose to healthy tissue beyond the specified clinical criteria, are then, 

as much as possible, optimized sequentially. This results in a satisfactory plan without any 

manual tuning or iterations.
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We have studied the impact of ECHO on the efficiency of the planning process, and we 

conservatively estimate that when ECHO performed the planning, productivity improved by 

at least 15% per planner. ECHO is currently in a ramp-up phase, accounting for about 15% 

of all MSK IMRT radiotherapy treatments. We expect to increase this to above 80% of all 

our IMRT planning (i.e., to 53% of all MSK treatment plans) by the end of 2022, and we 

conservatively expect that ECHO will save the equivalent effort of at least 13.5 full-time 

planners at MSK (15% of our planners). The United States has about 4,500 treatment 

planners and the use of ECHO could potentially slow the required growth in number of 

planners needed to treat increasing numbers of cancer patients. The worldwide impact of 

ECHO, particularly in resource-limited regions, would likely be measured as much or more 

in increased treatment capacity and the ability to better meet the need for radiotherapy to 

treat cancer. Thus, given the need for radiotherapy treatments for more than six million 

cancer patients worldwide each year, a number that is projected to increase, ECHO has the 

potential to impact millions of lives annually.

The reduced workload enabled by ECHO may also be used partly to innovate, enabling 

the introduction of new processes to improve treatments that are currently too resource 

intensive, such as automating session-by-session monitoring of accumulated dose quality; 

most patients receive between 3 and 30 separate fractions (i.e., sessions) of radiotherapy.

Since its inception in 2017, ECHO has automatically generated more than 4,000 high-

quality plans in our clinic and the number of ECHO plans is increasing steadily (Figure 

12). It is currently being used for five disease sites: spinal, metastatic, prostate, lung, and 

head-and-neck tumors.

Transportability and Potential Global Impacts

Transportability

ECHO is currently integrated with Eclipse, one of the world’s most common commercial 

treatment planning systems. ECHO could be used in hospitals with this treatment planning 

system, or it could be integrated with other FDA-approved systems. Physician-driven 

clinical criteria (i.e., prescriptions) are embedded in ECHO as template files, but they can 

be customized easily according to practice variations. Some software development is needed 

to make ECHO compatible with other existing commercial treatment planning systems, 

although the optimization algorithm would still be applicable. The software adaptations 

required would be mainly to deal with data communication (i.e., exporting the data for 

optimization and importing the optimized plan back for final calculation). The premise 

of ECHO and the algorithm design is independent of the treatment planning system and 

delivery machine. ECHO can also be adapted for use with other less frequently used types 

of external-beam radiotherapy (e.g., proton beam, carbon ion, combined magnetic resonance 

imaging-linear accelerator systems).

ECHO also provides an excellent platform for future technical advances in radiotherapy. 

Treatments could be monitored offline, after treatment fractions, for necessary planning 

updates based on a patient’s changing anatomy or on any errors that are found in the 

treatment fractions delivered based on routine imaging at the time of treatment.
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Global Impacts: Potential Benefits for Resource-limited Countries/Hospitals

Currently, according to the International Organization of Medical Physics (IOMP), except 

for North America, Europe, and a few countries in Asia, more than 75% of countries 

worldwide do not have accredited training programs for medical physicists or dosimetrists. 

Hence, most regions in the world lack highly skilled professionals to produce clinical 

plans for radiotherapy patients. Therefore, resource-limited countries can benefit the most 

from using ECHO to help improve their standard of the care while reducing the required 

resources.

As noted, physician-provided clinical criteria are embedded in ECHO, and hospitals can 

either customize them according to their needs or use them as is to transfer and share 

knowledge and expertise across institutions (e.g., doses to the tumor and dose constraints 

to healthy tissues). As a global leader in cancer care, MSK has been at the forefront of 

radiotherapy for decades with vast experience and expertise. Our goal of porting ECHO to 

other clinical treatment planning systems would carry MSK’s excellence of radiotherapy 

planning to a wide network of users.

Summary of Scientific Contributions

We have developed and clinically implemented a new paradigm for radiotherapy treatment 

planning, which we refer to as ECHO. ECHO replaces trial-end-error IMRT planning 

methods with an approach that guarantees high-quality treatment plans that respect clinical 

priorities. Using ECHO, high-quality plans are generated rapidly and reliably independent 

of the planner’s experience. It enables expedited treatment for patients in severe pain 

and in urgent need of treatment who otherwise might have to undergo surgery to control 

their disease progression or stay additional days in the hospital awaiting the start of their 

radiotherapy treatment. ECHO furthermore reduces the huge variability in treatment quality 

among human planners within and across clinics. It has impacted over 4,000 patients to date 

and will be expanded to the great majority of all radiotherapy treatment planning at MSK in 

the next two years. The ECHO system will ultimately be explored as a way to impact patient 

care more broadly, possibly with a commercial partner, including in resource-constrained 

countries where access to highly skilled radiotherapy planners is limited and cost-efficient 

resource utilization is required to meet cancer treatment needs.

Advanced OR tools are the main building blocks of ECHO. To the best of our knowledge, 

ECHO is a first of its kind in terms of its clinical implementation and seamless integration 

with an FDA-approved treatment planning system. The scientific contributions of ECHO fall 

into three categories:

1. Building on OR tools that have already been applied in radiotherapy:

• Mathematical modeling of radiation and physics (Zarepisheh et al. 

2019b)

• Hierarchical constrained optimization (Zarepisheh et al. 2019b)

• Robust optimization (Taasti et al. 2020a)
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• Mixed-integer nonlinear programming (Mukherjee et al. 2020)

2. Identifying OR tools never applied in radiotherapy

• Bayesian Optimization (Taasti et al. 2020b)

• Sequential convex programming (Dursun et al. 2021)

3. Pushing the boundaries of OR

• Lagrangian methods to correct modeling inaccuracies (Zarepisheh et al. 

2019b)

• Customized SCP (Dursun et al. 2021)

• Heuristic MINLP (MINLP + application domain knowledge) 

(Mukherjee et al. 2020)
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Appendix A: Mathematical Modeling

General Mathematical Modeling

In this section, we briefly introduce some basic and well-known mathematical modeling of 

the IMRT problem. In a typical IMRT radiotherapy treatment plan with seven to nine beam 

gantry angles, the major machine parameters to be optimized are the MLC leaf positions 

and movements. For modeling purposes, the patient’s body is discretized into small 3D 

elements called voxels, and each beam is discretized into small 2D elements (in the plane 

perpendicular to the beam direction) called beamlets (Figure A.1). A radiation intensity 

is associated with each beamlet, thus creating a beamlet intensity map from each gantry 

angle. The MLC leaf positions/movements are optimized in two phases. The intensities of 

the beamlets are optimized in Phase 1. In Phase 2, another optimization problem is run to 

optimize the MLC leaf positions/movements to best reproduce the Phase 1 optimal beamlet 

intensities (Figure A.1.2). In principle, any beamlet intensity can be reproduced perfectly 

by leaf movements; however, due to engineering considerations, delivery may take a long 

time. If the beamlet intensities are smooth (i.e., the intensity of the neighboring beamlets 

do not vary significantly), the optimal intensities can be reproduced efficiently and delivered 

in a reasonable amount of time. Therefore, smoothness of the beamlet intensities is usually 

forced or encouraged in the optimization process. All the proposed optimization problems in 

this paper deal with the optimization of the beamlet intensities and therefore belong in Phase 

1. Phase 2 is carried out in an FDA-approved treatment planning system, using its algorithm 

and our optimal beamlet intensities.
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Figure A.1. 
In A.1.1, the Problem Is Discretized for Mathematical Modeling; in A.1.2, Beamlet 

Intensities Are Optimized First and Are Then Realized Using Different Multileaf Collimator 

(MLC) Leaf Positions

A.1.1: The patient’s body and beams are discretized into voxels and beamlets, respectively, 

and the dose delivered at each voxel from each beamlet is calculated.

A.1.2: MLC leaves move, with the radiation beam on, to build the radiation beams with 

different shapes and intensities and thus realize the optimal beamlet intensities.

The radiation dose, which is delivered to each voxel j(j = 1, …, J) at the unit intensity of 

each beamlet i(i = 1, …, I), denoted by aji, is calculated using a dose calculation algorithm 

(using the patient’s CT scan as a main input). The values aji define the dose influence matrix 
A ∈ RJ×I, with rows and columns corresponding to the voxels and beamlets, respectively 

(i.e., beamlets from all candidate beams are concatenated). The number of beamlets is 

typically on the order of 10,000, whereas the number of voxels is on the order of 100,000. 

We denote the intensity of the beamlets by x ∈ RI and the delivered dose at the voxels by d 
∈ RJ. Given the definition of A, there is a linear relationship between the beamlet intensities 

and the delivered dose: d = Ax. The main optimization variables are beamlet intensities x; 

the optimization problem is to search for x with the most desirable delivered dose d. As we 

mention above, the beamlet intensities of each beam should also be smooth so they can be 

reproduced efficiently later using MLC leaf movements.

Each voxel belongs to an organ s ∈ S. The influence matrix corresponding to each organ is 

denoted by As (Asx represents the dose delivered to the voxels of organ s). We assume that 

a function fs(Asx) measures the quality of the delivered dose at organ s, and the smaller the 

value, the better. For example, for a healthy organ, it could be a maximum or mean dose 

delivered to the organ; for the tumor, it could be the accumulated quadratic deviation of the 

dose to the prescription dose for all tumor voxels. Assume that a function h(x) measures 

the quality of the beamlet intensities in terms of smoothness, and the smaller the value, 

the better. For example, the intensity variation for each beamlet can be calculated as the 
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accumulated deviation of that beamlet intensity from all its neighboring beamlets. Then, 

h(x) can be defined as the accumulated intensity variation for all the beamlets. The general 

optimization problem then takes the following form:

Min f1 A1x , …, fs Asx , ℎ x ,  s . t .   x ≥ 0 .

This is therefore a multicriteria optimization problem with physical nonnegativity 

constraints on the beamlet intensities. The main challenge is finding a good trade-off 

between different objectives. The common weighted-sum method does this by minimizing 

the weighted sum of the objectives; however, it requires manual tuning of the weights in a 

trial-and-error fashion.

ECHO Mathematical Formulation

Figure A.2 includes the detailed mathematical formulation of the optimization problems. 

Table A.1 provides a full description of the notations used in the optimization problems. In 

Step 1, the optimization problem searches for the best tumor irradiation by minimizing the 

deviation of the dose from the prescription dose while respecting all the maximum and mean 

dose constraints on tumor and healthy organs. The results obtained in Step 1 are preserved 

by converting the objective function into a constraint for Step 2, with a slight relaxation 

parameter to increase the search space in the subsequent optimization step. In Step 2, the 

healthy organs’ doses are minimized subject to the maximum and mean dose constraints 

of Step 1, plus the constraint added to preserve the results of Step 1. The smoothness 

of the optimal beamlet intensities is guaranteed by constraining h(x) in both optimization 

problems, and further improvement is also encouraged by adding h(x) into the objective 

function of both problems. Function h(x) measures the total variation in beamlet intensities 

as follows:

h x = w1 ∑
b∈B

∑
i ∈ Ib

xi − xRi
2

2
+ w2 ∑

b∈B
∑

i ∈ Ib
xi − xLi

2
2

where B is the beam indices, Ri/Li is the beamlet index of the right/lower neighbor of 

beamlet i, Ib is the beamlet indices of beam b, and w1 and w2 are the smoothing weights. 

The first term in h(x) measures the total variation in the X direction (i.e., leaf movement 

direction) and the second term accounts for the Y direction. Given that the smoothness in the 

leaf movement direction is more important, we therefore set w1 > w2 (w1 = 0.6, w2 = 0.4 in 

our implementation).

After Step 1 and Step 2 are solved, the optimal beamlet intensities are imported into an 

FDA-approved treatment planning system for accurate final-dose calculation and to compute 

the discrepancy between the final dose and the optimization dose (Δ). The correction step 

(Step C) is then solved to account for discrepancies and correct them. The Lagrange problem 

(solved in Step C) represents both Steps 1 and 2 for the optimization problem. The Lagrange 

counterpart is modified slightly (Ax replaced by Ax + Δ) to account for the dose discrepancy. 
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Constraint (C.1) is added to limit the search space to the vicinity of xII so that Δ is still a 

valid dose discrepancy.

Figure A.2. 
In the Figure, We Provide the Detailed Mathematical Formulations of ECHO’s Steps

Table A.1.

The Table Lists the Notations We Use in Our Mathematical Formulation

Symbol Description

x Fluence map

p Prescription dose

A Influence matrix

s Structure index

A s Influence matrix corresponding to structure s

ds
max Maximum dose limit for structure s
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Symbol Description

ds
mean Mean dose limit for structure s

xI, xII Step 1, Step 2 optimal solution

q s q parameter for structure s

η Slip parameter

U h Upper bound for total variation of beamlet intensities

g k Constraint k of Step 2

λ j Lagrange multiplier of Constraint j

Δ The discrepancy between the dose from Step 2 and final dose calculation

ϵ Correction step search space constraint

card(d) Cardinality of d (i.e., the number of elements)

Appendix B: Challenges and OR Solutions (in Research and Development)

In this appendix, we review three challenges and their successfully prototyped OR solutions. 

We have not yet implemented these solutions in clinical practice.

Challenge 1: Continuous Delivery of Radiation

Challenge:

IMRT delivers radiation from a few beam angles. In a more recent radiation delivery 

technique, volumetric modulated arc therapy (VMAT), the gantry rotates and delivers 

radiation continuously. Because the beam is always on in this technique, it provides a shorter 

delivery time. VMAT is approximately twice as fast as standard IMRT and is a method of 

choice for treating tumors in some disease sites. However, VMAT represents a much larger 

and more challenging optimization problem than IMRT. On one hand, VMAT optimization 

involves many more beams than IMRT because of the continuous delivery of radiation. On 

the other hand, the continuous gantry rotation does not allow the beam intensity modulation 

at each beam; therefore, unlike IMRT, we cannot optimize the beamlet intensities first and 

convert them to apertures later. VMAT requires the optimization of leaf positions directly, 

which has a nonconvex relationship with the delivered radiation dose to the patient body.

Solution:

Our research meets this challenge using SCP. The idea is to solve this nonconvex problem as 

a sequence of simplified convex approximations. The main challenge is how to create these 

approximations by taking advantage of the special structure of the problem. We generate 

convex approximations in our application by restricting the collimator leaf movements at 

each iteration (Dursun et al. 2021).

SCP is a heuristic algorithm, as we illustrate in Figure B.1. We validated its performance 

by comparing the result against the ground truth obtained using an MINLP on a simple and 

aggressively down-sampled problem for which we can computationally afford to solve the 

resultant MINLP problem. Figure B.2 shows that SCP generates results that are similar to 

the ground truth but in a fraction of time (~2 minutes versus ~25 minutes).
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Figure B.1. 
The Schematic Illustrates the Concept Underlying Sequential Convex Programming

Notes. In the figure on the left, a one-dimensional nonconvex function f (solid line) is 

approximated locally at x0 by a convex function f  (dashed line). The optimal solution of f  is 

found (x1) and used as the next solution. In the figure on the right, a nonconvex function f is 

approximated globally at x1 by f  whose optimal solution x2 is used as the next solution.

Figure B.2. 
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The Effectiveness of the Sequential Convex Programming Technique to Handle Nonconvex 

VMAT Optimization Is Illustrated by Comparing Its Results Against the Ground Truth 

Obtained by Solving the Corresponding MINLP Problem

Novelty:

To the best of our knowledge, this is the first VMAT optimization technique equipped with a 

global search strategy to promote the global convergence and provide a near-global optimal 

solution. The gradient-based technique, which is the basis of many current commercial 

implementations of VMAT (Unkelbach et al. 2015) suffers from the local optimality and the 

quality of the plan heavily relies on providing a good initial point, whereas our algorithm is 

fairly insensitive to the initialization, as shown in our experiments. This is also the first use 

of SCP for radiotherapy optimization and the first time the quality of a heuristic algorithm of 

VMAT is verified by comparing it against the ground truth solution.

Challenge 2: Beam Angle Selection for Proton Therapy

Challenge:

The selection of the beam angles from which the radiation is delivered to the patient is 

another interesting and challenging problem. It is especially important in proton therapy, 

where high-energy protons are used instead of photons as a source of radiation. In this 

modality, the treatment is usually delivered from only two to three beam directions. 

Choosing two to three beams from the large number of possibilities is a challenging 

combinatorial optimization problem.

Solution:

Bayesian optimization, which we use to address this challenge, is a global optimization 

technique suitable for smooth complex functions without an explicit expression, as is 

the case for beam angle selection problems. For this problem, the quality of a set of 

beams is only realized after solving the corresponding optimization problem; therefore, 

the optimization function is unknown. The key concept in Bayesian optimization is to 

leverage the points at which the function has already been evaluated to create an estimate 

of the unknown function to guide the optimization. For our application, we run ECHO for 

some initial beam angle candidates and rate the resultant treatment plan for each beam 

configuration using a clinically relevant treatment-score function. Bayesian optimization 

iteratively predicts the treatment-score candidates that have not yet been evaluated to find 

the best candidate to be optimized next with ECHO. Our experiments on five head-and-neck 

patients show that by integrating ECHO with Bayesian optimization, we can find the optimal 

beam selection by evaluating at most only 4% of all potential beam configurations (Taasti et 

al. 2020b).

Novelty:

For the conventional weighted-sum method, different optimization schemes have been 

suggested for beam angle selection, including the exhaustive search method (Meedt et al. 

2003), and mixed-integer programming (Lee et al. 2003b, Lim et al. 2008). To the best 

of our knowledge, this is the first automated treatment planning system with beam angle 
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selection and also the first application of Bayesian optimization in radiotherapy treatment 

planning.

Challenge 3: Uncertainty Management for Proton Therapy

Challenge:

The outcome of radiotherapy treatment can be compromised by unavoidable uncertainties, 

such as patient setup errors, during the treatment. The affects are even more pronounced for 

proton therapy compared with the use of photons due to the sharp dose fall-off of protons.

Solution:

We equip ECHO with a robust optimization platform by simulating various errors and then 

optimizing the treatment plan with the objective of achieving a good treatment plan even 

in the presence of error scenarios. We combine the objective functions of the individual 

scenarios using the p-norm function. The p-norm with a parameter p = 1 or p = ∞ results 

in the stochastic or the worst-case approach, respectively; an intermediate robustness level is 

obtained by employing p-values between 1 and ∞.

In the example we show in Figure B.3, the uncertainty spread is much smaller for the robust 

plans in pink, compared with the nonrobust plans in blue.

Figure B.3. 
The Figure Illustrates Bands of Possible Delivered-Dose Volume Curves for the Tumor (Left 

Figure) and Parotid Gland (Right Figure) for Robust (Red) and Nonrobust (Blue) Plans

Note. The P-norm function with p = 2 is used in robust optimization.

Novelty:

Robust optimization has been introduced in the past for the conventional trial-and-error 

weighted-sum method (Unkelbach et al. 2018), however, this is the first work that addresses 

automated robust planning. Moreover, this work is novel in terms of using p-norm to adjust 

the level of robustness and fill the gap between the two common extreme robust optimization 

approaches (i.e., stochastic and worst-case methods).
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Figure 1. 
The Figures Illustrate the Process by Which Multileaf Collimators Work

1A: The Multileaf collimator (MLC) is mounted on the linear accelerator gantry’s head, 

facing the patient.

1B: A “beams eye view” provides a closer look at the MLC. A typical MLC has 60 tungsten 

leaf pairs with each leaf width between 0.25cm and 1.0 cm. The total MLC size projected to 

the patient ranges from 20cm to 40cm.

Notes. The radiation delivery machine shapes the beams by passing them through the MLC 

(Figures 1A and 1B). The leaves of an MLC move independently and typically form many 

different open patterns that sum up to a modulated intensity profile for that gantry angle 

(beam).
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Figure 2. 
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The Pictures, Which Were Taken at MSK, Illustrate the Four Main Steps of Radiation 

Therapy

2A. Imaging: the patient’s digital image is acquired using an imaging device (e.g,. CT, MRI, 

PET).

2B. Contouring: A physician defines and draws the borders of the tumor and healthy organs 

on the digital image.

2C. Treatment Planning: An expert planner (e.g., dosimetrist or physicist) uses software to 

develop the plan and customize the machine parameters. A physician (radiation oncologist) 

reviews the final plans.

2D. Delivery: The delivery machine rotates around the patient and delivers radiation from 

different directions.
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Figure 3. 
The Graphics Illustrate Dose Distribution (3A) and a Dose Volume Histogram (DVH) (3B), 

Which Are the Two Main Plan Evaluation Tools

3A. Dose distribution is a three-dimensional color-coded map showing how much radiation 

is delivered to different organs. The high-dose radiation is focused on the tumor.

3B. DVH is a two-dimensional plot, with a curve for each organ, specifying the fraction of 

the volume of the organ receiving at least a specified amount of dose.

Note. The prescription dose of 40 gray or Gy (a unit of medical radiation expressing in 

joules per kilogram the absorbed energy per unit of mass tissue) is desired at the tumor for 

this illustrative prostate example.
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Figure 4. 
The Graph Shows the Annual Number of OR Publications on Radiotherapy and Highlights 

Important Publications and Events
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Figure 5. 
The Graphic Shows a High-level Overview of the ECHO Framework

Note. The arrow indicates how the Step 1 optimization results are carried over to Step 2 as 

slightly relaxed constraints.
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Figure 6. 
The Correction Step (Step C) Adjusts For Discrepancies Between the Optimization Results 

and the Final-dose Calculation, Which Is Performed Within an FDA-approved Treatment 

Planning System
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Figure 7. 
We Use a Heuristic Technique to Handle Nonconvex DVH Constraints by Adding Step 0 to 

the Problem Using a Convex Approximation of the Nonconvex Constraints and by Adding 

Maximum Dose Constraints on Lose-dose Voxels in Step 2 and Step 3
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Figure 8. 
The Effectiveness of the Heuristic Technique Used to Handle Nonconvex DVH Constraints 

Is Illustrated by Comparing Its Results to the Ground Truth Obtained by Solving the MINLP 

Problem
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Figure 9. 
The Graphic Illustrates the Integration of the ECHO System with an FDA-approved 

Treatment Planning System Using API Scripting

Notes. A planner runs ECHO from an FDA-approved system and all the patient data are 

transferred to MSK servers for optimization. The optimal beam intensities are imported back 

to the clinical system for final dose calculations and plan evaluation.
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Figure 10. 
The Graphic Shows a Comparison of Automated ECHO Plans (Blue Bars on the Left) and 

Manually Created Clinical Plans (Orange Bars on the Right) for 75 Paraspinal Plans with 

Three Prescription Schemes (25 Plans Per Scheme)

Notes. As the left plot shows, ECHO delivers more radiation to the tumor (a higher value is 

better in (a)); as the right plot shows, ECHO delivers less radiation to the healthy organs (a 

lower value is better in (b) and (c)). For statistical tests, we used a Wilcoxon signed-rank test 

and considered p < 0.05 as statistically significant. For example, for a prescribed treatment 

dose of 24Gy × 1 in (a), ECHO (blue bar) delivers at least 95% of the prescription dose to 

a larger volume of the tumor compared with the manual plan (orange bar) with statistical 

confidence intervals of p=0.08.
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Figure 11. 
The DVH and Dose Distribution Reveal that an Automated ECHO Plan Preserves More of 

the Esophagus than a Clinical, Manually Created Plan

A: Dose distribution of the clinical manual plan

B: Dose distribution of the ECHO plan

Note. The white horizontal line on the DVH (Relative Dose %) represents the prescription.
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Figure 12. 
The Graphic Shows the Monthly Number of ECHO Plans Used at MSK Since ECHO’s 

Inception
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Table 1.

The Table Provides a Summary of the Challenges, OR Solutions, and Corresponding Publications

Implementation Status Challenge OR Solution Publication

Clinically Implemented Conflict between tumor irradiation and 
healthy tissue sparing

Hierarchical constrained nonlinear 
optimization

(Zarepisheh et al. 2019b)

1- Solving large-scale constrained 
optimization problems within restrictive 
clinical time frames
2 - Modeling inaccuracies

Solving a problem with a truncated 
influence matrix first and accounting 
for inaccuracies later using Lagrangian 
methods

3 - Nonconvex clinical criteria Mixed-integer nonlinear programming 
combined with an effective heuristic

(Mukherjee et al. 2020)

Research/Development Continuous delivery of radiation 
(VMAT)

Sequential convex programming (SCP) (Dursun et al. 2021)

Beam angle selection for proton therapy Bayesian optimization (Taasti et al. 2020b)

Management of treatment uncertainties 
for proton therapy

Robust optimization with p-norm function 
to control the level of robustness

(Taasti et al. 2020a)
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Table 2.

We Summarize the Benefits Provided by ECHO Compared With the Clinical Practice Before ECHO’s 

Implementation

Benefit category Comparison of ECHO 
with the clinical 
practice

Benefits

Cancer-care quality Faster Shorter time to treatment (shortening the average full-treatment planning time, which 
includes plan generation and QA processes for nonexpedited cases, by one day, from five 
days to four days).

Avoidance of unnecessary surgeries

Enabling of same-day treatment for patients in urgent need

Higher quality Expectation of less radiation-induced side effects (e.g., 18% less maximum dose to 
esophagus on average for spine patients treated with 24Gy × 1)

Expectation of better disease control (e.g., 2.5% increase in the fraction of tumor volume 
receiving at least prescription dose (2.5% increase in V(100%))

Less variability High-quality plan regardless of planner’s experience (e.g., tumor V(100%) ranged between 
91% and 100% with ECHO versus a range of 79% to 100% with manual plans)

Financial/Resource Faster Shorter hospital stays for patients

Less expensive Increased productivity by at least 15% per planner when using ECHO
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