Skip to main content
. 2021 Dec 1;126(12):e2021JE006875. doi: 10.1029/2021JE006875

Table 1.

Values of Doodson Numbers, Delaunay Angles, Tidal Arguments, Tidal Frequencies (ω), and Integer Sets jMq, jWq, and jΩq (See Text), for the 14 Tidal Constituents Used in Our Orbital Dynamics Model a

Constituent Doodson number Delaunay angle Tidal argument Frequency ω
jM
jW
jΩ
Long‐period tides
Mf
075,555
2F+2Ω
2L
2n
2 2 2
Mm
065,455
l
l
dldt=ndω¯dt
1 0 0
Diurnal tides
K1
165,555 Constant
θ
ωE
0 0 0
O1
145,555
2F+2Ω
θ2L
ωE2n
2 2 2
P1
163,555
2F+2Ω2D
θ2L
ωE2n
0 0 0
Q1
135,655
2F+2Ω+l
θ2Ll
ωE2ndldt=ωE3n+dω¯dt
3 2 2
Ω (K1 nodal) 165,565
Ω
θΩ
ωEdΩdt
0 0 1
L+F (O1 nodal) 145,545 2F + Ω
θLF
ωEd(L+F)dt=ωE2n+dΩdt
2 2 1
Semi‐diurnal tides
K2
275,555 Constant
2θ
2ωE
0 0 0
M2
255,555
2F+2Ω
2θ2L
2ωE2n
2 2 2
S2
273,555
2F+2Ω2D
2θ2L
2ωE2n
0 0 0
N2
245,655
2F+2Ω+l
2θ2Ll
2ωE2ndldt=2ωE3n+dω¯dt
3 2 2
Ω (K2 nodal) 275,565
Ω
2θΩ
2ωEdΩdt
0 0 1
L+F (M2 nodal) 255,545
2F+Ω
2θLF
2ωEd(L+F)dt=2ωE2n+dΩdt
2 2 1
a

Doodson numbers follow the convention used in J. G. Williams and Boggs (2016, see their page 98) and Petit and Luzum (2010, see their Table 6.7).