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Abstract 

Impacting over 3.9 billion people, dental cavities requires a trained dentist for diagnosis. Unfortunately, barriers such 
as dentophobia, limited dentist availability, and lack of dental insurance prevent millions from receiving care. To 
address this, an Artificial Intelligence system was developed that detects cavity presence on photographs and visually 
explains the rationale behind each diagnosis. While previous systems only detected cavities on one extracted tooth 
showing one tooth surface, this study’s system detects cavities on photographs showing multiple teeth and four tooth 
surfaces. For training, 506 de-identified images from online sources and consenting human participants were 
collected. Using curriculum learning, a ResNet-27 architecture proved to be most optimal after achieving 82.8% 
accuracy and 1.0 in sensitivity. Visual explanations for the system’s diagnoses were also generated using Local 
Interpretable Model Agnostic Explanation. This system can explain its diagnoses to users in an understandable 
manner, which is a crucial skill employed by dentists.

Introduction 

Dental cavities rank as the most prevalent chronic disease worldwide [1]. While cavity detection requires the 
services of a trained dentist, 1 in 3 Americans don’t visit a dentist annually due to cost or dentophobia [2]. 
Additionally, chances of proper cavity diagnoses are lowered in developing nations, as the dentist to patient ratio is 
disproportionate (i.e., 1: 1,250,000 in Ethiopia [3]). Due to various financial and infrastructural barriers, millions 
lack proper dental care. As a result of limited dental resources, 2.4 billion people also suffer from untreated tooth 
decay, which can lead to toothaches and periapical abscesses [4]. Previous studies have tried to automate cavity 
detection by developing deep learning (DL) classifiers that detect cavities on X-ray images [5-6]. Unfortunately, 
these systems aren’t accessible to many worldwide as X-ray images can cost over $180 per series and require a visit 
to the dentist [7]. Furthermore, aside from dental professionals, most people aren’t familiar with X-ray images. As a 
result, even if X-Ray imaging was made accessible at much lower costs, end-users may also have a difficult time 
trusting a system’s diagnosis that utilize such images that they can’t interpret themselves. To address the above 
limitations, we have developed a DL diagnostic system that detects cavity presence on regular photographs that can 
be captured by mobile devices. By using such photographs, this system can be used worldwide as over 3 billion 
people have built-in cameras in their smartphones of which 45% are from emerging economies [8]. Aiming to also 
gain users’ trust, the system utilizes state-of-the-art explainability algorithms to provide users visual explanations 
that highlight the rationale it took while making each diagnosis.  
 
The most similar and relevant study to our work is the one reported by Berdouses et al. [9]. Using a random forest 
algorithm, they detected and highlighted cavity presence on photographs showing only a single tooth. In practice, 
however, users would provide images showing multiple teeth. Berdouses et al.’s system was also trained to detect 
cavities only on the occlusal tooth surface. Our system is not only capable of detecting cavities on photographs 
showing multiple teeth, but even goes two steps further by detecting cavities on three more tooth surfaces in addition 
to providing user-friendly visual explanations. 
 
In the following sections of this paper, we explore previous research, identify related products available, discuss the 
benefits of explainable AI, and share the proposed methodology. We then conclude with our reported findings and a 
discussion highlighting future research and system’s application in developing nations.  
 

Related Work 

Technological and Financial Limitations of Current Diagnostic Methods.  While diagnosing cavities, dentists 
often utilize x-ray machines or optical diagnostic devices such as the DIAGNodent™, DEXIS CariVu™, and the 
Canary System™. However, there are many limitations associated with the optical diagnostic devices mentioned 
above [10]. Instead of detecting Streptococcus mutans (the cavity-causing bacteria which resides at the cavity), the 
DIAGNodent only detects fluorescence emitted by bacterial porphyrins, a common bacterium found everywhere in 
the mouth. The use of trans-illumination prevents the CariVu from detecting cavities on smooth surfaces and around 
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filling, while the Canary System’s limiting factor is cost. At $16,000, the Canary System costs three times more than 
the CariVu at $5,295 [11]. Above all, these systems’ outputs require a trained dentist to interpret. 

Visual Examination. Typically, a dentist reaches his/her diagnosis during a visual examination. During an exam, a 
dentist can identify a patient’s cavity, inform the patient about the cavity’s development, and suggest changes to the 
patient’s oral routine. As a visual examination mainly relies on a dentist’s trained eye, this method is the most cost-
efficient from an equipment perspective. However, visual examination still has one requirement that prevents millions 
of people from receiving a proper cavity diagnosis; the method requires a dentist. Receiving a dentist’s diagnosis, in 
general, is difficult for many as cost, fear of pain, and lack of dental insurance pose as barriers [12]. Some of these 
barriers could be addressed with an AI diagnostic system that automatically detects cavity presence and provides a 
diagnostic explanation at lower cost and without an initial dental visit.  

Previous Research in the Use of AI in Cavity Detection. 
AI has been applied to several problems in medical 
imaging. From melanoma detection [13] to breast cancer 
prediction [14], as well as for diabetic retinopathy diagnosis 
from fundus imaging [15]. However, research on the 
application of AI in cavity detection is still limited. The 
study by Berdouses et al. used Random Forest (RF) and 
instance segmentation to classify and highlight cavities in 
103 images with 80% accuracy. The study’s dataset 
labelling was done using the International Caries Detection 
and Assessment System (ICDAS) rubric (Figure 1).  
 
Limitation of Previous Research. While the above study by Berdouses et al. highlighted AI’s potential in the 
dentistry field, the images and algorithm used did not reflect field conditions. To elaborate, the study’s images were 
not reflective of what an operator of a cavity classifier would receive from future users. Each of their training 
images contained a single tooth, an assumption that is not realistic in practice as patients’ images would consist of a 
mouthful of teeth. Additionally, their RF algorithm was only trained with images showing the occlusal tooth surface. 
As a result, the algorithm was untrained in detecting cavities on labial, buccal, and lingual tooth surfaces. The 
study’s ML classifier also required a data scientist to physically extract each image feature needed to make a 
diagnosis. To address the limitations, present in Berdouses et al.’s work, our study aims to develop a more efficient 
system that uses deep learning to automatically detect cavity presence on photographs showing multiple teeth and 
several tooth surfaces (occlusal, labial, buccal, and lingual).  
 
Benefits of Using Photographic Color Images over X-Rays. There are many studies that have trained DL 
classifiers to detect cavities on X-ray images [5-6].  Although X-ray images are informative, they still require a 
costly visit to the dentist as X-ray machines aren’t portable. For the millions of people who can’t afford a dental 
visit, any classifier requiring X-rays is difficult to access. In contrast, photographic images of teeth are easier to 
obtain as over 3 billion people worldwide have built-in cameras in their smartphones. Cheaper options are available 
as well, such as intraoral cameras for under $35.00. With regards to user accessibility, many aren’t familiar with 
what their teeth look like in an X-ray image, but everyone is familiar with what their teeth look like in a photo. Thus, 
users can easily interpret and trust a classifier’s diagnosis on photographic images, with the help of explainable AI 
techniques such as Local Interpretable Model-Agnostic Explanation (LIME). 
 
Local Interpretable Model-Agnostic Explanation (LIME). 
Trust in AI is an emerging field. A popular explainer algorithm 
applied on image classifiers to develop trust with end-users is 
called LIME [16]. This algorithm promotes trust by presenting 
a visual explanation for a given model’s prediction. It produces 
the explanation by approximating the behavior of the complex 
model with very simple linear models (i.e. hyperplanes). For a 
given medical image, LIME can overlay a visual explanation 
on top of the image, highlighting the important regions present 
in the image that influenced the classification result. Such 
explanations help the end user understand the rationale behind 

Figure 2. Visual shows a general overview of the 
LIME algorithm (Arteaga, 2019). 

Figure 1. International Caries Detection and Assessment 
System (ICDAS) clinical scoring rubric used by dentists. 
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the model’s diagnosis (Figure 2). While LIME would be extremely effective, it has not been applied to cavity 
detection on photographic color images to our knowledge.  
 
Methodology  

General Overview. The following methodology was used to develop an AI diagnostic system that detects cavity 
presence on photographs and visually explains the rationale behind each diagnosis using an algorithm called LIME. 
The aim of the study was to select an ANN architecture and training approach that was optimal for detecting 
cavities. The architectures we experimented with included a hand-designed 12-layer Convolutional Neural Network 
(CNN) and various extensions of pre-trained image classifiers (ResNet-18, ResNet-27). As training data was limited, 
two-stage curriculum learning was applied to better train the networks. In addition, the capabilities of LIME were 
explored to provide visual explanations that could be easily interpreted by the end-users.  
 
2019 Web-Searched Dataset. To train the models to detects 
cavities on photographic color images, 314 de-identified 
photographic color images showing cavitated or healthy teeth 
were collected. These images were taken from online sources 
(dental blogs, dental presentations, and journals). A dentist was 
then contacted to professionally diagnose/label the images based 
on the International Caries Detection and Assessment System 
(ICDAS) rubric. The cavities present in the dataset were 
representative of all levels of decay. This is evident as the dentist 
used all ICDAS class values ranging from 0 (no cavity presence) 
to 6 (extensive lesion) to label the dataset (Figure 3). Images labeled ICDAS class 0 (no cavity presence) were 
represented with label - 0, and images labeled with ICDAS classes 1-6 (cavity presence) were represented with  
label - 1. However, all ICDAS classes were used to analyze ANN’s performance. Using the labeling method above, 
out of the 314 images, 185 images had no cavities and 129 images had at least one cavity. These 314 were then 
divided into the 251 training images (80%) and 63 testing images (20%).  
 
12-Layered Hand Designed CNN. The first ANN architecture experimented with 
was a 12-layered Convolutional Neural Network (CNN), implemented on the DL 
framework, PyTorch. This CNN's architecture was designed from scratch (Figure 
4) with random weights. The training method used was simple supervised learning, 
in which the CNN gradually adjusted its weights using back propagation after 
calculating its loss. As there are no public datasets available exhibiting cavitated 
and healthy teeth images, the CNN trained with limited data. Under these 
circumstances, supervised learning on a CNN starting with random weights was 
not the right approach as performance was negatively impacted. Hence, we 
resorted to more advanced DL techniques to enhance performance. 
 
Phase 1 of Training: Transfer Learning. To improve performance while training 
with limited data, transfer learning was used. It is well known in the deep learning field that low-level features (ex. 
lines or curves) are generic features that are present and learnable on any large image training dataset (even a dataset 
of cats and dogs). When dealing with limited data, a model’s performance is maximized if it previously learns 
general low-level features on a larger dataset independently, retains that knowledge, and then specializes in learning 
the higher-level features using the limited dataset. As a result, we experimented with two general purpose CNN 
models (ResNet-18 and ResNet-27) that were previously trained on the ImageNet1K dataset, which has over 1.2 
million images [17]. In terms of architecture design, the ResNet-18 model had 18 convolutional layers with residual 
blocks and 1 fully connected layer. Additionally, the ResNet-27 had 27 convolutional layers with residual blocks 
and 1 fully connected layer. These two models had already learned low-level features that could be useful for cavity 
detection. Their knowledge was preserved as the weights in the CNNs’ preliminary layers were kept nearly 
unchanged while training on the limited dataset. The resulting models then became specialized in cavity detection as 
their deeper and last layers were permitted to change to learn the high-level features specific to the limited dental 
dataset, thus improving performance. 
 

Figure 4. Framework of CNN. 

Figure 3. Example of dentist's labels. 
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2020 Field-Collected Dataset. To conduct phase two of training, we 
collected images that were more reflective of the field images future 
users will provide. While the 2019 Web-Searched Dataset images were 
appropriate for training, the majority of the images were taken in ideal 
settings with good lighting (studio quality). These conditions resulted 
in high resolution images. In practice, it’s envisioned that the 
photographs provided by future users will be of low quality and will be 
taken at home using an inexpensive camera (ex. $30 intra oral 
camera). As it was important that the models performed well under the 
listed conditions, we ensured the above conditions were reflected in the 2020 Field-Collected Dataset. Thus, the 
2020 Field-Collected Dataset images were taken at the homes of 11 human participants who consented to having 
their teeth photographed using a sterilized intraoral camera (Figure 5). Of the 11 consenting participants, 9 were 
female and 2 were male. The participants’ ages ranged from 8-70 years old and were all born and raised in regions 
of India. All participants signed a dental photography form consenting to having their teeth photographed and 
utilized in this study. For underaged participants, parents were also asked to sign the consent form. Tooth surfaces 
photographed included participants’ occlusal, labial, buccal, and lingual surfaces. To minimize discomfort, 
participants were asked to have their mouth open for 40 seconds and then closed for 10 seconds. This process was 
repeated until all tooth surfaces were photographed. Using this 
process, 192 images were collected from the participants. The same 
labelling process, where the contacted dentist diagnosed the images 
using the ICDAS rubric, was repeated for this dataset. Out of the 192 
images, the dentist determined that 56 images had no cavities and 
136 images had presence of a cavity. These images were then divided 
into 157 training images (80%) and 35 testing images (20%).  
 
Phase 2 of Training: Curriculum Learning. Curriculum learning is 
a specialized type of transfer learning in which a model is trained in 
multiple stages before being evaluated on a target validation dataset. 
The curriculum used in this study consisted of the ImageNet 1k 
dataset, followed by the 2019 Web-Searched Dataset (stage 1), and 
then the 2020 Field-Collected Dataset (stage 2) (Figure 6).  
 
Local Interpretable Model-Agnostic Explanations (LIME).        
The capabilities of LIME in providing explanations for a model’s cavity diagnosis were also explored in a PyTorch 
environment. LIME was applied on a ResNet-18 model trained on the dental data. This was done since PyTorch 
offered built-in support for ResNet-18 architectures. The explanations generated by LIME successfully highlighted 
the image regions that drove the ResNet-18 to its diagnoses. Specifically, when the ResNet-18 predicted cavity 
presence for a given image, LIME’s explanation highlighted the tooth surfaces that heavily influenced the model’s 
diagnosis. These explanations can also inform patients about the specific tooth surfaces that require more attention 
during their oral routine. By applying LIME, the study’s AI diagnostic system now has the ability to explain its 
cavity diagnosis to future users in an understandable manner.  
 
Results 
General Overview. In the following sub-sections, we describe the 
results of transfer learning and two-stage curriculum learning 
experiments on web-searched and field-collected data. 
 
2019 Web-Searched Dataset. The 314-image collection acquired 
from public sources was split into a training and testing dataset in the 
ratio of 80:20. The training and testing dataset consisted of 251 and 63 
images respectively. The datasets consisted of all 7 classes of decay as 
per the ICDAS rubric in the proportions shown in Figure 7. Since the 
study’s main objective was to diagnose images based on cavity 
presence only (not into the specific 7 ICDAS classes), the ICDAS 1-6 
images were combined into one group (cavity presence), and ICDAS Figure 7. The test dataset representing all 

levels of decay. 

Figure 6. Curriculum learning methodology.  

Figure 5. Example of an intra oral camera. 
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class 0 images were in another (no cavity presence). However, analyses were done using all 7 ICDAS classes. 
 
Artificial Neural Network (ANN) Models. The performance 
of 3 ANN architectures in cavity detection was initially 
compared using the 2019 Web-Searched Dataset. The 
architectures included a hand-designed CNN, a ResNet-18 
model, and a ResNet-27 model. Table 1 shows each model’s 
architecture in terms of their layers and if the architecture had 
an ImageNet1K base model available. 
 
Phase 1 of Training: Transfer Learning. Models pre-trained 
on the ImageNet1K dataset produced higher accuracy compared 
to their base models. Pre-training allowed for better learning, 
which is supported by the accuracies presented in Figure 8. 
Without pre-training, 62% accuracy was achieved by the 
ResNet-27. However, with the use of pre-trained weights, 
accuracy increased to 77.7%. Based on these results, it was 
evident that transfer learning had improved performance.  

Initial 12-layered CNN. As the CNN model wasn’t pre-trained 
on a larger data set, the model’s performance in detecting 
cavities was similar to random guessing (50%). Thus, it was 
concluded that the model was inadequate in detecting cavities. 
 
Pre-trained ResNet-18. Both ResNet models were pre-trained 
on the ImageNet1K dataset. However, the ResNet-18 diagnosed 
the 63-image test set with an accuracy of 76.1%. Unlike the 
initial CNN, the ResNet-18’s accuracy values increased as more 
training epochs were completed (Figure 9). This indicated that 
pre-training in conjunction with using a ResNet architecture 
improved a classifier’s diagnostic ability. 
 
Pre-trained ResNet-27 (Model X). Highest accuracy values 
were obtained by the pre-trained ResNet-27 model on Caffe. This model was named “Model X”. Model X’s 
hyperparameters included a 64-image batch size, a learning rate of .001, and a step size of 1500. Model X diagnosed 
the 63-image test set with an accuracy of 77.8% (49/63 images) after training for 600 iterations. To determine the 
type of diagnostic errors Model X made, a confusion matrix was also generated (Figure 10). Model X earned a 
sensitivity score of .69, which indicated that the model can correctly identify patients with a cavity 7 out of 10 cases. 
Model X also obtained a specificity score of .84 (model can correctly identify patients with no cavities 84 out of 100 
cases). Finally, the precision score of .75 indicated that for every 100 cases the model diagnoses as having a cavity, 
75 of them would actually exhibit cavity presence. To determine which ICDAS classes were the most difficult for 
the model to detect, further analysis was done (Figure 11). After comparing the performances of the 3 architectures, 
it was concluded that the ResNet-27 model was most optimal for cavity detection, thus all other experiments 
including applying curriculum learning were only applied to ResNet models.  

  

Figure 8. Overall performance of the architectures 
as transfer learning experiments were conducted. 

Figure 9. Ideal upward accuracy trend was exhibited.  

Figure 10. Model X’s confusion matrix on the 
63-image test set. 

 

Figure 11. Model X provided the most accurate 
diagnoses for no cavity (31/37 images), moderate decay 
(5/6 images), and extensive decay (7/9 images). 

Table 1. Summary of Each ANN Model’s Architecture 
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2020 Field-Collected Dataset. To ensure field conditions were 
reflected in the 2020 dataset, the 192-image dataset was taken at the 
homes of the 11 consenting human participants using an intra oral 
camera. After receiving the dentist’s labels, the 2020 dataset was split 
into a training and testing dataset in the same 80/20 ratio described 
previously. The training and testing dataset consisted of 157 and 35 
images respectively. Additionally, all 7 levels of decay were 
represented in the test dataset (Figure 12). 
 
Model Y. Despite training with more complicated field collected 
dataset images, we still aimed to produce similar accuracy results      
(~ 80%) as Model X. Thus, the next model was pre-trained on 
ImageNet1K, and then trained for 600 iterations on the 2020        
Field-Collected dataset. Final accuracy obtained was 77.14% (27/35 
test images). This model was named “Model Y”.  
 
Phase 2 of Training: Curriculum Learning. Based on Model Y’s accuracy, it was evident that transfer learning 
wasn’t sufficient enough to cope with the complex 2020 Field-Collected images; however, performance was 
enhanced by applying two-stage curriculum learning. The curriculum used consisted of ImageNet 1k followed by 
the 2019 Web-Searched Dataset (stage 1), and then the 2020 Field-Collected Dataset (stage 2). The model that 
emerged using this curriculum was name “Model Z”. Using curriculum learning, Model Z diagnosed the 35-image 
test set with an accuracy of 82.8% on average (29/35 images) after training for 600 iterations (Figure 13). 
Curriculum learning allowed for better learning on the 2020 Field-Collected Dataset, which was supported by the 
two accuracies presented in Figure 13. Accuracy obtained by the base ResNet-27 model with random weights was 
71.4%. By using pre-trained weights and curriculum learning techniques, accuracy increased by 11.8%. It also 
became evident that curriculum learning enhanced performance after comparing Model Z’s accuracy (82.8%) to 
Model Y (77.1%), intelligent guessing/zero method (68.5%), and random guessing (50%) (Figure 14). 

 
Model Z Confusion Matrix Results. To determine the type of 
diagnostic errors Model Z made on the 2020 Field-Collected 
Dataset, a confusion matrix was generated (Figure 15). For cavity 
cases (ICDAS classes 1-6), the model achieved 100% accuracy 
(24/24 images). This was supported by Model Z’s sensitivity 
score of 1.0. This score indicated that on images obtained by an 
intra oral camera, Model Z can correctly detect cavity presence on 
every image, regardless of the level of decay present. For no 
cavity cases (ICDAS class 0), Model Z achieved an accuracy      
of 45% (5/11 images), which is equivalent to a specificity score  
of .45. Finally, Model Z earned a precision score of .80, which 
indicated that for every 100 images/cases Model Z diagnoses as 
having a cavity, 80 would actually have cavity presence.  

9%
12%11%

14%

9%

14%

Testing Dataset Class Breakup

ICDAS Class 0
ICDAS Class 1
ICDAS Class 2
ICDAS Class 3
ICDAS Class 4
ICDAS Class 5
ICDAS Class 6

31% 

Figure 12. 2020 Field-Collected test dataset 
representing all levels of decay. 

Figure 13. For Model Z, an ideal upward learning trend was 
exhibited. At the 400th iteration, Model Z’s accuracy 
increased to .828, and then plateaued.  

Figure 14. Performance of ResNet-27 architecture on 
2020 dataset when using curriculum learning (Model Z), 
transfer learning (Model Y), or guessing techniques.  

Figure 15. Model Z’s confusion matrix on the 35-
image test set. 
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Explaining Model Output Using LIME Algorithm. The capabilities of LIME in providing explanations for a 
model’s cavity diagnosis were explored in PyTorch. LIME was applied on a pre-trained ResNet-18 model. The 
figures below represent outputs of the LIME algorithm, which are sample explanations that highlight the image 
regions that most influenced the ResNet-18 model’s diagnoses. Figure 16a. and Figure 16b. present two sample 
LIME explanations that were generated after the model correctly predicted cavity presence.  

Discussion  
Improvements on Previous Work (Berdouses et al., 2015). The table summarizes the differences between the AI 
cavity detection systems developed in this study and Berdouses et al, 2015. 

LIME’s Potential. The ability to explain a diagnosis to a patient in an understandable manner is a crucial skill 
employed by dentists. By using LIME, the study’s cavity detection system has also acquired this communication 
skill. To our knowledge, there are no published studies that explain their classifier’s cavity diagnoses for photos. 
Using LIME, this study has closed the explainability gap previously present for AI cavity diagnoses. LIME treats the 
AI model as a black box, focusing on producing simple explanations that demonstrate how input data map into 
output classifications. While there are other complementary AI explainability algorithms available (ex. Grad-CAM), 
they’re more focused on providing insight into the inner workings of the AI model. The outputs of such methods 
tend to be consumed by AI researchers and data scientists [18]. In contrast, the LIME approach presented above may 
put us in a better position in providing user-centric explanations to patients and dentists. 
 
Limitations of LIME. LIME was developed in 2016, and there are extensions of LIME that achieve similar results 
(i.e. SHapley Additive exPlanations (SHAP)). One limitation of these explainer algorithms is that they produce 
explanations at the pixel level. They don’t take into account semantic features (ex. texture). Another limitation is 
that these algorithms are applied on a trained model in a post-hoc manner. In the future, we aim to test a machine 
learning technique that considers explainablility even during training (ex. Retain algorithm).   
 
Regional Bias. Of the 192 images collected for the 2020 Field-Collected 
Dataset, only two stained tooth images were present, and both were in the 
validation dataset. We determined that the two stained images were part of 
the six no cavity images Model Z had incorrectly diagnosed. These stains 
were from tobacco and tea (Figure 17). As zero stained images were present 
in the no cavity training dataset, Model Z never learned how to differentiate 
between cavities and tea/tobacco staining. To improve Model Z’s specificity 
score of .45, additional images exhibiting tea/tobacco staining have to be 
collected. These stains have also prompted a conversation on regional bias, 
which is a prevalent topic in AI research. Oral hygiene habits can be divided based on geographical regions. In the 

Figure 16. The ResNet-27 model correctly classified these two images as having cavity presence. The green areas 
highlight the image regions in which the model predicted cavity presence. The red areas highlight the image regions 
in which the model predicted no cavities. 

                      Study Photographic Color Images Type of Machine Learning Top-1 Accuracy Explainability Occlusal Tooth Surface Labial Tooth Surface Lingual Tooth Surface Buccal Tooth Surface Teeth Present In Image
Student Researcher's Work Yes Deep Learning CNNs 82.8% Yes Yes Yes Yes Yes Multiple
Berdouses et al., 2015 Yes Random Forest 80.0% No Yes No No No One

Table 2. Comparing AI Cavity Detection Systems (Our study vs. Berdouses et al.,2015) 

Figure 17. Example of a stained tooth 
present in validation dataset. 

a. b. 
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US, 88.2 million adults use tobacco (25.2%) [19]. However, in India, where all 2020 Field-Collected Dataset images 
were taken in, over 274 million adults (34.6%) use tobacco [20]. Furthermore, tea consumption per capita in India is 
also 1.4 times higher than the US [21]. Thus, it’s not surprising that we encountered both tobacco/tea staining in the 
2020 dataset images (taken in India), but not in the 2019 dataset images (majority taken in the US). To reduce false 
positives cases, future training datasets must be more accommodating towards tobacco users, alcoholics, and heavy 
tea and coffee drinkers.  
 
Semi-Supervised Learning Techniques. To enhance Model Z’s performance in the future, additional data needs to 
be obtained. However, an increase in image quantity will also makes the data annotation process for dentists more 
time consuming and tedious. As a result, dentists may become hesitant in providing the labels. In the future, it’s 
aimed that semi-supervised learning techniques can be used to decrease the reliance on dentists for labels. As Model 
Z is already trained on labelled data, future images obtained won’t need to be labelled. Instead, they simply will 
receive a pseudo label based on Model Z’s predictions. Once all unlabeled data receives a pseudo label, the labelled 
data (2019/2020 dataset images) and pseudo-labeled data can be combined into one training dataset. Using this 
technique, Model Z will have the opportunity to train on a vastly larger dataset. 
 
Application The current results on a ResNet-27 with an accuracy of 82.8% indicate that an AI diagnostic system 
with ANN architecture used in practical setting can be created. As suggested by a practicing dentist, images of 
patients’ teeth can be acquired using an intra oral camera ($30). Classification using DL is achievable using a 
computing device like a $35 Raspberry Pi. This affordable setup could potentially be used as first level screening for 
dental triage in developing nations where there is a limited dentist availability. In developed countries, the setup 
could potentially detect cavities at home for people who are dentaphobic or can’t afford dental checkups.  
 
Conclusion 
Dental cavities, one of the most prevalent chronic disorders, impacts over 3.9 billion people worldwide. Typically, 
cavity detection requires the services of a trained dentist. However, barriers such as dentophobia, limited dentist 
availability, and lack of dental insurance prevent millions from receiving dental care. To address these issues, we 
created an AI diagnostic system that detects cavity presence and visually explains the rationale behind each 
diagnosis. The accessible system detects cavities of all levels of decay using an artificial neural network (ANN). 
With a single photographic color image, the system can provide a cavity diagnosis. Previously, there was a lack of 
studies focusing on whether AI can be used to detect early to advanced tooth decay on different surfaces (occlusal, 
lingual, buccal, and labial tooth surfaces) on photographic images. This study aimed to address this research gap. 
First, we aimed to select an ANN architecture suitable for the system. To facilitate this, we collected over 500 de-
identified photos from online sources and consenting human participants using an intra oral camera. We then 
experimented with several neural network architectures and training techniques. Using transfer learning from an 
ImageNet1k dataset, the ResNet-27 architecture proved to be most optimal for cavity detection after earning an 
accuracy of 77.8% and sensitivity score of .69. ResNet-27’s accuracy and sensitivity score were then improved to 
82.8% and 1.0 respectively using two-stage curriculum learning. Visual explanations for the system’s cavity 
diagnoses were generated using LIME. After applying LIME, the system now has the ability to detect cavity 
presence and explain its cavity diagnosis to the end-user in an understandable manner. This explainability feature 
was not present in previous work. By gaining two crucial skills typically employed by dentists, this study’s AI 
diagnostic system can now provide reliable cavity diagnoses to demographics that have constantly been unaccounted 
for in the past. 
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