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Abstracta 

Sleep apnea (SA) is a common sleep disorder characterized by respiratory disturbance during sleep. 

Polysomnography (PSG) is the gold standard for apnea diagnosis, but it is time-consuming, expensive, and requires 

manual scoring. As an alternative to PSG, we investigated a real-time SA detection system using oxygen saturation 

level (SpO2) and electrocardiogram (ECG) signals individually as well as a combination of both. A series of R-R 

intervals were derived from the raw ECG data and a feed-forward deep artificial neural network is employed for the 

detection of SA. Three different models were built using 1-minute-long sequences of SpO2 and R-R interval signals. 

The 10-fold cross-validation result showed that the SpO2-based model performed better than the ECG-based model 

with an accuracy of 90.78  10.12% and 80.04  7.7%, respectively. Once combined, these two signals complemented 

each other and resulted in a better model with an accuracy of 91.83  1.51%. 

Introduction 

Sleep apnea (SA) is one of the most common forms of sleep disorders which is characterized by respiratory disturbance 

during sleep and affects about 2%-5% of the total adult population and more than 30% of the elderly population in the 

US [1]. There are mainly three types of sleep apnea: obstructive sleep apnea (OSA), central sleep apnea (CSA), and 

complex sleep apnea syndrome. OSA is characterized by the repeated pharyngeal collapse that causes shortness 

(hypopnea) or cessation (apnea) of breathing during sleep [2]. Apnea is often defined as the cessation of breathing for 

at least 10 seconds and hypopnea is defined by a significant reduction of airflow for a minimum period of 10 seconds 

accompanied by either 4% desaturation of blood oxygen level or neurological arousal [3]–[5]. CSA is characterized 

by recurrent apneic events accompanied by a lack of respiratory effort as the brain does not transmit any stimulus to 

the breathing muscles [6]. Such disturbances often cause arousal from sleep which results in excessive daytime 

sleepiness and fatigue. Complex Sleep Apnea Syndrome occurs when a patient has both OSA and CSA. Severe forms 

of SA can lead to cardiovascular dysfunction, ischemic heart disease, and stroke [3]. It is linked with significant 

cardiovascular morbidity and is one of the major causes of hypertension [7]. Therefore, accurate and timely diagnosis 

and treatment of sleep apnea are essential for risk minimization. 

Currently, polysomnography (PSG) is considered to be the gold standard for apnea diagnosis, which requires a subject 

to spend a night or two in a sleep laboratory under the supervision of sleep specialists. Usually, multiple sensors and 

wires are attached to the subject’s body to record various physiological signals. These signals may include brain waves 

(electroencephalogram, or EEG), eye movements (electrooculogram, or EOG), blood oxygen level (SpO2), heart rate, 

and rhythm (electrocardiogram, or ECG). The final diagnosis requires analysis of the recorded data by the specialists. 

The severity of the SA is addressed by the apnea-hypopnea index (AHI), which is defined as the number of apnea-

hypopnea events per hour over the entire sleep period. The process is time-consuming, expensive, and the attachment 

of multiple sensors and wires causes discomfort to the subjects. As a result, the researchers have made extensive 

efforts to establish alternatives to PSG with simpler schemes and faster decision-making capabilities. 

In the past several years, multiple methods to detect SA have been proposed. These methods differ from one another 

in terms of the classification methods and the physiological signals used to detect SA. Multiple rule-based techniques 

have been developed for SA detection [8], [9]. Recently, the machine learning-based approach has become a popular 
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technique for SA detection and monitoring and researchers have a number of machine learning models at their 

disposal. Models such as support vector machine (SVM), K-nearest neighbor (KNN),  and decision tree have been 

used successfully in several studies [10]–[14]. There are reports of SA detection systems that used a combination of 

multiple classifiers as well [3], [15]. Recently, deep learning techniques, such as convolutional neural network (CNN) 

and recursive neural network (RNN), have emerged as very efficient techniques of SA detection [16]–[19]. Among 

all the physiological signals used in the above methods, the most commonly used ones are SpO2 and ECG. Many 

models require appropriate feature extraction from these two signals for efficient performance. However, CNN and 

RNN based models usually do not require any additional feature extraction from the signals, which makes them 

extremely effective in real-time SA detection systems with minimum signal analysis. For these networks to perform 

well without manual feature extraction, complex architecture consisting of feature extraction layer, convolutional 

layer, pooling layer, recurrent layer, etc. are required. The lightweight deep artificial neural network (ANN), without 

any of those special layers, has been deployed in multiple systems [20], [21]. But the performance of such a network 

is yet to be investigated if no feature from the signal is provided. 

In this study, we investigated the SpO2 and ECG signals for a real-time sleep apnea detection system. A feed-forward 

artificial neural network is used to evaluate the performance of the signals for detection of SA. Instead of using 

heavyweight convolutional neural networks, the proposed scheme demonstrates the use of a simple feed-forward 

neural network for detecting sleep apnea in real-time without any manual feature extraction. Thus, it enables much 

simpler and faster implementation of apnea detection system. In addition, the proposed scheme works with two 

different physiological signals and shows that the dual-channel technique of apnea detection performs better than the 

single-channel technique and thus substantiates the efforts of further exploration of dual-channel approaches. 

Methods 

Dataset 

The proposed scheme employs  PhysioNet Apnea-ECG dataset [22], [23]. There are a total of 70 records in this dataset. 

The entire dataset is divided into a training set of 35 records and a testing set of 35 records. The lengths of the records 

vary from 7 hours to 10 hours. Each of the recordings includes a digitized ECG signal, a set of apnea annotations 

derived by human experts, and a set of machine-generated QRS annotations. In addition to the ECG signals, 8 of these 

recordings have chest and abdominal respiratory effort signal, oronasal airflow signal, and oxygen saturation level 

signal, SpO2. Since the study aimed to build the ANN models by using ECG and SpO2 signals both individually and 

as a combination, only those 8 recordings in our analysis were used. The signals were sampled at the rate of 100 

samples per second. In each recording, the annotation was placed at the start of every minute, followed by a one-

minute interval. The annotation 'A' signifies that an apneic event was in progress at the beginning of the associated 

minute. The annotation 'N' means that no apneic event was in progress at the beginning of the associated minute. 

Figure 1 illustrates the applied annotation criteria in the Apnea-ECG dataset. 

 

Figure 1. Annotation criterion of Apnea-ECG dataset. Elapsed time is indicated by the distance from the left edge. 

‘~’s denote the apneic periods, ‘|’s denote the time of apnea annotation (0, 60, 120, …seconds), and apneic and non-

apneic intervals are marked by ‘A’ and ‘N’ annotations, respectively. 

Data Segmentation 

Since apnea annotations were provided for each one-minute interval, both the SpO2 and the ECG signals were divided 

into segments with a duration of 1 minute. Figure 1 shows that apnea annotation depends only on the presence or 

absence of apneic events at the beginning of the associated minute. Such annotation scheme may be misleading, as it 

can be seen in the 6th interval in Figure 1 where the interval is annotated as ‘N’, although the apneic event was 

persistent for most of the 1-minute duration. Similarly, the 7th interval is annotated as ‘A’ despite the apneic event 

lasting for a short time during the associated 1-minute period. To overcome this problem, considered only the 1st 30 

seconds of each of the 1-minute segments were considered and the rest were discarded. It made sure that for any 'N'-

annotated 1-minute segment if there were sample points with apneic events, most of these were discarded. Similarly, 

if there were non-apneic sample points in an 'A'-annotated segment, most of those were removed. Since an apneic 

event is marked by abnormal breathing and persistent SpO2 signal for at least 10 seconds, the decision to consider only 

30 seconds of each interval is justified as it is more than the required minimum duration. 
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SpO2 Signal Processing 

The first step of SpO2 signal processing was to identify and remove all the artifacts. Any SpO2 value less than 50% is 

not physiologically possible and was marked as an artifact. Moreover, all changes of SpO2 values greater than 4% 

were marked as artifacts [7]. Once those artifacts were removed, the signal was resampled at 1 Hz by using a simple 

moving average filter. After resampling, only 30 sample points from the 1st 30 seconds of each of the 1-minute 

segments were retained. Before resampling, if the total number of artifacts in the 30-seconds interval was greater than 

10% of the total number of sample points in that interval, the entire associated 1-minute segment was discarded. It 

was done to make sure that none of the intervals with significant information loss, caused by the removal of sample 

points marked as artifacts, were used to train the ANN model. 

ECG Signal Processing 

An ECG graph consists of P wave, QRS complex, and T wave. R-peak is the maximum amplitude in the R wave. The 

machine-generated QRS annotations associated with each recording were used to detect the R-peaks from the ECG 

signal within the first 30-seconds interval of each 1-minute segment. The QRS detector used in this database is based 

on the study by Zong et al. [24]. The R-R interval is simply the time interval between two successive R-peaks. A 

sliding window technique was implemented to remove the ectopic sample points from the R-R interval series. The 

window length was 5 and any R-R interval value larger than 20% of the average value of all the R-R interval values 

within the window was marked as ectopic beats and was removed [10]. Following the removal of the artifacts, the 

entire associated 1-minute interval was discarded if there were less than 30 sample points from the 30-seconds interval. 

If there were more than 30 R-R interval points, only the first 30 of these points were considered to be consistent with 

the number of points in each input vector derived from the SpO2 signal for training the ANN model. The flow diagram 

in Figure 2 shows all the steps involved in the data processing sequentially. 

 

Figure 2: Illustration of all the data processing steps. 

Deep Neural Network 

A deep neural network consists of multiple layers of nonlinear processing units where the output of one layer serves 

as the input of the next one. It is called a feed-forward network since the flow of information is always from the input-

end to the output-end [25]. In this study, three deep ANN models were built, one for each SpO2, and ECG signals and 

one for a combination the two signals. The network architecture is illustrated in Figure 3. Each model had 5 hidden 

layers in addition to an input and an output layer. The hidden layers had 100, 50, 25, 10, and 5 neurons respectively. 

The output layer had only one neuron with an output of 0 or 1, denoting the absence or presence of apneic event 

respectively. The networks, which were built using SpO2 and ECG signals individually, had 30 neurons in the input 

layer to take in 301 input vector. Since the third model was created using the combination of two signals, its input 

layer had 60 neurons. 

For optimization, the Adam optimization technique [26]  was used while in the training phase, mean-squared loss 

function was used to achieve the model parameters with optimal values. In the proposed feed-forward ANN model 

each hidden layer had ReLU activation function (eq. 1) which is a piece-wise linear function that sends the input as 

output if the value is positive or zero and a forced zero for the negative input values. The output layer had Sigmoid 

activation function (eq. 2) which successfully categorizes between 0 (Normal Condition) and 1 (Apnea Occurred). 
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The training was performed for 1000 epochs with 10-fold cross-validation on the training set having a mini-batch size 

of 10. The performance of a model achieved by the cross-validation technique was evaluated based on its accuracy. 

ReLU(X) = {
0, x < 0
x, x ≥ 0           (1)

 

Sigmoid (X) =  
1

1 + e−X
              (2) 

After having an estimation of the performance of each model employing the cross-validation technique, it was further 

analyzed to evaluate the performance of the model in a test set. This test set was separated from the entire set of data 

and was not used in training the model. On this occasion, the performance of a model was evaluated based on accuracy, 

precision, recall, and F1-score. 

 

Figure 3: Architecture of the proposed feed-forward deep neural network. 

Results 

Following the data segmentation and the artifact removal steps, different number of sequences were extracted from 

each type of signal. From the SpO2 signal, a total of 3,815 sequences were obtained, out of which 2,293 corresponded 

to normal events and 1,522 corresponded to apnea events. Out of the 2606 sequences extracted from the ECG signal, 

1534 were from normal and 1072 were from apnea events. From the combined signal, a total of 2,530 sequences were 

obtained with 1,512 normal and 1,018 apnea events. Each of the combined sequences had 60 sample points and the 

rest of the sequences had 30 sample points. For each model, the entire associated set of sequences was split into 

training and testing sets with a ratio of 3:1. Table 1 shows the number of sequences before and after the split with the 

numbers of associated normal and apnea events. 

Table 1. Number of Sequences Before and After the Train-Test Split 

Sequence SpO2 ECG Combined 

Entire 

set 

Normal 2293 1534 1512 

Apnea 1522 1072 1018 

Total 3815 2606 2530 

Train 

Normal 1730 1153 1136 

Apnea 1131 801 761 

Total 2861 1954 1897 

Test 

Normal 563 381 376 

Apnea 391 271 257 

Total 954 652 633 
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To build the ANN models from each signal, 10-fold cross-validation was performed using the associated training set. 

The performance of the model was evaluated based on the accuracy achieved after validation. Figure 4-a) shows the 

comparison of the cross-validation performance among the models. It can be seen that the best-performing model was 

the one that was built using the combined signal. The cross-validation accuracy of this model was 91.83  1.51%. 

SpO2 based model was the 2nd best model with an accuracy of 90.78  10.12%. The ECG signal-based model 

demonstrated an accuracy of 80.04  7.7%, which was the least among the three models. 

 

Figure 4: a) accuracy (%) of the models after 10-fold cross-validation, b) accuracy, precision, recall, and F1-score of 

all the models on the test data. 

Figure 4-b) shows the performance of the models in the test set, which was separated during the train-test split. For 

each type of signal, a new model was created using the entire training set, and the performance of the model was 

evaluated by using accuracy, precision, recall, and F1-score. Although the combined signal provided the best 

performing model from the cross-validation results, the SpO2-based model outperformed others in predicting the test 

set. It achieved the highest values of all the performance metrics. It had an accuracy of 94% whereas the ECG and 

combined signal provided accuracy of 92% and 78%, respectively and its prevision, recall, and F1-score were 94%, 

89%, and 92%, respectively. As estimated from the validation result, the ECG-based model had the least values of the 

performance metrics. The combined signal-based model was the 2nd best model with accuracy, precision, recall, and 

F1-score of 92%, 92%, 88%, and 90%. 

Discussion 

In this study, three different types of input signals were used to build the feed-forward ANN model. The objectives of 

this study were to evaluate how the SpO2 and the ECG signals perform to detect sleep apnea and to observe whether 

the combination of those two signals can provide better performance. From the cross-validation result, it was evident 

that the combined signal outperformed the models based on individual signals. But for evaluation of the test data, the 

SpO2-signal based model performed better than the combined signal-based model. A comparison of the accuracy of 

these two models from the cross-validation demonstrates that their accuracy values were not significantly different. 

But the standard deviation of all the folds was significantly high for the SpO2 signal. It was 10.12% for SpO2, whereas 

it was only 1.51% for the combined signal. Such a low standard deviation value indicates that the combined signal-

based model is very consistent in detecting with high accuracy from a set of unknown data. On the other hand, although 

the SpO2 based model performed better on the test set, it may not be as consistent as the combined signal for detecting 

apnea from an unknown dataset. Therefore, it can be concluded that the combined signal-based model is the most 

reliable model with a very high accuracy of 91.83%. 

Although the ECG-based model did not yield an accuracy as high as the SpO2-based model, once the ECG sequence 

was combined with the SpO2 sequence, it complemented the SpO2 sequence and as a result, the performance of the 

combined sequence was better than the individual SpO2 sequence. This is an indication that instead of a single-channel 

technique, a dual-channel technique using both the SpO2 and the ECG signals should be a better option for real-time 

apnea detection. Nowadays, there are multiple studies involving wearable sensor-based real-time apnea detection 

systems [27][28]. With the advancement in the field of sensor technology, researchers are highly interested in such 
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wearable sensor-based apnea detection systems. The study presented in this work will provide the researchers with a 

direction towards a dual-channel technique of detection. 

In this work, every 1-minute interval of the signal was analyzed, but the classification was performed based on the 

first 30 seconds of each of the 1-minute intervals. Most of the studies based on the Physionet Apnea-ECG database 

reported in the literature utilized the entire 1-minute segment. Therefore, these models needed a sequence of 1-minute 

duration to detect apnea events. On the other hand, the proposed model can generate output by working on a 30-

seconds long sequence. Such a shorter processing window makes this model a better contender for a real-time apnea 

detection system. 

Most of the neural network-based apnea detection systems rely on feature extraction from the signal after necessary 

noise and artifact removal. In this study, a feed-forward neural network model is proposed, which does not need any 

feature extraction from the SpO2 signal once the noise and artifacts are removed. On the other hand, the proposed 

ECG-based model takes R-R interval as input. Most of the ANN-based systems using R-R intervals as input require 

additional features from the R-R interval sequences, such as mean, variance, maximum value, minimum value, etc. 

Other studies that do not require feature extraction from R-R interval sequence are usually based on more complex 

networks, such as CNN, RNN, etc. To the best of our knowledge, this study is the first demonstration of a simple feed-

forward ANN-based apnea detection system using R-R interval without additional features.  

There have been multiple demonstrations of these models yielding higher accuracy than the proposed model [16]. In 

the era of artificial intelligence embedded hardware systems, simplification of the models is as highly desired as the 

accuracy for the feasibility of embedding the models on chips.  Techniques, such as pruning and quantization can 

further be applied on the proposed model to make it more suitable for hardware implementation within power 

constraints. CNN and RNN are too complex to be embedded in hardware even after pruning and quantization. 

The major limitation of the study is that the proposed architecture of neural network failed to achieve high values of 

performance metrics in detecting sleep apnea from the ECG signal. It can be attributed to the erroneous R-R intervals. 

The R-R interval series was extracted from the raw ECG signal by using the machine-generated QRS annotations. 

The QRS detector that the database used to generate the annotations was unaudited and contained errors as mentioned 

in the PyhsioNet website (https://physionet.org/content/apnea-ecg/1.0.0/). A better QRS detector could have detected 

the R-beats at accurate time points with less error. Moreover, only 8 recordings were used in this study. In our future 

study, we aim to work with larger dataset and design our own QRS detector, which can lead to better accuracy of the 

model. 

Conclusion 

In this study, SpO2 and ECG signals were used both individually and in combination to build a real-time SA detection 

system with feed-forward ANN. R-R intervals were derived from the raw ECG signal and three models were built 

using SpO2 and the R-R intervals. The proposed models did not require any additional features from any of those 

signals for SA detection. According to the results from 10-fold cross-validation, it was evident that the combined 

signal-based model performed better than the individual signal-based models. Although the accuracy achieved by the 

ECG-based model was significantly lower than the SpO2-based model, which was attributed to the erroneous QRS 

detector, in the model employing the combination of SpO2 and ECG the two complemented each other resulting in 

the highest accuracy among the three models. From this study, it can be concluded that the dual-channel technique is 

preferable for a real-time apnea detection system and a better performing model can be built by using a more efficient 

QRS detector.  
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