
1.  Introduction
With a large and growing share of the world population living in cities (United Nations, 2018), the impact weath-
er-related risks magnified by climate change, such as heatwaves and flooding (Wilby, 2007), also increases. In 
cities, air temperatures are typically higher than in the rural surroundings due to the Urban Heat Island effect 
(UHI; Oke, 1982; Oke et al., 2017; Santamouris, 2014). The UHI originates from the difference between the 
rural and urban energy balances due to lower albedo, radiation trapping, less vegetation, higher heat storage 
capacity and anthropogenic heat release (Oke, 1982). Because of its positive effect on evaporative cooling that is 
complemented by shading, urban vegetation is often given a central role in attempts to improve thermal comfort 
(Ennos, 2010). Indeed, higher vegetation fractions are associated with lower urban air and canopy temperatures 
(e.g., Gallo et al., 1993; Theeuwes et al., 2017; Weng et al., 2004), although in specific situations vegetation can 
cause higher temperatures (Meili et al., 2021). Wei and Shu (2020) showed that expanding the vegetation fraction 
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as part of urban renewal can improve thermal comfort. However, vegetation-mediated cooling strongly  depends  on 
water availability for evapotranspiration (ET; Avissar, 1992; Manoli et al., 2020).

The generally low ET over urban areas also reflects a different water balance that makes cities more prone to 
flooding. A high impervious surface fraction promotes storm water runoff, which can accumulate relatively fast 
(Arnold & Gibbons, 1996; Fletcher et al., 2013). Consequently, high runoff ratios decreases water availability 
for ET, and thus indirectly contributes to the UHI (Taha, 1997; Zhao et al., 2014). Heavy rainfall in cities can 
lead to flood volumes that are 2–9 times higher than in rural areas (Hamdi et al., 2011; Paul & Meyer, 2001; 
Zhou et al., 2019), often causing considerable damage (Tingsanchali, 2012). Solutions to problems related to 
the urban water and energy balance have been proposed under various names such as Water Sensitive Urban 
Design (Wong, 2006), Low Impact Development (Qin et al., 2013), Sustainable Drainage Systems (Zhou, 2014), 
Sponge Cities (Gaines, 2016), and Nature Based Solutions (Somarakis et al., 2019). All these concepts promote 
increasing infiltration and effective storage capacity, of which the latter is crucial for their performance (Graham 
et al., 2004; Qin et al., 2013). Therefore, methods to assess effective storage in cities at urban landscape scale are 
needed.

Estimation of the urban water storage capacity is challenged by the heterogeneity of sources for ET (Sailor, 2011). 
Previous studies have mainly focused on ET from individual sources (e.g., Gash et al., 2008; Pataki et al., 2011; 
Ramamurthy & Bou-Zeid, 2014; Starke et al., 2010), as well as on their combined behaviour at street or neighbor-
hood scale (e.g., Christen & Vogt, 2004; Jacobs et al., 2015; Meili et al., 2020, 2021). In order to study the ET on 
a neighborhood scale (order of hundreds of meters to 1–2 km), flux measurements through eddy covariance (EC) 
or scintillometry are becoming increasingly popular. Due to relatively large footprints, urban EC measurements 
often reflect a myriad of sources including impervious surfaces, vegetation, open water and all other sources of 
ET. Hence, in this paper an urban surface is defined as the entire urban landscape found within the footprint, 
rather than impervious surface only. This is in line with many studies on urban ET from an EC perspective, 
since the ET sources cannot be separated (e.g., Coutts et al., 2007b; Vulova et al., 2021). In contrast, model-
ling-oriented studies are able to make this separation and thus often use urban and impervious interchangeably 
(e.g., Masson, 2000; Wouters et al., 2015). Examples of cities for which EC measurements have been studied are 
Arnhem (Jacobs et al., 2015), Basel (Christen & Vogt, 2004), Helsinki (Vesala et al., 2008), Melbourne (Coutts 
et al., 2007b), Seoul (Hong et al., 2019) and Singapore (Roth et al., 2017). Under water-limited conditions, ET 
observations contain information on storage (Teuling et al., 2006). In one of the few studies directly linking urban 
ET and storage, Wouters et al. (2015) applied this principle to validate a new parametrization for the impervious 
contribution to urban water storage in Toulouse. However, the link between ET and footprint-scale urban water 
storage remains largely unexplored.

Recession analysis can be used to link eddy-covariance flux observations and storage properties. From the 1970s, 
discharge recession analysis has been extensively used in groundwater and hillslope hydrology (e.g., Brutsaert 
& Nieber, 1977; Kirchner, 2009; Troch et al., 2013). Similarly, daily ET values can be linked to water storage 
during a drydown, a period without precipitation creating water-limited conditions. Assuming that the ET decay 
is exponential, the e-folding time, or the timescale over which ET declines by 63%, reflects the available storage 
and resilience to droughts (Saleem & Salvucci, 2002; Salvucci, 2001; Wetzel & Chang, 1987). Since the storage 
is inferred directly from ET observations, this water storage is defined as the dynamic water storage capacity 
available to the atmosphere for ET, which includes soil moisture, intercepted precipitation, groundwater and open 
water varying from lakes to puddles. As a result of plant-physiological processes, this storage is not necessarily 
constant (Dardanelli et al., 2004). In studies using daily ET over natural ecosystems, Teuling et al. (2006) and 
Boese et al. (2019) found timescales ranging from 15 days for short vegetation to 35 days for forest ecosystems, 
and corresponding storage capacities of 30–200 mm, with most sites in the range of 50–100 mm. A global-scale 
analysis of surface soil moisture recession by McColl et al. (2017) found timescales ranging from 2 to 20 days. 
Although valuable insight can be obtained from a comparison of urban and rural ET dynamics, recession analysis 
has not yet been applied to urban ET.

This study extends the methodology developed by Teuling et al. (2006) to estimate footprint-scale water storage 
capacity directly from EC observations of daily ET in cities without modeling ET itself. The methodology is 
applied to a new, unique collection of urban ET data containing cities in a range of climate conditions and with 
different urban land cover and structure. This allows for a first assessment of urban storage capacity across cities, 
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an evaluation of how site characteristics (e.g., vegetation fraction) affect water storage, and a comparison of urban 
water storage to that of natural ecosystems.

2.  Data and Methods
We analyze latent heat fluxes and auxiliary meteorological observations from eddy covariance flux towers at 14 
sites in 12 cities to estimate water storage. Table 1 lists a number of important site characteristics, including key 
references. In these references, all observation sites and measurement details are fully described. The sites were 
selected based on the length of the data record (minimum of a year), flux footprints representing typical urban 
neighborhoods without other land covers, and the availability of observed precipitation and latent heat fluxes. All 
sites are located in reasonably flat terrain. Most sites were located in mid-latitude climates, except Mexico City 
with a subtropical climate, Singapore with a tropical climate, and Helsinki, Łódź and Seoul with a continental 
climate. Vegetation fractions in the associated footprints vary between 6% and 56%.

Observations were reported in averaging periods of 10–30 min depending on the measurement protocol of each 
site. We used hourly averages to determine the timing of rainfall and 24-hr averages for the recession analysis. For 
all sites the quality control of the observed heat fluxes was performed by individual researchers responsible for 
their ET flux observation site. Although the exact methodology of the quality control differs per site, all fluxes 
have been properly tested in accordance with procedures published in literature (Aubinet et al., 2012).

During multi-day drydowns in urban areas without rainfall, runoff is typically minimal after a steep peak shortly 
after rainfall (Fletcher et al., 2013; Walsh et al., 2005). Therefore, the evolution in landscape-scale dynamic stor-
age (S) over the whole drydown can be simplified as:

𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑
= −ET(𝑡𝑡)� (1)

Under water-limitation, daily ET becomes a function of storage. For impervious surfaces in cities, the stor-
age dynamics have been described by a 𝐴𝐴

2

3
 -power function resulting in depletion within a few hours of daytime 

(Masson,  2000; Ramamurthy & Bou-Zeid,  2014). ET from other sources will likely show different behavior 
(Granger & Hedstrom, 2011; Nordbo et al., 2011), with ET from (urban) vegetation behaving more as a linear 
reservoir (Dardanelli et al., 2004; Peters et al., 2011; Williams & Albertson, 2004). Since impervious surfaces 
are typically quickly depleted, open water is constant and vegetation behaves more linear, we assume the flux 
footprint reflecting a mixture of different ET sources to effectively behave as a linear reservoir:

ET(𝑡𝑡) = 𝑓𝑓 (𝑆𝑆(𝑡𝑡)) = 𝑐𝑐𝑐𝑐(𝑡𝑡)� (2)

in which c = 1/λ is a proportionality constant. Combining Equations 1 and 2 and solving the differential equation 
leads to an exponential response of ET:

ET(𝑡𝑡) = ET0exp

(

−
𝑡𝑡 − 𝑡𝑡0

𝜆𝜆

)

� (3)

where λ is the e-folding timescale, and ET0 the initial ET. With these parameters the total dynamic storage volume 
S0 in mm that would be depleted during a complete dry down (t → ∞) is given by:

𝑆𝑆0 = ∫
∞

𝑡𝑡0

ET(𝑡𝑡)d𝑡𝑡 = 𝜆𝜆ET0� (4)

so that S0 can be estimated by fitting observed ET in time during a drydown, without modeling the flux. Essen-
tially, the storage capacity reflects the sum of water leaving the system as ET. Because of this direct inference 
without an imposed model structure, the shape of the fit has minimal influence on the results. To further tailor 
this concept to urban environments, the anthropogenic moisture flux can be included. This flux can contrib-
ute substantially to ET, in particular during long, dry periods (Grimmond & Oke, 1986; Miao & Chen, 2014; 
Moriwaki et al., 2008), and includes processes like transport, heating, cooling (indoor), human metabolism and 
irrigation, which do not directly depend on rainfall. Variation in the daily averages of these processes, except for 
irrigation, can be expected to be negligible over the course of one drydown. Thus, to account for these processes 
we added a constant base term to Equation 3. Since this yields parameters in compliance with the requirements 
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explained below for only one drydown, we conclude that including this part of the 
anthropogenic moisture flux does not improve the physical representation of the city. 
As mentioned earlier, irrigation cannot be expected to be constant, while in some cities 
(e.g., Vancouver (Grimmond & Oke, 1986; Järvi et al., 2011) and Melbourne (Barker 
et al., 2011)) its contribution to ET can be considerable during long dry periods. We 
include two steps to prevent irrigation affecting the results. First we exclude irrigation 
by limiting drydowns to the first 10 days. This also reduces the influence of the smaller 
signal-to-noise ratio in the tail of the drydown on ET0. Second we require an R 2 > 0.3, 
in order to ensure a decreasing ET tendency reflecting storage as a main control on ET 
dynamics. The results converge until R 2 ≈ 0.3 (not shown), which shows drydowns with 
a lower R 2 are less reliable.

To estimate the parameters λ and ET0, we identified all periods without precipitation 
for at least three continuous days, the minimum requirement for an exponential fit 
(Figure 1). In order to preserve the information in ET during the first hours after rainfall 
(in case of low λ), we start the 24-hr averaging bins directly after the rainfall event, 
regardless of its magnitude. The bin-average is assigned to the middle of the day (e.g., 
the first bin is assigned to 0.5 days since rainfall). We exclude hours with an average 
shortwave incoming radiation below 10  W  m −2 (i.e., nighttime), since nighttime ET 
tends to be low. No gap-filling was applied, and only bins with at least 70% of data for 
daytime hours were analyzed. For the longest time series (Basel (KLIN)), requiring 
70% instead of 100% increased the sample size by 48% respectively, while the median 
of the water storage capacities only changed by 25%. Further lowering the threshold 
did not increase data availability. Given the minimal effect on the results and potential 
to increase the sample size, 70% provides more information especially regarding cities 
with a shorter measurement period without compromising the results.

To allow for a variable timescale caused by a (seasonally) changing energy availability, 
we estimate λ and ET0 for every individual drydown. The parameter estimates result 
from linear fits (method of least squares) through the log-transformed ET observations 
effectively applying Equation 3. In addition, the parameters are required to be physically 
plausible meaning positive λ and ET0, but below 35 days (maximum found by Teuling 
et al. (2006)) respectively 10 mm d −1. The maximum timescale prevents estimation of 
timescales much longer than the maximum drydown duration and storage estimates 
based on a limited dynamical range in ET. Given this filtering only excludes 10 cases, 
it does not influence our conclusions. Also, the average temperature during a drydown 
needs to exceed 0°C to exclude snow conditions, which is strict enough, confirmed by 
a check against snow records. To quantify the uncertainty of the estimated parameters, 
we applied bootstrapping using 5,000 re-samples containing 90% of the estimates. The 
confidence interval is defined as the 5th and 95th percentile of the median distribution 
from the re-samples.

With λ and ET0 the storage capacity is calculated according to Equation 4 (shaded area 
in Figure 1), as we assume the storage to be completely filled after every rainfall event. 
This assumption is supported by the absence of a dependency between the parameters 
and pre-drydown rainfall. Drydowns from all seasons are included and analyzed for a 
seasonal effect, since the water storage available to the atmosphere may change due 
to for example, leaf phenology. Since it is not feasible to measure the water storage 
capacity in a complete urban footprint, this methodology offers the most direct estima-
tion of the urban water storage. To investigate the possible impact of day-to-day varia-
tion or change in energy availability on the results, we repeated the recession analysis 
based on evaporative fraction (Gentine et al., 2007) multiplied by the average available 
energy over the drydown, which we included in the Supporting Information S1 (Table 
S1; Figures S1 and S2).
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3.  Results
In Figure  2, the individual drydowns (in gray) show a good resemblance 
of the characteristic behavior of the recession confirming the exponential 
behavior. In general, ET is quickly decaying within days after rainfall in all 
LCZ's represented in our sample, indicating urban ET is generally strongly 
limited by water availability even on the first day after rainfall. As all cities 
respond approximately similarly, this confirms the qualitative, decaying rela-
tion during a drydown. At some sites (e.g., Amsterdam), ET sometimes rises 
after 6–7 days, which is most likely due to higher ET rates during the fewer 
events of a duration longer than 6–7 days. The spread of the observations is 
higher than the uncertainty, which is the result of a seasonal dependency. The 
uncertainty is visibly higher in cities with shorter measurement periods, since 
shorter periods inevitably mean smaller samples of drydowns. For Arnhem, 
Basel (both), Berlin (both), Helsinki, Łódź and Vancouver, observations 
are available for more than two full years resulting in narrow uncertainty 
bands. Conversely, the uncertainty bands for the sites with records shorter 
than 2 years (Amsterdam, Melbourne, Mexico City, Seoul and Singapore) are 
as wide as the range of observations. In some panels (e.g., Amsterdam and 
Helsinki), we observe two groups of curves with distinct slopes, for which 
we found no explanation in seasonality, energy availability, temperature and 
pre-drydown rainfall (amount and timing).

In Table 1, an overview of the parameters is given for the 583 drydowns that 
complied with all criteria. Of the total number of 1606 drydowns, 102 are 
excluded because of potential snow conditions. All drydowns had a posi-
tive ET0, and only three exceeded 10 mm d −1. 671 additional drydowns did 
not meet the minimum R 2 of 0.3. Finally, a negative λ led to excluding 237 
drydowns and λ above 35 days to 10 more. The remaining drydowns have an R 2 

Figure 2.  Daily average evapotranspiration versus the day since the last precipitation with in red (continuous) the recession curve using the median parameter values, 
in blue (dotted) the 5th and 95th percentile of the median distribution from the bootstrapping re-samples, and in gray all individual drydowns. The boxplots show the 
spread of the observations. The parameters of the fitted curves are shown in Table 1. Since the parameters are based on individual drydowns, they do not necessarily 
follow the trend of the distributions.

Figure 1.  Illustration of the recession analysis. 24-hour aggregated 
evapotranspiration versus the number of days following the last hour of 
precipitation for an example drydown from the Seoul data set with the 
fitted recession curve. Note that the fit was obtained by a linear fit on 
log-transformed data (see Data and Methods). In the figure the parameters are 
indicated.
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of 0.69 and yielded initial evapotranspiration between 0.3 and 2.1 mm d −1 
and e-folding timescales between 1.8 and 20.1 days with the majority below 
10.4 days, corresponding to half-lives of 1.3–14.0 and 7.2 days. The related 
storage capacities appear to be between 1.3 and 28.4 mm with the major-
ity below 13.4  mm. As mentioned before, the length of the measurement 
period determines the magnitude of the uncertainty, which for S0 varies from 
1.2 mm in Basel (AESC) to 20.7 mm in Singapore.

For all sites, we find a considerable spread in the ET observations (Figure 2), 
which recurs in the estimated S0 values. In Figure 3, S0 is plotted against the 
month of the drydown, showing a very distinct seasonal dependency explain-
ing why the spread in observations exceeds the uncertainty. Both ET0 and 
λ, on which S0 is based, show similar behaviour (not shown). Melbourne is 
shifted to fit the seasonality, as it is situated on the southern hemisphere. We 
expect that the enhanced effective storage capacity in summer is caused by 
increased vegetation activity. Since Singapore is close to the equator and its 
vegetation is evergreen, it is not expected to show seasonal effect, which is 
confirmed in Figure 3. Any connection between S0 and the site character-
istics in Table 1 and climatic variables among which precipitation regime 
is overshadowed by the seasonal dependency covering the full range of S0 
(Table 1), as we illustrate in Figures S3 and S4 in Supporting Information S1. 
It is unfortunately not possible to eliminate the influence of this dependency 
by focusing on one season due to the steep slope, and not by focusing on 
1 month due to the low data density. Only after omitting half of the cities 
based on the number of drydowns, a relation between S0 and site characteris-
tics is visible (Figure S5 in Supporting Information S1).

4.  Discussion
In contrast to the results presented here for urban areas, Teuling et al. (2006) found timescales ranging from 15 
to 35 days and storage varying between 30 and 150 mm for forests and grassland following a similar methodol-
ogy. When compared to the urban parameter values (1.8–20.1 days and 1.3–28.4 mm), it is clear that both the 
timescales and storage capacities are much higher in rural areas. McColl et al. (2017) have analyzed soil mois-
ture drydowns in a global study using satellite data with a resolution too coarse to explicitly resolve individual 
cities, thus resembling rural values. Although their timescales with values from 2 to 20 days are closer to ours, it 
must be noted the temporal resolution is one in every three days and their observations only regard the first few 
centimeters instead of the root zone. Also, the satellite product in their research is known to underestimate the 
timescales compared to in-situ observations (Rondinelli et al., 2015; Shellito et al., 2016). When compared to 
storage values found for impervious surfaces by Wouters et al. (2015) (1.1–1.5 mm), the values in this study are 
higher as a result of the footprint scale analysis that includes natural in addition to impervious surfaces. Hence, 
the results show that both λ and S0 are at least five times smaller in all cities than in natural ecosystems indicating 
shorter timescales and lower storage capacities in urban areas regardless of their climate and vegetation fraction.

Since our method is based on direct inference from observations, the footprint of observation determines the 
area for which the storage is estimates and the reliability of the measurements is essential to the quality of our 
estimates. Since the fluxes are observed at neighborhood level, it is impossible to separate the (storage) source 
of ET. Further research could distinguish the different storage reservoirs by applying additional techniques like 
isotope analysis (Kuhlemann et al., 2021). The measurement reliability is insured by carefully selecting locations 
and applying quality control (Feigenwinter et al., 2012; Järvi et al., 2018; Velasco & Roth, 2010). All sites have an 
observation height well above the mean building height (see Table 1), and measure in the inertial sublayer. This 
reduces the variability in flux measurements in response to the heterogeneity of the monitored footprint, which 
is induced by the many, unevenly distributed surfaces with different characteristics and water storage capacities 
in the urban landscape. The only site in this research that includes a non-homogeneous footprint is Seoul. The 
observations are filtered by wind direction to exclude a nearby forest. A relatively small variability between our 
estimates for each site suggest the observations are accurate enough for our application.

Figure 3.  The seasonal dependency of the median S0 for the sites on the 
northern hemisphere (Melbourne is included shifted by half a year) in blue 
and for Singapore as gray dots. The uncertainty is determined similarly as in 
Figure 2.
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The methodology assumes that at the start of a drydown the storage capacity is completely full. A partly empty 
storage capacity would lead to an underestimation of the capacity, as less water is available for ET. We have 
compared the magnitude of the rain event before a drydown with the resulting parameters and found no correla-
tion. Since the storage can be refilled by a series of events separated by dry days, we regressed the storage param-
eters against the Antecedent Precipitation Index (API; Fedora & Beschta, 1989). The API takes into account 
rainfall occurring during preceding days (here limited to 20), but its observed values show no correlations with 
the λ and S0. Therefore, the assumption of a completely filled storage is tangible and no selection has been 
performed based on rainfall event size. The evaporation directly after rainfall consists largely of interception ET 
from various surfaces (e.g., Gerrits, 2010; Grimmond & Oke, 1991; Oke et al., 2017). By calibrating an impervi-
ous-storage parameterization (Wouters et al., 2015), estimated this storage to be between 1 and 1.5 mm for a site 
in Toulouse with little vegetation cover (8%), suggesting interception ET is an important component of urban ET 
also in more diverse and greener urban landscapes included in this study.

5.  Conclusion
The timescales of ET recession observed through eddy covariance in urban environments appear to be consider-
ably shorter than in rural environments. This is related to the storage capacity, which is also found to be lower. 
Based on 583 drydowns, we find recession timescales of cities within 1.8–20.1 days with the majority below 
10.4 days and storage capacities between 1.3 and 28.4 mm with the majority below 13.4 mm. The timescales and 
storage capacities are inferred for the entire footprint (including all ET sources) and do not translate to impervious 
surfaces. All values found in urban areas are at least five times smaller than found in rural areas. We were unable 
to analyze differences between cities to vegetation fraction, local climate zone or climate for two reasons. First, 
the seasonal dependency in the storage capacities is as large as the total observed variation. Second, the number 
of sites is limited, and half of them contain data records shorter than 1 year. When provided with more data, 
the presented water storage capacity method has the potential to establish robust empirical relations explaining 
the differences between cities, in particular when complemented with soil moisture observations and/or Earth 
observation.

Data Availability Statement
The data that support the findings of this study are openly available in data.4tu at (http://doi.org/10.4121/13686973).
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