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QIIME 2 is a completely re-engineered microbiome bioinformatics plat-
form based on the popular QIIME platform, which it has replaced. QI-
IME 2 facilitates comprehensive and fully reproducible microbiome data
science, improving accessibility to diverse users by adding multiple user
interfaces. QIIME 2 can be combined with Qiita, an open-source web-based
platform, to re-use available data for meta-analysis. The following basic pro-
tocol describes how to install QIIME 2 on a single computer and analyze mi-
crobiome sequence data, from processing of raw DNA sequence reads through
generating publishable interactive figures. These interactive figures allow read-
ers of a study to interact with data with the same ease as its authors, advancing
microbiome science transparency and reproducibility. We also show how plug-
ins developed by the community to add analysis capabilities can be installed and
used with QIIME 2, enhancing various aspects of microbiome analyses—e.g.,
improving taxonomic classification accuracy. Finally, we illustrate how users
can perform meta-analyses combining different datasets using readily avail-
able public data through Qiita. In this tutorial, we analyze a subset of the Early
Childhood Antibiotics and the Microbiome (ECAM) study, which tracked the
microbiome composition and development of 43 infants in the United States
from birth to 2 years of age, identifying microbiome associations with antibi-
otic exposure, delivery mode, and diet. For more information about QIIME 2,
see https://qiime2.org. To troubleshoot or ask questions about QIIME 2 and
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© 2020 The Authors.

Basic Protocol: Using QIIME 2 with microbiome data
Support Protocol: Further microbiome analyses

Keywords: bioinformatics � metagenomics � microbiome � QIIME 2 � Qiita

How to cite this article:
Estaki, M., Jiang, L., Bokulich, N. A., McDonald, D., González, A.,

Kosciolek, T., Martino, C., Zhu, Q., Birmingham, A.,
Vázquez-Baeza, Y., Dillon, M. R., Bolyen, E., Caporaso, J. G., &
Knight, R. (2020). QIIME 2 enables comprehensive end-to-end

analysis of diverse microbiome data and comparative studies with
publicly available data. Current Protocols in Bioinformatics, 70,

e100. doi: 10.1002/cpbi.100

INTRODUCTION

This tutorial illustrates the use of QIIME 2 (Bolyen et al., 2019) for processing, analyz-
ing, and visualizing microbiome data. Here we use, as an example, a high-throughput 16S
rRNA gene sequencing study, starting with raw sequences and producing publication-
ready analysis and figures (see Basic Protocol). QIIME 2 can also process other types
of microbiome data, including amplicons of other markers such as 18S rRNA, internal
transcribed spacers (ITS), and cytochrome oxidase I (COI), shotgun metagenomics,
and untargeted metabolomics. We will also show how to combine results from an
individual study with data from other studies using the Qiita public database framework
(Gonzalez et al., 2018), which can be used to confirm relationships between microbiome
and phenotype variables in a new cohort, or to generate hypotheses for future testing.

Typical QIIME 2 analyses can vary in many ways, depending on your experimental and
data analysis goals and on how you collected the data. In this tutorial, we use the QIIME
2 command-line interface, and focus on processing and analyzing a subset of samples
from the Early Childhood Antibiotics and the Microbiome (ECAM) study (Bokulich,
Chung, et al., 2016). We will start with raw sequence files and use a single analysis
pipeline for clarity, but note where alternative methods are possible and why you might
want to use them.

Before Starting

We recommend readers to follow the enhanced live version of this protocol (https://curr-
protoc-bioinformatics.qiime2.org) which will be updated frequently to always reflect the
newest release of QIIME 2. We also recommend that you read about the core concepts
of QIIME 2 (https://docs.qiime2.org/2019.10/concepts/ ) before starting this tutorial, to
familiarize yourself with the platform’s main features and concepts, including enhanced
visualization methods through QIIME 2 View, decentralized provenance tracking (which
ensures reproducible bioinformatics), multiple interfaces (including the Python 3 API
and QIIME 2 Studio graphical interface), the plugin architecture (which enables anyone
to expand QIIME 2’s functionality), and semantic types (which enable QIIME 2 to help
users avoid misusing their data). In general, we suggest referring to the QIIME 2 website
(https://qiime2.org), which will always be the most up-to-date source for information and
tutorials on QIIME 2, including newer versions of this tutorial. Questions, suggestions,
and general discussion should always be directed to the QIIME 2 Forum (https:// forum.
qiime2.org). A brief “Glossary of terms” for common QIIME 2 terminology is provided
as an Appendix.Estaki et al.

2 of 46

Current Protocols in Bioinformatics

https://forum.qiime2.org
https://doi.org/10.1002/cpbi.100
https://curr-protoc-bioinformatics.qiime2.org
https://curr-protoc-bioinformatics.qiime2.org
https://docs.qiime2.org/2019.10/concepts/
https://qiime2.org
https://forum.qiime2.org
https://forum.qiime2.org


BASIC
PROTOCOL

USING QIIME 2 WITH MICROBIOME DATA

Necessary Resources

Hardware

QIIME 2 can be installed on almost any computer system (native installation is
available on Mac OS and Linux, or on Windows via a virtual machine). The
amount of free disk space and memory that you will need varies dramatically
depending on the number of samples and sequences you will analyze and the
algorithms you will use to do so. At present, QIIME 2 requires a minimum of 6
to 7 GB for installation, and we recommend a minimum of 4 GB of memory as a
starting point for small datasets and 8 GB of memory for most other real-world
datasets. Other types of analyses, such as those using shotgun metagenomics
plugins, may require significantly more memory and disk space.

Software

An up-to-date web browser, such as the latest version of Firefox or Chrome, is
needed for visualizations using QIIME 2 View

Installing QIIME 2

The latest version of QIIME 2, as well as detailed instructions on how to install on various
operating systems, can be found at https://docs.qiime2.org. QIIME 2 utilizes a variety of
external independent packages, and while we strive to maintain backward compatibility,
occasionally changes or updates to these external packages may create compatibility is-
sues with older versions of QIIME 2. To avoid these problems, we recommend always
using the most recent version of QIIME 2 available online. The online tutorial will al-
ways provide installation instructions for the most up-to-date, tested, and stable version
of QIIME 2.

Troubleshooting

If you encounter any issues with installation, or with any other stage of this tutorial,
please get in touch with the QIIME 2 Forum at https:// forum.qiime2.org.

The QIIME 2 Forum is the hub of the QIIME 2 user and developer communities. Tech-
nical support for users and developers is provided there, free of charge. We try to reply to
technical support questions on the forum within 1 to 2 business days (though sometimes
we need more time). Getting involved on the QIIME 2 Forum, for example by reading
existing posts, answering questions, or sharing resources that you have created such as
educational content, is a great way to get involved with QIIME 2. We strive to create an
inclusive and welcoming community where we can collaborate to improve microbiome
science. We hope you will join us!

(Re)Activating QIIME 2

If at any point during the analysis the QIIME 2 conda environment is closed or deacti-
vated, QIIME 2 2019.10 can be reactivated by running the following command:

conda activate qiime2-2019.10

To determine the currently active conda environment, run the following command and
look for the line that starts with “active environment”:

conda info

Using this tutorial

The following protocol was completed using QIIME 2 2019.10 and demonstrates us-
age with the command line interface (CLI). For users comfortable with Python 3 Estaki et al.
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programming, an application programmer interface (API) version of this pro-
tocol is also available at https://github.com/qiime2/paper2/blob/master/notebooks/
qiime2-protocol-API.ipynb. No additional software is needed for using the API. Jupyter
notebooks for both of these protocols are also available at https://github.com/qiime2/
paper2/ tree/master/notebooks. Finally, an enhanced interactive live version of the CLI
protocol is also available at https://curr-protoc-bioinformatics.qiime2.org with all inter-
mediate files precomputed. While we strongly encourage users to install QIIME 2 on their
own computers and follow along with this tutorial. The enhanced live version provides an
alternative for when time and computational resources are limited. Following along with
the live version of this protocol enables users to skip any step and instead download the
pre-processed output required for a subsequent step. Additionally, the live version also
provides simple “copy to clipboard” buttons for each code block which, unlike copying
from a PDF file, retains the original formatting of the code, making it easy to paste into
other environments. The enhanced live protocol will also be updated regularly with every
new release of QIIME 2, unlike the published version, which will remain static with the
2019.10 version.

Acquire the data from the ECAM study

In this tutorial, we will be using QIIME 2 to perform cross-sectional as well as longitudi-
nal analyses of human infant fecal microbiome samples. The samples we will be analyz-
ing are a subset of the ECAM study, which consists of monthly fecal samples collected
from children at birth up to 24 months of life, as well as corresponding fecal samples
collected from the mothers throughout the same period. The original sequence files from
this study are of the V4 region of the 16S rRNA gene that were sequenced across five
separate runs (2 × 150 bp) on an Illumina MiSeq machine. To simplify and reduce the
computational time required for this tutorial, we have selected the forward reads of a
subset of these samples for processing. To follow along with this protocol, create a new
directory, then download the raw sequences (∼700 MB) and the corresponding sample
metadata file into it:

mkdir qiime2-ecam-tutorial
cd qiime2-ecam-tutorial
wget -O 81253.zip https://qiita.ucsd.edu/public_
artifact_download/?artifact_id=81253

unzip 81253.zip
mv mapping_files/81253_mapping_file.txt metadata.tsv

Ignore the warning errors during the unzipping step; this is expected behavior. You can
now delete the original zip file 81253.zip to save space.

Explore sample metadata files

In the previous step, in addition to downloading sequence data, we downloaded a set
of researcher-generated sample metadata. In the context of a microbiome study, sample
metadata are any data that describe characteristics of the samples that are being stud-
ied, the site they were collected from, and/or how they were collected and processed.
In this example, the ECAM study metadata include characteristics like age at the time
of collection, birth mode and diet of the child, the type of DNA sequencing, and other
information. This is all information that is generally compiled at the time of sample col-
lection, and thus is something the researcher should be working on prior to a QIIME 2
analysis. Suggested standards for the type of study metadata to collect, and how to rep-
resent the values, are discussed in detail in MIMARKS and MIxS (Yilmaz et al., 2011).
In this article, we also include a Support Protocol on metadata preparation to help users
generate quality metadata. In QIIME 2, metadata are most commonly stored as a TSV
(i.e., tab-separated values) file. These files typically have a .tsv or .txt file extension.Estaki et al.
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TSV files are text files used to store data tables, and the format can be read, edited, and
written by many types of software, including spreadsheets and databases. Thus, it is usu-
ally straightforward to manipulate QIIME 2 sample metadata using the software of your
choosing. You can use a spreadsheet program of your choice such as Google Sheets to
edit and export your metadata files, but you must be extremely cautious about automatic,
and often silent, reformatting of values using these applications. For example, the use of
programs like Excel can lead to unwanted reformatting of values, insertion of invisible
spaces, or sorting of a table in ways that scramble the connection between sample iden-
tifiers and the data. These problems are very common and can lead to incorrect results,
including missing statistically significant patterns. See the “Metadata preparation” sec-
tion in the Support Protocol below for details regarding best practices for creating and
maintaining metadata files.

Detailed formatting requirements for QIIME 2 metadata files can be found at https:
//docs.qiime2.org/2019.10/ tutorials/metadata/ . Metadata files stored in Google Sheets
can be validated using Keemei (Rideout et al., 2016), an open-source Google Sheets plu-
gin available at https://keemei.qiime2.org. Once Keemei is installed, select Add-ons >

Keemei > Validate QIIME 2 metadata file in Google Sheets to determine whether the
metadata file meets the required formatting of QIIME 2.

Open the metadata.tsv file with your software of choice and explore the content.
Take note of the column names, as we will be referring to these throughout the protocol.
Cual-ID may be useful for creating sample identifiers, and the Cual-ID paper (Chase,
Bolyen, Rideout, & Caporaso, 2015) provides some recommendations on best practices
for creating sample identifiers for data management.

Importing DNA sequence data into QIIME 2 and creating a visual summary

The next step is to import our DNA sequence data (in this case, from the 16S rRNA
gene) into QIIME 2. All data used and generated by QIIME 2, with the exception of
metadata, exist as QIIME 2 artifacts and use the.qza file extension. Artifacts are zip files
containing data (in the usual formats, such as FASTQ) and QIIME 2−specific metadata
describing the various characteristics of the data such as their semantic type, data file
format, relevant citations for analysis steps that were performed up to this point, and the
QIIME 2 steps that were taken to generate the data (i.e., the data provenance). See the
Appendix (Glossary) at the end of this article for additional information.

QIIME 2 allows you to import and export data at many different steps, so that you can
export them to other software or try out alternative methods for particular steps. When
importing data into QIIME 2, you need to provide detail on what the data are, includ-
ing the file format and the semantic type. Currently, the most common type of raw data
from high-throughput amplicon sequencing are in FASTQ format. These files may con-
tain single-end or paired-end DNA sequence reads, and will be in either multiplexed or
demultiplexed format. Multiplexed files typically come as two (or three in the case of
paired-end runs) files consisting of your sequences (forward and/or reverse, often but not
always referred to as R1 and R2 reads, respectively) and a separate barcode file (often
but not always referred to as the I1 reads). In demultiplexed format, you will have one
(or two in the case of paired-end data) sequence files per sample, as the sequences have
already been assigned to their designated sample IDs based on the barcode files. For the
demultiplexed format, the sample name will typically be a part of the file name. In this
protocol, our sequences are in single-end demultiplexed FASTQ format produced by Il-
lumina’s Casava software. As our data are split across multiple files, to import we will
need to provide QIIME 2 with the location of our files and assign them sample IDs; this
is done using the manifest file. A manifest file is a user-created tab-separated values file
with two columns: the first column, sample-id, holds the name you assign to each Estaki et al.
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of your samples, and the second column, absolute-filepath, provides the absolute
file path leading to your raw sequence files. For example:

sample-id absolute-filepath
10249.M001.03R $PWD/demux-se-reads/10249.M001.03R.fastq.gz
10249.M001.03SS $PWD/demux-se-reads/10249.M001.03SS.fastq.gz
10249.M001.03V $PWD/demux-se-reads/10249.M001.03V.fastq.gz

Alternatively, your sample metadata file can also be made to double as a manifest file by
simply adding the absolute-filepath column to it; in this protocol we demonstrate
the creation and use of a separate manifest file. You can create a manifest file in a variety
of ways using your favorite text editor application. Here we use a simple bash script to
create ours.

1. Create the manifest file with the required column headers:

echo -e "sample-id\tabsolute-filepath" > manifest.tsv

2. Use a loop function to insert the sample names into the sample-id column, and
add the full paths to the sequence files in the absolute-filepath column:

for f in 'ls per_sample_FASTQ/81253/*.gz'; do
n='basename $f';

echo -e "12802.${n%.fastq.gz}\t$PWD/$f"; done >>
manifest.tsv

3. Use the manifest file to import the sequences into QIIME 2:

qiime tools import \
--input-path manifest.tsv \
--type 'SampleData[SequencesWithQuality]' \
--input-format SingleEndFastqManifestPhred33V2 \
--output-path se-demux.qza

Alternative Pipeline

Your data may not be demultiplexed prior to importing to QIIME 2. Instructions
on how to import multiplexed FASTQ files, as well as a variety of other data types,
can be found online at https://docs.qiime2.org/2019.10/ tutorials/ importing/ . With
multiplexed data, you will also need to demultiplex your sequences prior to the next
step. Demultiplexing in QIIME 2 can be performed using either the q2-demux
(https://docs.qiime2.org/2019.10/plugins/available/demux/ ) plugin which is opti-
mized for data produced using the EMP protocol (Caporaso et al., 2012), or the q2-
cutadapt (https://docs.qiime2.org/2019.10/plugins/available/cutadapt/ ) plugin
(which additionally supports demultiplexing of dual-index barcodes using cutadapt;
Martin, 2011).

The demultiplexed artifact allows us to create an interactive summary of our se-
quences. This summary provides information useful for assessing the quality of the
DNA sequencing run, including the number of sequences that were obtained per sam-
ple and the distribution of sequence quality scores at each position.

4. Create a summary of the demultiplexed artifact:

qiime demux summarize \
--i-data se-demux.qza \
--o-visualization se-demux.qzv

You will notice that the output of the summarize action above is a Visualization,
with the file extension .qzv. Visualizations are a type of QIIME 2 Result. Like Arti-
facts, the other type of QIIME 2 Result, they contain information such as metadata,
provenance, and relevant citations, but they are outputs that cannot be used as input
to other analyses in QIIME 2. Instead, they are intended for human consumption.Estaki et al.
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Figure 1 QIIME 2 visualization of the interactive quality plot summarizing the results of demultiplexing se-
quences.

Visualizations often contain a statistical results table, an interactive figure, one or
more static images, or a combination of these. Because they do not need to be used
for downstream data analysis in QIIME 2, there is a lot of flexibility in what they can
contain. All QIIME 2 Results, including Visualizations and Artifacts, can be viewed
by running qiime tools view, or alternatively by loading them with QIIME 2
View (https://view.qiime2.org/ ). QIIME 2 View does not require QIIME 2 to be in-
stalled, making it useful for sharing data with collaborators who do not have QIIME 2
installed. Try visualizing se-demux.qzv using each of these methods, then use the
method you prefer for the rest of this tutorial:

qiime tools view se-demux.qzv

5. Explore the Visualization results:
In the first Overview tab, we see a summary of our sequence counts followed by
a per-sample breakdown. If you click on the Interactive Quality plot tab
(Fig. 1), you can interact with the sequence quality plot, which shows a boxplot of
the quality score distribution for each position in your input sequences. Because it
can take a while to compute these distributions from all of your sequence data (often
tens of millions of sequences), a subset of your reads are selected randomly (sampled
without replacement), and the quality scores of only those sequences are used to gen-
erate the box plots. By default, 10,000 sequences are subsampled, but you can control
that number with --p-n on the demux summarize command. Keep in mind that
because of this random subsampling, every time you run demux summarize on
the same sequence data, you will obtain slightly different plots.
Click and drag on the plot to zoom in. When you hover the mouse over a boxplot for
a given base position, the boxplot’s data are shown in a table below the interactive
plot as a parametric seven-number summary This is a standard summary statistics of
a dataset composed of 2nd, 9th, 25th, 50th, 75th, 91st, and 98th percentiles, and can

Estaki et al.

7 of 46

Current Protocols in Bioinformatics

https://view.qiime2.org/


be used as a simple check for assumptions of normality. These values describe the
distribution of quality scores at that position in your subsampled sequences. You can
click and drag on the plot to zoom in, or double click to zoom back out to full size.
These interactive plots can be used to determine if there is a drop in quality at some
point in your sequences, which can be useful in choosing truncation and trimming
parameters in the next section.

Sequence quality control and feature table construction

Traditionally, quality control of sequences was performed by trimming and filtering se-
quences based on their quality scores (Bokulich et al., 2013), followed by clustering
them into operational taxonomic units (OTUs) based on a fixed dissimilarity threshold,
typically 97% (Rideout et al., 2014). Today, there are better methods for quality control
that correct amplicon sequence errors and produce high-resolution amplicon sequence
variants that, unlike OTUs, resolve differences of as little as one nucleotide. These “de-
noisers” have many advantages over traditional clustering-based methods, as discussed
in Callahan, McMurdie, & Holmes (2017). QIIME 2 currently offers denoising via the
DADA2 (q2-dada2) and Deblur (q2-deblur) plugins. The inferred ESVs produced
by DADA2 are referred to as amplicon sequence variants (ASVs), while those created by
Deblur are called sub-OTUs (sOTUs). In this protocol, we will refer to products of these
denoisers, regardless of their method of origin, as features. The major differences in the
algorithms and motivation for these and other denoising methods are reviewed in Near-
ing, Douglas, Comeau, & Langille (2018) and Caruso, Song, Asquith, & Karstens (2019).
According to these independent evaluations, denoising methods were consistently more
successful than clustering methods in identifying true community composition, while
only small differences were reported among the denoising methods. We therefore view
method selection here as a personal choice that research teams should make. Some prac-
tical differences may drive selection of these methods. For instance, DADA2 includes
joining of paired-end reads in its processing workflow, and is therefore simpler to use
when paired-end read joining is desired, while Deblur users must join reads indepen-
dently prior to denoising using other plugins such as q2-vsearch’s join-pairs method
(Rognes, Flouri, Nichols, Quince, & Mahé, 2016).

In this tutorial, we will denoise our sequences with q2-deblur, which uses a pre-
calculated static sequence error profile to associate erroneous sequence reads with the
true biological sequence from which they are derived. Unlike DADA2, which creates se-
quence error profiles on a per-analysis basis, this allows Deblur to be simultaneously ap-
plied across different datasets, reflecting its design motivation to perform meta-analyses.
Additionally, using a pre-defined error profile generally results in shorter runtimes.

Deblur is applied in two steps:

1. Apply an initial quality filtering process based on quality scores. This method is an
implementation of the quality-filtering approach described by Bokulich et al. (2013):

qiime quality-filter q-score \
--i-demux se-demux.qza \
--o-filtered-sequences demux-filtered.qza \
--o-filter-stats demux-filter-stats.qza

2. Apply the Deblur workflow using the denoise-16S action. This method requires
one parameter that is used in quality filtering, --p-trim-length, which trun-
cates the sequences at position n. The choice of this parameter is based on the sub-
jective assessment of the quality plots obtained from the previous step. In general,
we recommend setting this value to a length where the median quality score begins
to drop below 30, or 20 if the overall run quality is too low. One situation where you
might deviate from that recommendation is when performing a meta-analysis acrossEstaki et al.
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multiple sequencing runs. In this type of meta-analysis, it is critical that the read
lengths be the same for all of the sequencing runs being compared, to avoid intro-
ducing a study-specific bias. In the current example dataset, our quality plot shows
high-quality scores along the full length of our reads; therefore, it is reasonable to
truncate our reads at the 150-bp position:

qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-filtered.qza \
--p-trim-length 150 \
--p-sample-stats \
--p-jobs-to-start 4 \
--o-stats deblur-stats.qza \
--o-representative-sequences rep-seqs-deblur.qza \
--o-table table-deblur.qza

Tip!

The denoising step is often one of the longest steps in microbiome analysis pipelines.
Luckily, both DADA2 and Deblur are parallelizable, meaning you can significantly
reduce computation time if your machine has access to multiple cores. To increase
the number of cores you wish to designate for this task, use the --p-jobs-to-
start parameter to change the default value of 1 to a value suitable for your ma-
chine. As a reminder, if you are following the online version of this protocol, you
can skip this step and download the output artifacts, and use those in the following
steps.

Deblur generates three outputs: an artifact with the semantic type Fea-
tureTable[Frequency], which is a table of the counts of each ob-
served feature in each sample, an artifact with the semantic type Feature-
Data[Sequence], which contains the sequence that defines each feature in the
table that will be used later for assigning taxonomy to features and generating a
phylogenetic tree, and summary statistics of the Deblur run in a DeblurStats
artifact. Each of these artifacts can be visualized to provide important informa-
tion.

3. Create a visualization summary of the DeblurStats artifact with the com-
mand:

qiime deblur visualize-stats \
--i-deblur-stats deblur-stats.qza \
--o-visualization deblur-stats.qzv

The statistics summary (Fig. 2) provides us with information about what happened
to each of the samples during the deblur process. The reads-raw column gives
information on the number of reads presented to the deblur algorithm. Because
deblur works by deleting erroneous reads that it detects, the final number of reads is
smaller than the starting number. The three columns that follow (fraction-
artifact-with-minsize, fraction-artifact, and fraction-
missed-reference) summarize the data from other columns in a convenient
way. They identify potential problems with the data at an early stage. Fraction-
artifact-with-minsize is the fraction of sequences detected as artifactual,
including those that fall below the minimum length threshold (specified by the
--p-trim-length parameter). Fraction-artifact is the fraction of raw
sequences that were identified as artifactual. Fraction-missed-reference
is the fraction of post-deblur sequences that were not recruited by the positive
reference database. The subsequent columns provide information about the number
of sequences remaining after dereplication (unique-reads-derep, reads-
derep), following deblurring (unique-reads-deblur, reads-deblur),
number of hits that were recruited to the negative reference database following Estaki et al.
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Figure 2 Deblur summary statistics table.

the deblurring process (unique-reads-hit-artifact, reads-hit-
artifact), chimeric sequences detected (unique-reads-chimeric and
reads-chimeric), sequences that match/miss the positive reference database
(unique-reads-hit-reference, reads-hit-reference, unique-
reads-missed-reference, and reads-missed-reference). The num-
ber in the reads-hit-reference column is the final number of per-sample
sequences present in the table-deblur.qza QIIME 2 artifact.

NOTE!

The shorthand “artifact” in the per-sample Deblur statistics denotes artifactual sequences
(i.e., those erroneously generated as byproducts of the PCR and DNA sequencing process),
not a QIIME 2 artifact (i.e., a valid data product of QIIME 2).

4. Visualize the representative sequences by entering:

qiime feature-table tabulate-seqs \
--i-data rep-seqs-deblur.qza \
--o-visualization rep-seqs-deblur.qzv

This Visualization (Fig. 3) will provide statistics and a seven-number summary of
sequence lengths, and, more importantly, show a sequence table that maps feature
IDs to sequences, with links that allow you to easily BLAST each sequence against
the NCBI nt database. To BLAST a sequence against the NCBI nt database, click the
sequence and then click the View report button on the resulting page. This will
be useful later in the tutorial, when you want to learn more about specific features
that are important in the data set. Note that automated taxonomic classification is
performed at a later step, as described below; the NCBI-BLAST links provided in
this Visualization are useful for assessing the taxonomic affiliation and alignment of
individual features to the reference database. Results of the “top hits” from a simple
BLAST search such as this are known to be poor predictors of the true taxonomic
affiliations of these features, especially in cases where the closest reference sequence
in the database is not very similar to the sequence that you are using as a query.

Estaki et al.
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Figure 3 QIIME 2 visualization of deblurred sequences.

NOTE!

By default, QIIME 2 uses MD5 hashing of a feature’s full sequence to assign a feature
ID. These are the 32-bit strings of numbers and characters you see in the Feature ID col-
umn above. Hashing in q2-deblur can be disabled by adding the --p-no-hashed-
feature-ids parameter.

5. Visualize the feature table. Note that in this step we can provide our metadata file,
which then adds information about sample groups into the resulting summary output.
Adding the metadata is useful for checking that all groups (e.g., a given age or sex of
subject) have enough samples and sequences to proceed with analysis. This check is
important because variation in the number of sequences per sample, which is typically
not fully controllable, often leads to samples being dropped from the analysis because
too few reads were obtained from them:

qiime feature-table summarize \
--i-table table-deblur.qza \
--m-sample-metadata-file metadata.tsv \
--o-visualization table-deblur.qzv

The first Overview tab gives information about how many sequences come from
each sample, histograms of those distributions, and related summary statistics. The
Interactive Sample Detail tab (Fig. 4) shows a bar plot of the number of
samples associated with the metadata category of interest, and the feature count in
each sample is shown in the table below. Note that you can choose the metadata cat-
egories and change sampling depth by dragging the bar or typing in the value. The
Feature DetailDetail tab shows the frequency and number of observed samples
associated with each feature.

Alternative Pipeline

If traditional OTU clustering methods are desired, QIIME 2 users can perform these using
the q2-vsearch plugin (Rognes et al., 2016) at https://docs.qiime2.org/2019.10/plugins/
available/vsearch/ . However, we recommend that denoising methods be used prior to clus-
tering in order to utilize the superior quality-control procedures within these tools.

Generating a phylogenetic tree

Although microbiome data can be analyzed without a phylogenetic tree, many commonly
used diversity analysis methods such as Faith’s phylogenetic diversity (Faith, 1992) and Estaki et al.
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Figure 4 QIIME 2 visualization of interactive sample detail on feature table summaries.

UniFrac (Lozupone & Knight, 2005) require one. To use these methods, we must con-
struct a phylogenetic tree that allows us to consider evolutionary relatedness between the
DNA sequences.

QIIME 2 offers several methods for reconstructing phylogenetic trees based on features
found in your data. These include several variants of traditional alignment-based meth-
ods of building a de novo tree, as well as a fragment-insertion method that aligns your
features against a reference tree. It should be noted that de novo trees reconstructed from
short sequences result in low-quality trees because the sequences do not contain enough
information to give the correct evolutionary relationships over large evolutionary dis-
tances, and thus should be avoided when possible (Janssen et al., 2018). For this tutorial,
we will use the fragment-insertion tree-building method as described by Janssen et al.
(2018) using the sepp action of the q2-fragment-insertion plugin, which has
been shown to outperform traditional alignment-based methods with short 16S ampli-
con data. This method aligns our unknown short fragments to full-length sequences in
a known reference database and then places them onto a fixed tree. Note that this plu-
gin has only been tested and benchmarked on 16S data against the Greengenes reference
database (McDonald et al., 2012), so if you are using different data types you should
consider the alternative methods mentioned below.

1. Download a backbone tree as the base for our features to be inserted onto. Here, we
use the Greengenes (16s rRNA) reference database:

wget \
-O "sepp-refs-gg-13-8.qza" \
"https://data.qiime2.org/2019.10/common/sepp-refs-
gg-13-8.qza"

2. Create an insertion tree by entering the following commands:

qiime fragment-insertion sepp \
--i-representative-sequences rep-seqs-deblur.qza \
--i-reference-database sepp-refs-gg-13-8.qza \
--p-threads 4 \
--o-tree insertion-tree.qza \
--o-placements insertion-placements.qzaEstaki et al.
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The newly formed insertion-tree.qza is stored as a rooted phylogenetic tree
(of semantic type Phylogeny[Rooted]) and can be used in downstream analysis
for phylogenetic diversity computations.

Tip!

Building a tree using SEPP can be computationally demanding and often has longer run
times than most steps in a typical microbiome analysis pipeline. The --p-threads pa-
rameter which, similar to the --p-jobs-to-start parameter from q2-deblur,
allows this action to be performed in parallel across multiple cores, significantly re-
duces run time. See the developers’recommendations with regard to run-time optimization
at https://github.com/qiime2/q2-fragment-insertion#expected-runtimes. As a reminder, if
you are following the online version of this protocol, you can skip this step, download the
output artifacts, and use those in the following steps.

Once the insertion tree is created, you must filter your feature table so that it only
contains fragments that are in the insertion tree. This step is needed because SEPP
might reject the insertion of some fragments, such as erroneous sequences or those
that are too distantly related to the reference alignment and phylogeny. Features in
your feature table without a corresponding phylogeny will cause diversity computa-
tion to fail, because branch lengths cannot be determined for sequences not in the
tree.

3. Filter your feature table by running the following:

qiime fragment-insertion filter-features \
--i-table table-deblur.qza \
--i-tree insertion-tree.qza \
--o-filtered-table filtered-table-deblur.qza \
--o-removed-table removed-table.qza

This command generates two feature tables: The filtered-table-
deblur.qza contains only features that are also present in the tree, while the
removed-table.qza contains features not present in the tree. Both of these
tables can be visualized as shown in step 5 of the previous section, titled “Sequence
quality control and feature table construction.”

Alternative Pipeline

If a traditional de novo phylogenetic tree is desired/required, QIIME 2 offers several meth-
ods [FastTree (Price, Dehal, & Arkin, 2010), IQ-TREE (Nguyen, Schmidt, von Haeseler, &
Minh, 2015), and RAxML (Stamatakis, 2014)] to reconstruct these using the q2-phylogeny
plugin (https://docs.qiime2.org/2019.10/plugins/available/phylogeny/ ). A tree produced
by any of these alignment-based methods can be used with your original feature table
without the need for the filtering that SEPP requires. However, if some of your sequences
are not 16S rRNA genes, the tree will be incorrect in ways that may severely affect your
results.

4. Visualize the phylogenetic tree:
The phylogenetic tree artifact (semantic type: Phylogeny[Rooted]) produced
in this step can be readily visualized using q2-empress (https://github.com/biocore/
empress) or iTOL’s (Letunic & Bork, 2019) interactive web-based tool by simply up-
loading the artifact at https:// itol.embl.de/upload.cgi. The underlying tree, in Newick
format, can also be easily exported for use in your application of choice (see the “Ex-
porting QIME 2 data” section in the Support Protocol, below).

Estaki et al.
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Taxonomic classification

While sequences derived from denoising methods provide us with the highest pos-
sible resolution of our features given our sequencing data, it is usually desirable to
know the taxonomic affiliation of the microbes from which sequences were obtained.
QIIME 2 provides several methods to predict the most likely taxonomic affiliation of
our features through the q2-feature-classifier plugin (Bokulich, Kaehler, et al.,
2018). These include both alignment-based consensus methods and Naive Bayes (and
other machine-learning) methods. In this tutorial, we will use a Naive Bayes classi-
fier, which must be trained on taxonomically defined reference sequences covering the
target region of interest. Some pre-trained classifiers are available through the QIIME
2 Data Resources page (https://docs.qiime2.org/2019.10/data-resources/ ), and some
have been made available by users on the QIIME 2 Community Contributions channel
(https:// forum.qiime2.org/c/community-contributions). If a pre-trained classifier suited
for your region of interest or reference database is not available through these resources,
you can train your own by following the online tutorial (https://docs.qiime2.org/2019.
10/ tutorials/ feature-classifier/ ). In the present protocol, we will train a classifier specific
to our data that (optionally) also incorporates environment-specific taxonomic abundance
information to improve species inference. This bespoke method has been shown to im-
prove classification accuracy (Kaehler et al., 2019) when compared to traditional Naive
Bayes classifiers, which assume that all species in the reference database are equally
likely to be observed in your sample (i.e., that sea-floor microbes are just as likely to be
found in a stool sample as microbes usually associated with stool).

To train a classifier using this bespoke method, we need three files: (1) a set of reference
reads, (2) a reference taxonomy, and (3) taxonomic weights. Taxonomic weights can be
customized for specific sample types and reference data using theq2-clawback plugin
(Kaehler et al., 2019) (see alternative pipeline recommendation below), or we can obtain
pre-assembled taxonomic weights from the readytowear collection (https://github.
com/BenKaehler/readytowear). This collection also contains the reference reads and tax-
onomies required. The taxonomic weights used in this tutorial have been assembled with
16S rRNA gene sequence data using the Greengenes reference database trimmed to the
V4 domain (bound by the 515F/806R primer pair as used in the ECAM study). Here,
we will use the pre-calculated taxonomic weights specific to human stool data. For other
sample types, make sure to pick the appropriate weights best fit for your data, and the
appropriate sequence reference database; a searchable inventory of available weights is
available at https://github.com/BenKaehler/readytowear/blob/master/ inventory.tsv.

1. Start by downloading the three required files from the inventory:

wget
https://github.com/BenKaehler/readytowear/raw/
master/data/gg_13_8/515f-806r/human-stool.qza

wget
https://github.com/BenKaehler/readytowear/raw/
master/data/gg_13_8/515f-806r/ref-seqs-v4.qza

wget
https://github.com/BenKaehler/readytowear/raw/
master/data/gg_13_8/515f-806r/ref-tax.qza

2. Train a classifier using these files:

qiime feature-classifier fit-classifier-naive-bayes \
--i-reference-reads ref-seqs-v4.qza \
--i-reference-taxonomy ref-tax.qza \
--i-class-weight human-stool.qza \
--o-classifier gg138_v4_human-stool_classifier.qzaEstaki et al.

14 of 46

Current Protocols in Bioinformatics

https://docs.qiime2.org/2019.10/data-resources/
https://forum.qiime2.org/c/community-contributions
https://docs.qiime2.org/2019.10/tutorials/feature-classifier/
https://docs.qiime2.org/2019.10/tutorials/feature-classifier/
https://github.com/BenKaehler/readytowear
https://github.com/BenKaehler/readytowear
https://github.com/BenKaehler/readytowear/blob/master/inventory.tsv


Figure 5 QIIME 2 visualization of classified taxonomy.

3. Assign taxonomy to our representative sequences using our newly trained classifier:

qiime feature-classifier classify-sklearn \
--i-reads rep-seqs-deblur.qza \
--i-classifier gg138_v4_human-stool_classifier.qza \
--o-classification bespoke-taxonomy.qza

This new bespoke-taxonomy.qza data artifact is a Feature-
Data[Taxonomy] type which can be used as input in any plugins that accept
taxonomic assignments.

4. Visualize our taxonomies by entering the following:

qiime metadata tabulate \
--m-input-file bespoke-taxonomy.qza \
--m-input-file rep-seqs-deblur.qza \
--o-visualization bespoke-taxonomy.qzv

The Visualization (Fig. 5) shows the classified taxonomic name for each feature ID,
with additional information on confidence level and sequences. You can reorder the
table by clicking the sorting button next to each column name. Recall that the rep-
seqs.qzv Visualization that we created above allows you to easily BLAST the
sequence associated with each feature against the NCBI nt database. Using that Vi-
sualization and the bespoke-taxonomy.qzvVisualization created here, you can
compare the taxonomic assignments of features of interest with those from BLAST’s
top hit. Because these methods are only estimates, it is not uncommon to find dis-
agreements between the predicted taxonomies. The results here will generally be
more accurate than those received from the simple BLAST search linked from the
rep-seqs.qzv Visualization.

Alternative Pipeline

To assemble your own taxonomic weights for regions not available in the ready-
towear inventory, follow the detailed instructions at https:// forum.qiime2.org/ t/
using-q2-clawback-to-assemble-taxonomic-weights.

Filtering data

So far, in addition to our sample metadata, we have obtained a quality-controlled
FeatureTable[Frequency], a Phylogeny[Rooted], and a Feature-
Data[Taxonomy] artifact. We are now ready to explore our microbial communities Estaki et al.
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and perform various statistical tests. In the following sections, we will explore the micro-
bial communities of our samples from children only, and thus will separate these samples
from those of the mothers.

QIIME 2 provides numerous methods to filter your data. These include total feature
frequency-based filtering, identity-based filtering, metadata-based filtering, taxonomy-
based filtering, etc. Filtering is performed through the q2-feature-table plugin.
For a comprehensive list of available filtering methods and examples on how to perform
them, visit https://docs.qiime2.org/2019.10/ tutorials/filtering/ . To separate the child
samples, we will use the filter-samples action to separate samples based on the
metadata column “mom_or_child,” where a value of “C” represents a child sample:

qiime feature-table filter-samples \
--i-table filtered-table-deblur.qza \
--m-metadata-file metadata.tsv \
--p-where "[mom_or_child]= 'C'" \
--o-filtered-table child-table.qza

We now have a new subsetted feature table consisting of child samples only. Let us visu-
alize this new feature table as we did previously:

qiime feature-table summarize \
--i-table child-table.qza \
--m-sample-metadata-file metadata.tsv \
--o-visualization child-table.qzv

Load this new Visualization artifact and keep it open, as we will be referring to this in
the following section.

Alpha rarefaction plots

One of the first steps in a typical microbiome analysis pipeline is to evaluate the sam-
pling depth of our samples to determine whether sufficient surveying effort has been
achieved. Sampling depth will naturally differ between samples, because the number
of sequences generated by current sequencing instruments are neither evenly distributed
among samples nor correlated with sample biomass, and, therefore, to avoid bias, must be
normalized prior to analysis (e.g., diversity estimates as described below). The methods
used for normalization are an active area of research and debate (McMurdie & Holmes,
2014; Weiss et al., 2017). In this section, we will explore how sampling depth impacts
alpha diversity estimates (within-sample richness, discussed in more detail below) using
the alpha-rarefaction action within the q2-diversity plugin. This Visual-
izer computes one or more alpha diversity metrics at multiple sampling depths, in steps
between 1 (optionally controlled with --p-min-depth) and the value provided, as
--p-max-depth. At each sampling-depth step, 10 rarefied tables will be generated
by default, and the diversity metrics will be computed for all samples in the tables. The
number of iterations (rarefied tables computed at each sampling depth) can be controlled
with --p-iterations. Average diversity values will be plotted for each sample at
each even sampling depth, and samples can be grouped based on metadata categories in
the resulting visualization if sample metadata are provided with the --m-metadata-
file parameter:

qiime diversity alpha-rarefaction \
--i-table child-table.qza \
--i-phylogeny insertion-tree.qza \
--p-max-depth 10000 \
--m-metadata-file metadata.tsv \
--o-visualization child-alpha-rarefaction.qzvEstaki et al.
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Figure 6 QIIME 2 visualization of alpha diversity rarefaction plots.

Load the child-alpha-rarefaction.qzv Visualization.

The resulting Visualization (Fig. 6) has two plots. The top plot is an alpha rarefaction
plot, and is primarily used to determine if the within-sample diversity has been fully
captured. If the lines in the plot appear to “level out” (i.e., approach a slope of zero) at
some sampling depth along the x axis, this suggests that collecting additional sequences
is unlikely to result in any significant changes to our samples’ estimated diversity. If the
lines in a plot do not level out, the full diversity of the samples may not have been captured
by our sampling efforts, or this could indicate that a lot of sequencing errors remain in
the data (which are being mistaken for novel diversity).

The bottom plot in this visualization is important when grouping samples by our meta-
data categories. It illustrates the number of samples that remain in each group when
the feature table is rarefied to each sampling depth. If a given sampling depth “d” is
larger than the total frequency of a sample “s” (i.e., the number of sequences that were
obtained for sample “s”), it is not possible to compute the diversity metric for sample “s”
at sampling depth “d.” If many of the samples in a group have lower total frequencies
than “d,” the average diversity presented for that group at “d” in the top plot will be un-
reliable because it will have been computed on relatively few samples. When grouping
samples by metadata, it is therefore essential to look at the bottom plot to ensure that
the data presented in the top plot are reliable. Try using the drop-down menus at the top
of the plots to switch between the different calculated diversity metrics and metadata
categories.

Estaki et al.
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As mentioned earlier, a normalization method to account for unequal sampling depth
across samples in microbiome data is essential to avoid the introduction of bias. One
common approach to dealing with this problem is to sample a random subset of se-
quences without replacement for each sample at a fixed depth (also referred to as rar-
efying) and discard all remaining samples with total read counts below that threshold.
This approach, which is not ideal because it discards a large amount of information (Mc-
Murdie & Holmes, 2014), has nonetheless been shown to be useful for many different
microbial community analyses that are otherwise dominated by sample-to-sample vari-
ation in the number of sequences per sample obtained (Weiss et al., 2017). Selecting
the depth to which to rarefy samples is a subjective decision motivated by the desire to
maximize the rarefying threshold while minimizing loss of samples due to insufficient
coverage.

Let us consider our current dataset as an example. In the rarefaction plots above, we
can see that there is a natural leveling of our diversity metrics starting at 1000 se-
quences/sample, with limited additional increases observed beyond 3000 sequences/
sample. This should be our target minimum sampling depth. Now let us revisit the
child-table.qzv Visualization from the Filtering data step. Select the Interac-
tive Sample Detail tab from the top left corner, and use the Metadata Cat-
egory drop-down menu to select month. Hover over each bar in the plot to see the
number of samples included at each month. Now, try moving the Sampling Depth
bar on the right starting from the left (zero) to the right. You will see that as the sampling
depth increases we begin to rapidly lose samples, as shown by the grayed areas in the
bar plot. In this dataset, the time point 0 month is better represented than the subsequent
months. We would therefore ideally minimize discarding samples from the other under-
represented months to maintain sufficient statistical power in downstream analyses. Start
moving the Sampling Depth bar from zero again; this time stop at the first instance
where we begin to see a loss of sample at a month that is not 0. Now scroll down to the
bottom of the page. The samples highlighted in red are the would-be discarded samples
at that chosen sampling depth. Here we see that at a depth of exactly 3400 we are able
to retain all the samples from months 6, 12, and 24, while still maintaining a minimum
depth that will capture the overall signature of the alpha diversity metrics as seen by our
rarefaction plots.

Alternative Pipeline

Newer methods are actively being developed that circumvent the need for rarefying by
taking advantage of the compositional nature of microbiome data; we will show examples
of these methods in subsequent sections. However, for some commonly used analysis
tasks, no such solution yet exists.

Basic data exploration and diversity analyses

In the original ECAM study, in addition to monthly sampling, some participants were
sampled multiple times in any given month. The exact day at which the samples were
collected are recorded in the day_of_life column and again under the month col-
umn, with the values in the latter rounded to the nearest month. This rounding process
allows us to easily compare samples that were collected at roughly the same month across
groups; however, it does introduce artificial replicates, as multiple samples from the same
participant will be recorded under the same month. To mitigate the appearance of these
false replicates and ensure that samples meet assumptions of independence, we will filter
our feature table prior to group tests to include only one sample per subject per month.
We have manually identified those samples that would be considered false replicates in
the rounding step under the column month_replicate, and will use this to filter our
table:

Estaki et al.
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Figure 7 QIIME 2 visualization of taxonomic barplots.

qiime feature-table filter-samples \
--i-table child-table.qza \
--m-metadata-file metadata.tsv \
--p-where "[month_replicate]= 'no'" \
--o-filtered-table child-table-norep.qza

Create a Visualization summary of this new table as before:

qiime feature-table summarize \
--i-table child-table-norep.qza \
--m-sample-metadata-file metadata.tsv \
--o-visualization child-table-norep.qzv

We are now ready to explore our microbial communities. One simple method to visual-
ize the taxonomic composition of samples is to visualize them individually as stacked
barplots. We can do this easily by providing our feature table, taxonomy assignments,
and sample metadata file to the taxa plugin’s barplot action.

1. Generate the taxonomic barplot by running:

qiime taxa barplot \
--i-table child-table-norep.qza \
--i-taxonomy bespoke-taxonomy.qza \
--m-metadata-file metadata.tsv \
--o-visualization child-bar-plots.qzv

This barplot (Fig. 7) shows the relative frequency of features in each sample, where
you can choose the taxonomic level to display and sort the samples by a sample meta-
data category or taxonomic abundance in an ascending or descending order. You can
also highlight a specific feature in the barplot by clicking it in the legend. The snap-
shot above shows a barplot at the phylum level (level 2) where samples were sorted
by day. Three phyla were highlighted to show that Proteobacteria (gray) dominate

Estaki et al.
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at birth, but by 6 months of age the relative abundance of Bacteroidetes (green) and
Firmicutes (purple) make up the majority of the community.

While barplots can be informative with regard to the composition of our microbial
communities, it is difficult to use them to disentangle meaningful signals from noise.

Many microbial ecology studies use alpha diversity (within-sample richness and/or
evenness) and beta diversity (between-sample dissimilarity) to reveal patterns in
the microbial diversity in a set of samples. QIIME 2’s diversity analyses are
available through the q2-diversity plugin, which computes a range of al-
pha and beta diversity metrics, applies related statistical tests, and generates in-
teractive visualizations. The diversity metrics used in any given study should
be based on the overall goals of the experiment. For a list of available di-
versity metrics in QIIME 2 and a brief description of the motivation behind
them, we recommend reviewing the following tutorial: https:// forum.qiime2.org/ t/
alpha-and-beta-diversity-explanations-and-commands.

In this tutorial, we will utilize the pipeline action core-metrics-phyloge-
netic, which simultaneously rarefies a FeatureTable[Frequency] to a user-
specified depth, computes several commonly used alpha and beta diversity
metrics, and generates principal coordinates analysis (PCoA) plots using the EMPeror
visualization tool (Vázquez-Baeza, Pirrung, Gonzalez, & Knight, 2013) for each of
the beta diversity metrics. For this tutorial, we will use a sampling depth of 3400 as
determined from the previous step.

2. Compute alpha and beta diversity by entering the following commands, minding the
--p-n-jobs option if multi-core usage is desired:

qiime diversity core-metrics-phylogenetic \
--i-table child-table-norep.qza \
--i-phylogeny insertion-tree.qza \
--p-sampling-depth 3400 \
--m-metadata-file metadata.tsv \
--p-n-jobs 1 \
--output-dir child-norep-core-metrics-results

By default, the following metrics are computed by this pipeline and stored within the
child-core-metrics-results directory.

Alpha diversity metrics

• Shannon’s diversity index (a quantitative measure of community richness; Shannon
& Weaver, 1949)

• Observed features (a quantitative measure of community richness, called “observed
OTUs” here for historical reasons)

• Evenness (or Pielou’s Evenness; a measure of community evenness; Pielou, 1966)
• Faith’s Phylogenetic Diversity (a qualitative measure of community richness that in-

corporates phylogenetic relationships between the features; Faith, 1992); this metric
is sometimes referred to as PD_whole_tree, but we discourage the use of that name
in favor of Faith’s Phylogenetic Diversity or Faith’s PD

Beta diversity metrics

• Jaccard distance (a qualitative measure of community dissimilarity; (Jaccard, 1908)
• Bray-Curtis distance (a quantitative measure of community dissimilarity; Sørensen,

1948)
• unweighted UniFrac distance (a qualitative measure of community dissimilarity that

incorporates phylogenetic relationships between the features; Lozupone & Knight,
2005); implementation based on Striped UniFrac (McDonald et al., 2018) methodEstaki et al.
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• weighted UniFrac distance (a quantitative measure of community dissimilarity that
incorporates phylogenetic relationships between the features; Lozupone, Hamady,
Kelley, & Knight, 2007); implementation based on Striped UniFrac (McDonald et al.,
2018) method.

After computing the core diversity metrics, we can begin to explore the microbial com-
position of the samples in the context of their metadata.

Performing statistical tests on diversity and generating interactive visualizations

Alpha diversity

We will first test for associations between our categorical metadata columns and alpha
diversity. Alpha diversity asks about the distribution of features within each sample, and
once calculated for all samples can be used to test whether the per-sample diversity
differs across different conditions (e.g., samples obtained at different ages). The com-
parison makes no assumptions about the features that are shared between samples; two
samples can have the same alpha diversity and not share any features. The rarefied Sam-
pleData[AlphaDiversity] artifact produced in the above step contains univariate,
continuous values and can be tested using common non-parametric statistical test (e.g.,
Kruskal-Wallis test) with the following command:

qiime diversity alpha-group-significance \
--i-alpha-diversity child-norep-core-metrics-
results/shannon_vector.qza \

--m-metadata-file metadata.tsv \
--o-visualization child-norep-core-metrics-
results/shannon-group-significance.qzv

Load the newly created shannon-group-significance.qzv Visualization.

From the boxplots and Kurskal-Wallis test results (Fig. 8), it appears that there are no
differences between the child samples in terms of Shannon H diversity when mode of
delivery is considered (p value = 0.63). However, exposure to antibiotics appears to be
associated with higher diversity (p value = 0.026). What are the biological implications?

One important confounding factor here is that we are simultaneously analyzing our sam-
ples across all time points and in doing so potentially losing meaningful signals at a
particular time point. Importantly, having more than one time point per subject also vi-
olates the assumption of the Kurskal-Wallis test that all samples are independent. More
appropriate methods that take into account repeated measurements from the same sam-
ples are demonstrated in the longitudinal data analysis section below. It is important to
note that QIIME 2 is not able to detect that: you must always be knowledgeable about the
assumptions of the statistical tests that you are applying, and whether they are applicable
to your data. These types of questions are common on the QIIME 2 Forum, so if you are
unsure, start by searching for your question on the forum and posting your own question
if you do not find a pre-existing answer.

So let us re-analyze our data at the final (month 24) timepoint, by filtering our feature-
table again:

qiime feature-table filter-samples \
--i-table child-table-norep.qza \
--m-metadata-file metadata.tsv \
--p-where "[month]= '24'" \
--o-filtered-table table-norep-C24.qza
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Figure 8 QIIME 2 visualization of alpha diversity comparisons between modes of delivery across all time
points.

Next, we will re-run the core-metrics-phylogenetic pipeline. Visualize the
summary of this new table and select a new sampling depth as shown in the previous
section. Re-run core-metrics-phylogenetic:

qiime diversity core-metrics-phylogenetic \
--i-table table-norep-C24.qza \
--i-phylogeny insertion-tree.qza \
--p-sampling-depth 3400 \
--m-metadata-file metadata.tsv \
--p-n-jobs 1 \
--output-dir norep-C24-core-metrics-results

And finally, run the alpha-group-significance action again:

qiime diversity alpha-group-significance \
--i-alpha-diversity norep-C24-core-metrics-results/
shannon_vector.qza \

--m-metadata-file metadata.tsv \
--o-visualization norep-C24-core-metrics-results/
shannon-group-significance.qzv

Load this new Visualization.

We can see now that at month 24, vaginal birth appears to be associated with a higher
Shannon value than cesarean birth (p value = 0.02, Fig. 9), while antibiotic exposure isEstaki et al.
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Figure 9 QIIME 2 visualization of alpha diversity at month 24.

no longer associated with differences in Shannon diversity (p value = 0.87).

Beta diversity

Next, we will compare the structure of the microbiome communities using beta diversity.
We start by making a visual inspection of the principal coordinates (PCoA) plots that
were generated in the previous step. Load the unweighted_unifrac_emperor.qzv
Visualization from the norep-C24-core-metrics-results folder.

Each dot in the PCoA plot (Fig. 10) represents a sample, and users can color them ac-
cording to their metadata category of interest and rotate the 3D figure to see whether
there is a clear separation in beta diversity driven by these covariates. Moreover, users
can customize their figures using existing drop-down menus by hiding certain samples
in Visibility, changing the brightness of dots in Opacity, controlling their size in
Scale, choosing different shapes for samples in Shape, modifying the color of axes
and background in Axes, and creating a moving picture under the Animations tab.

Alternative Pipeline

For longitudinal studies, we have made great use of visualizing temporal variabil-
ity using animated traces in Emperor. By doing this, you can follow the longitudi-
nal dynamics sample by sample and subject by subject. In order to do so, you need
two metadata categories—one to order the samples (Gradient category) and
one to group the samples (Trajectory category). For this dataset, we can use
animations_gradient as the category that orders the samples, and anima-
tions_subject as the category that groups our samples.
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Figure 10 QIIME 2 visualization of PCoA plot using Emperor.

The values in animations_gradient represent the age in months. In this category,
samples with no longitudinal data are set to 0; note that all values have to be numeric
in order for the animation to be displayed. The animations_subject category in-
cludes unique identifiers for each subject. Put together, these two categories will result
in animated traces on a per-individual basis.

In Emperor’s user interface, go to the Animations tab, select anima-
tions_gradient under the Gradient menu, and select animations_subject
under the Trajectory menu. Then click play, and you will see animated traces moving
on the plot. You can adjust the speed and the radius of the trajectories. To start over,
click on the back button. Using the ECAM dataset, we have generated an animation
visualizing the temporal trajectories of one vaginally born and one cesarean baby
in the 3D PCoA plot. This animation is available at https:// tinyurl.com/y7sbzpnd.
For more information about animated ordinations, visit Emperor’s online tutorial at
https://biocore.github.io/emperor/build/html/ tutorials/animations.html.

When we color the samples by delivery mode and change the shape of male infants to
squares, no obvious clusters are observed. There may be a general trend towards vaginal-
birth children separating from cesarean-birth samples along Axis 1, which would sug-
gest that the microbial composition of cesarean-born children is phylogenetically more
related within their own groups than that of the vaginal-birth group. However, given
the low sample size in the cesarean group, we are likely underpowered to detect these
changes statistically. Nevertheless, we can test our hypothesis using a PERMANOVA,
which tests the hypothesis that distances between samples within one group (within-
group distances) differ from the distances to samples in another group (across-group
distances). Other relevant tests in QIIME 2 exist, such as ANOSIM, PERMDISP, or the
Mantel test; the choice of test should be carefully considered with regard to the biolog-
ical question at hand. See Anderson and Walsh (2013) for an overview of these tests. It
is also important to note that these tests are useful when testing pre-existing hypothe-
ses about your data, but cannot be used for testing new hypotheses that were gener-
ated by looking at PCoA results. New hypotheses must unfortunately be tested with
new, independent data. Here, we perform the PERMANOVA test with the following
command:
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Figure 11 QIIME 2 visualization of PERMANOVA test results.

qiime diversity beta-group-significance \
--i-distance-matrix norep-C24-core-metrics-
results/unweighted_unifrac_distance_matrix.qza \

--m-metadata-file metadata.tsv \
--m-metadata-column delivery \
--p-pairwise \
--o-visualization norep-C24-core-metrics-results/
uw_unifrac-delivery-significance.qzv

Load the Visualization.

The overview statistics (Fig. 11) provide us with the parameters used in the PER-
MANOVA test and the resulting values of test statistic and p value. The boxplots
(Fig. 9) show the pairwise distance between cesarean and vaginal birth. Lastly, the ta-
ble (in Fig. 9) summarizes the results from PERMANOVA and gives an additional q
value (adjusted p value for multiple testing). The PERMANOVA test confirms our initial
assessment that vaginal-born microbial communities are not statistically different from
cesarean-born communities in beta diversity (as represented by unweighted UniFrac dis-
tances) at month 24 (p value = 0.6). These results, however, should be interpreted cau-
tiously given the limited sample size in this dataset. We would conclude that further
experiments would be needed to confirm our findings.

Alternative Pipeline

The beta diversity analysis above was carried on a rarefied subset of our data. An al-
ternative method that does not require rarefying is offered through the external q2-
deicode plugin (https:// library.qiime2.org/plugins/deicode). DEICODE is a form of
Aitchison Distance that is robust with respect to compositional data with high levels of
sparsity (Martino et al., 2019). This plugin can be used to generate a beta diversity ordi-
nation artifact that can easily be utilized with the existing architecture in QIIME 2 such
as visualization with q2-emperor and hypothesis testing with the beta-group-
significance as above.

Longitudinal data analysis

When microbial data are collected at different timepoints, it is useful to examine dynamic
changes in the microbial communities (longitudinal analysis). This section is devoted
to longitudinal microbiome analysis using the q2-longitudinal plugin (Bokulich,
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Dillon, Zhang, et al., 2018). This plugin can perform a number of analyses such as: vi-
sualization using volatility plots, testing temporal trends in alpha and beta diversities,
using linear mixed-effects models to test for changes in diversity metrics or individual
features with regard to metadata categories of interest, and more. A comprehensive list
of available methods and instructions on how to perform them are available in the online
tutorial: https://docs.qiime2.org/2019.10/ tutorials/ longitudinal/ . Here we will demon-
strate some of these methods.

Linear mixed effects (LME) models

In a previous section, we determined that Shannon diversity was significantly lower in
cesarean-born children at 24 months of age than in vaginal-born children. But what about
the change in Shannon diversity throughout the 24 months? LME models enable us to
test the relationship between a single response variable (i.e., Shannon metric) and one
or more independent variables (e.g., delivery mode, diet), where observations are made
across dependent samples, e.g., in repeated-measures sampling experiments. LME mod-
els can also account for a random effect (e.g., individuals, sampling times) variable. Here
we will use the linear-mixed-effects action, which requires the following in-
puts: the diversity metric of choice calculated for all samples across 24 months (in the
child-core-metrics-results folder), the metric name, our sample metadata
file, a comma-separated list of covariates to include in the model, the random-effect vari-
able (day_of_life), the column name from the metadata file containing the numeric
state (i.e., day_of_life), as well as the column name from the metadata file contain-
ing the individuals’ ID names to track through time. Unlike the group-significant tests in
the previous steps, LME models can handle continuous variables; therefore, we will uti-
lize our full dataset by calling on the day_of_life column instead of month. We will
need to calculate our diversity metrics again on the full dataset as it was before replicates
were removed:

qiime diversity core-metrics-phylogenetic \
--i-table child-table.qza \
--i-phylogeny insertion-tree.qza \
--p-sampling-depth 3400 \
--m-metadata-file metadata.tsv \
--p-n-jobs 1 \
--output-dir child-core-metrics-results

To demonstrate how covariates can be included in an LME model, here we will test
the effects of delivery method and diet (predominantly breast-fed versus predominantly
formula-fed during the first 3 months of life) simultaneously using the following:

qiime longitudinal linear-mixed-effects \
--m-metadata-file metadata.tsv \
--m-metadata-file \
child-core-metrics-results/shannon_vector.qza \

--p-metric shannon \
--p-random-effects day_of_life \
--p-group-columns delivery,diet \
--p-state-column day_of_life \
--p-individual-id-column host_subject_id \
--o-visualization lme-shannon.qzv

In this Visualization (Fig. 12), the model results provide all the outputs from the LME
model, where we see a significant birth mode effect in Shannon diversity over time
(p value = 0.02), while the diet has no bearing in Shannon diversity across timeEstaki et al.
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Figure 12 QIIME 2 visualization of Linear Mixed Effects Model results.

(p value = 0.55). The regression scatterplots (top) overlap the predicted group mean tra-
jectories on the observed data (dots), and the projected residuals plot (bottom) can help
users to check the validity of an LME model. For more details, see https://docs.qiime2.
org/2019.10/ tutorials/ longitudinal/ .

Volatility visualization

The volatility visualizer generates interactive line plots that allow us to assess how
volatile a dependent variable is over a continuous, independent variable (e.g., time) in one
or more groups. Multiple metadata files (including alpha and beta diversity) and feature
tables can be used as input, and in the interactive visualization we can select different
dependent variables to plot on the y axis. Here we examine how variance in Shannon
diversity changes across time in our cohort, both in groups of samples (interactively se-
lected) and in individual subjects.

The volatility plot can be generated by running:

qiime longitudinal volatility \
--m-metadata-file metadata.tsv \
--m-metadata-file \
child-core-metrics-results/shannon_vector.qza \

--p-default-metric shannon \
--p-default-group-column delivery \
--p-state-column month \
--p-individual-id-column host_subject_id \
--o-visualization shannon-volatility.qzv

The volatility plot (Fig. 13) shows the mean curve of each group in the selected group
column on top of individual trajectories over time. This plot can be useful in identify-
ing outliers qualitatively, by turning on show global control limits to show Estaki et al.

27 of 46

Current Protocols in Bioinformatics

https://docs.qiime2.org/2019.10/tutorials/longitudinal/
https://docs.qiime2.org/2019.10/tutorials/longitudinal/


Figure 13 QIIME 2 visualization of volatility analysis.

± 2× and 3× standard deviation lines from global mean. Observations above those global
control limits are suspected to be outliers. In this analysis, we see high variance at time
zero, while they become more similar by month 8, and by month 24, vaginally born chil-
dren appear to be higher than cesarean-born (as expected).

Differential abundance testing

So far, we have analyzed our data using a variety of approaches employing various diver-
sity metrics and between-sample distances that are useful in comparing our communities
in a broad approach. Now, we want to identify individual taxa whose relative abundances
are significantly different across groups. Differential abundance testing in microbiome
analysis is an active area of research (see the “compositional data analysis” section in
the Support Protocol for more details). Two QIIME 2 plugins that can be used for this
are q2-songbird (Morton et al., 2019) and q2-composition. In this section, we
will use the ANCOM test in the q2-composition plugin to identify differential abun-
dant features between vaginal- and cesarean-born children. Moreover, we will use q2-
songbird to perform a similar task, but with the additional adjustment for potential
confounders.

ANCOM

As with any bioinformatics method, you should be aware of the assumptions and limi-
tations of ANCOM before using it. For example, ANCOM assumes that few (less than
∼25%) features differ between groups. If you expect that more features differ between
your groups, you should not use ANCOM because it will be more error-prone (an in-
crease in both Type I and II errors is possible). We recommend reading the ANCOM
paper (Mandal et al., 2015) before using this method. For the simplicity of the analysis,
we will focus on identifying differential abundant features in children born with different
birth modes at month 6 only. We have selected 6 months because this time point contains
the highest number of samples (after baseline time 0), which greatly increases the power
of our analysis.

1. Create a new feature-table that contains only samples from children at 6 months:

qiime feature-table filter-samples \
--i-table child-table-norep.qza \
--m-metadata-file metadata.tsv \
--p-where "[month]='6'" \
--o-filtered-table table-norep-C6.qzaEstaki et al.
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Figure 14 QIIME 2 visualization of ANCOM results (identified features circled in red).

When performing differential abundance testing, it is generally a good idea to filter
out features that have very low abundances across your dataset, as well those that are
present in only a few samples. These features tend to add noise to the results, so we
will remove them. Here we use the filter-features action to filter out features
appearing in less than ∼10% of our samples (min 5 of 43 samples) and those that
have a total frequency less than 20 counts across all samples.

2. Filter out features with the following commands:

qiime feature-table filter-features \
--i-table table-norep-C6.qza \
--p-min-samples 5 \
--p-min-frequency 20 \
--o-filtered-table filtered-table-C6.qza

Because ANCOM operates on relative abundance data, it requires as input a feature
table of type FeatureTable[Composition]; it also cannot tolerate frequencies
of zero. To resolve both of these requirements, we will use the add-pseudocount
action to simultaneously apply relative abundance transformation and add a pseudo-
count of 1 to all of our counts.

3. Add pseudocount to the filtered feature table:

qiime composition add-pseudocount \
--i-table filtered-table-C6.qza \
--o-composition-table comp-table-C6.qza

4. Run ANCOM to determine which features differ in relative abundance across the
different birth modes:

qiime composition ancom \
--i-table comp-table-C6.qza \
--m-metadata-file metadata.tsv \
--m-metadata-column delivery \
--o-visualization ancom-C6-delivery.qzv

The Visualization of ANCOM results (Fig. 14) first shows a volcano plot, where the
x axis summarizes the effect size difference of the given features between interested
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metadata categories (delivery modes in our case) and the y axis is the strength of the
ANCOM test statistic W. As ANCOM is essentially running pairwise tests, the W
value is a count of the number of sub-hypotheses that have passed for a given feature.
Hence, the differentially abundant features will be those ASVs with high values on
both the x and y axis, in other words, points that are close to the top right or left
corners (in the figures for this tutorial, the one identified feature has been highlighted
with a red circle). The identified features are summarized underneath the ANCOM
statistical results section. Lastly, the percentile abundance table shows the
number of sequences assigned to each identified feature in how many of the samples.
Regarding the identified feature in our analysis, of the samples in the cesarean group,
in the sample with the lowest count of sequences assigned to detected feature, one
sequence was observed that was ultimately assigned to this feature. Then, in 75%
of the samples in the cesarean group, 1 or fewer sequences were observed that were
ultimately assigned to this feature (recall that adding the pseudocount ensures that
every sample will appear to have at least 1 count of every feature). However, in 75%
of the samples in the Vaginal group, 884.75 or fewer sequences were observed that
were ultimately assigned to this feature. This percentile abundance table suggests that
the detected feature is higher in vaginally born than cesarean-born babies.

The ANCOM test has identified 1 feature that differs significantly by birth
mode. To identify which taxa this feature corresponds to, we can load our bespoke-
taxonomy.qzv artifact made in step 4 of the “Taxononomic classification” section
and look up the feature ID in the search-bar at the top.
This identified feature and its corresponding taxonomic assignment are as follows:
Feature with higher abundance in vaginal-born children:

d75b7080930e7a77ef3de8c6154895b9 ->

k__Bacteria; p__Actinobacteria; c__Actinobacteria;
o__Bifidobacteriales; f__Bifidobacteriaceae;
g__Bifidobacterium; s__

Perhaps not surprisingly, these results echo findings from the original ECAM paper
(Bokulich, Chung, et al., 2016) encompassing the full dataset.

Songbird

Songbird (Morton et al., 2019) can be used to identify differentially abundant features
while accounting for confounding variables in the data. This is a multinomial regression
designed for compositional microbiome data (in technical terms, it is an L2 regularized
multinomial regression that avoids overfitting by using the sum of squares of all feature
weights as penalty term to the loss function, as in Ridge regression). Here, we control
for confounding variables such as antibiotic exposure and infants’ diet and sex when
identifying features that are significantly different between babies born vaginally versus
through C-section.

1. Install the songbird qiime2 plugin (https://github.com/biocore/songbird) in your
QIIME 2 environment and make a folder to store the songbird results by running:

conda install songbird -c conda-forge
mkdir songbird-results

2. Run songbird with the following command:

qiime songbird multinomial \
--i-table table-norep-C6.qza \
--m-metadata-file metadata.tsv \
--p-formula "delivery+abx_exposure+diet+sex" \
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--p-epochs 10000 \
--p-differential-prior 0.5 \
--o-differentials songbird-results/differentials
6monthControlled.qza \

--o-regression-stats songbird-results/regression-
stats6monthControlled.qza \

--o-regression-biplot songbird-results/regression-
biplot6monthControlled.qza

Note that users can adjust their model parameters and validate their fitted models
by using the existing model diagnostic tools in songbird, such as plotting graphs of
prediction accuracy and visualizing convergence summary.

3. Examine the estimated coefficients for each feature by running:

qiime tools export \
--input-path songbird-results/differentials6month
Controlled.qza \

--output-path songbird-results/exported-
differentials6monthControlled

Based on the estimated coefficients for delivery[T.Vaginal] in the output of
regression stats, we consider the features with the positive coefficients to be differ-
ential relative to negative coefficients in vaginal-born infants versus cesareans, and
vice versa. There is no clear cutoff in songbird on the value of coefficients to assist
in choosing of number of features, but since there are few features with coefficients
higher than 2.5 or lower than -2.5, we use this threshold as our cut-off for regres-
sion coefficients and thus identify five vaginally born-associated and four C-section
born-associated features, as shown below:
Features with higher differential ranking in vaginal-born children (listed from
strongest to weakest):

d75b7080930e7a77ef3de8c6154895b9 ->

k__Bacteria; p__Actinobacteria; c__Actinobacteria;
o__Bifidobacteriales; f__Bifidobacteriaceae;
g__Bifidobacterium; s__

2a99ec1157a90661db7ff643b82f1914 ->

k__Bacteria; p__Bacteroidetes; c__Bacteroidia;
o__Bacteroidales;

f__Bacteroidaceae; g__Bacteroides; s__fragilis

c162a4f3943238810eba8a25f0563cca ->

k__Bacteria; p__Bacteroidetes; c__Bacteroidia;
o__Bacteroidales;

f__Bacteroidaceae; g__Bacteroides; s__ovatus

c4f9ef34bd2919511069f409c25de6f1 ->

k__Bacteria; p__Bacteroidetes; c__Bacteroidia;
o__Bacteroidales;

f__Bacteroidaceae; g__Bacteroides; s__

Features with higher differential ranking in caesarian-born children (listed from
strongest to weakest):

1ad289cd8f44e109fd95de0382c5b252 ->

k__Bacteria; p__Firmicutes; c__Clostridia;
o__Clostridiales; Estaki et al.

31 of 46

Current Protocols in Bioinformatics



f__Lachnospiraceae; g__Clostridium; s__hathewayi

C18afe570abfe82d2f746ecc6e291bab ->

k__Bacteria; p__Proteobacteria;
c__Gammaproteobacteria;

o__Enterobacteriales; f__Enterobacteriaceae;
g__Klebsiella; s__

bca0b81a0b8d59e90c25a323c2f62f31 ->

k__Bacteria; p__Firmicutes; c__Clostridia;
o__Clostridiales; f__Clostridiaceae; g__Clostridium;
s__perfringens

Meta-analysis through the Qiita database using redbiom

After identifying differentially abundant features using ANCOM or songbird, users
can search through available samples in Qiita (Gonzalez et al., 2018) using redbiom
(McDonald et al., 2019) to see the characteristics of samples. This type of analysis
can be used to examine what environments a particular feature was previously ob-
served in. In addition, the FeatureTable[Frequency] data for the samples that
contain a feature of interest can be extracted for further analysis. A detailed tutorial
can be found on the QIIME 2 Forum (https:// forum.qiime2.org/ t/querying-for-public-
microbiome-data-in-qiita-using-redbiom/4653). Here, we will search an individual
differentially abundant feature to see whether that feature appears enriched in different
infants by birth mode. Note that the exact numbers and results shown below may change
over time as more samples get indexed by redbiom.

To use redbiom, we first need to install the package using conda:

conda install -c conda-forge redbiom

In redbiom, the data are partitioned by technical and processing parameters to help im-
prove the comparability of the contained data. Before we search for features, we need
to decide the context to search within. The redbiom summarize contexts com-
mand provides information about the names of the contexts and the number of samples
and features indexed. The context names themselves describe the processing parameters
used:

redbiom summarize contexts

This produces a long output, as there are several sequencing technologies, sequence trim
lengths, a few different variable regions, and multiple feature assessment methods rep-
resented. The first five lines of this output are shown below, which provide the context
name, the number of samples in the context, the number of unique features, and a succinct
description of the bioinformatic processing performed:

ContextName SamplesWithData FeaturesWithData
Description

Pick_closed-reference_OTUs-Greengenes-Illumina-16S-V4-
125nt-65468f 16622 40899 Pick closed-reference
OTUs (reference-seq:
|databases|gg|13_8|rep_set|97_otus.fasta) | Trimming
(length: 125)

Deblur-Illumina-16S-V4-150nt-780653 127413 7299964
Deblur (Reference phylogeny for SEPP:Estaki et al.
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Greengenes_13.8, BIOM: reference-hit.biom) | Trimming
(length: 150)

Pick_closed-reference_OTUs-Greengenes-LS454-16S-V4-
41ebc6 7326 27248 Pick closed-reference OTUs
(reference-seq:
|databases|gg|13_8|rep_set|97_otus.fasta) | Split
libraries

Pick_closed-reference_OTUs-Greengenes-LS454-16S-V4-
100nt-a243a1 7434 29507 Pick closed-reference
OTUs (reference-seq:
|databases|gg|13_8|rep_set|97_otus.fasta) | Trimming
(length: 100)

Deblur-Illumina-16S-V4-125nt-3aae8b 15064 378537
Deblur (Reference phylogeny for SEPP:
Greengenes_13.8, BIOM: reference-hit.biom) | Trimming
(length: 125)

For the analysis here, we are going to use the Deblur-Illumina-16S-V4-150nt-
780653 context; this context is composed of samples which sequenced the 16S V4 re-
gion, are all 150 nucleotides in length, and were processed with Deblur. The context
contains 127,413 samples spanning over 7.2 million unique features, representing hun-
dreds of publicly available studies in Qiita.

Next, we will take the DNA sequence corresponding to our feature of inter-
est d75b7080930e7a77ef3de8c6154895b9, identify samples within the con-
text in which the sequence was observed, and save the output into a file called
observed_samples.txt. Note that feature hashes cannot presently be used for
search; use the bespoke-taxonomy.qzv Visualization to locate its corresponding
DNA sequences:

redbiom search features --context Deblur-Illumina-16S-
V4-150nt-

780653\
TACGTAGGGTGCAAGCGTTATCCGGAATTATTGGGCGTAAAGGGCTCGTAGGC
GGTTCGTCGCGTCCGGTGTGAAAGTCCATCGCTTAACGGTGGATCTGCGCCGG
GTACGGGCGGGCTGGAGTGCGGTAGGGGAGACTGGAATTCCCGG >
observed_samples.txt

If we examine the observed_samples.txt file, we will see that over 17,000 sam-
ples contain this particular feature. These samples are part of 137 different studies in
Qiita. We can now begin to explore what is known about the samples. A major challenge
for meta-analysis, though, is having common metadata categories across studies.

First, as a sanity check, we will search against only those samples that record the Earth
Microbiome Project Ontology (Thompson et al., 2017). The EMPO_3 level describes
basic environmental information about a sample. Only samples that describe an entry in
their metadata for empo_3 will be obtained:

redbiom summarize samples \
--category empo_3 \
--from observed_samples.txt
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What we can see from this output is that (as expected) the feature is primarily observed
in samples associated with the animal distal gut:

Animal distal gut 7124
Animal surface 331
Surface (non-saline) 204
Sterile water blank 102
Animal secretion 91
animal distal gut 68
Animal corpus 58
Water (non-saline) 15
Plant corpus 13
Animal proximal gut 12
Aerosol (non-saline) 9
Single strain 6
Water (saline) 6
Soil (non-saline) 6
not provided 2
Sediment (saline) 2
Surface (saline) 1
Total samples 8050

Now, let us search this feature against only those samples that correspond to infants. For
that, we will need to select the set of samples that correspond to a particular criterion. In
this case, we will filter to include only samples associated with individuals under the age
of 3. The two metadata categories we will use are host_age and ages, both of which
are common labels in Qiita that correspond to an individual’s recorded age. In addition,
we will explicitly omit the ECAM study from our qiita search, as our dataset was drawn
from this study:

redbiom select samples-from-metadata \
--context Deblur-Illumina-16S-V4-150nt-780653 \
--from observed_samples.txt "where (host_age < 3 or
age < 3) and qiita_study_id != 10249" >
infant_samples.txt

We can then summarize the metadata of these infant samples. In order to do so, we need
to determine what metadata category to summarize over. So let us search Qiita for all
metadata categories (not shown below) that contain the word ‘birth’ in the name, pick a
few that seem plausible, and summarize them:

redbiom search metadata \
--categories birth

redbiom summarize metadata birth_method birth_mode

We can see that birth_mode is represented by thousands of samples:

birth_method 72
birth_mode 2176

So, let us use that metadata category:

redbiom summarize samples \
--category birth_mode \
--from infant_samples.txtEstaki et al.
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From this summary, it appears our feature of interest is present in many more samples
associated with a vaginal birth than cesarean section:

Vaginal 38
Cesarea 16
Vag 3
CSseed 1
Total samples 58

It is important to note, however, that these findings may be confounded by the possibility
that there may be more representations of vaginal birth samples in Qiita. However, a
summary of that metadata category across all of Qiita can be performed easily:

redbiom summarize metadata-category \
--counter \
--category birth_mode

This suggests the variable is not extremely unbalanced between C-section and vaginal
births, and that actually more of the samples are associated with C-sections.

Category value count
Cesarea 47
Vaginal 135
CSseed 335
Vag 689
CS 970

Last, we can see the studies these samples were observed in by summarizing over the
qiita_study_id category:

redbiom summarize samples \
--category qiita_study_id \
--from infant_samples.txt

We see that nine different Qiita studies are represented by the infant samples:

10581 54
10918 30
11076 19
1064 15
11358 10
11947 10
2010 4
10512 3
11284 1
Total samples 146

Further exploration of these samples can be performed, such as extracting the samples
and integrating them directly in a meta-analysis (see redbiom fetch to obtain feature
tables and sample metadata).

SUPPORT
PROTOCOL

FURTHER MICROBIOME ANALYSES

The following sections are offered as stand-alone additional support for further micro-
biome analyses and do not rely on the ECAM dataset used in previous sections. Estaki et al.
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Exporting QIIME 2 data

Occasionally, the raw data within QIIME 2 artifacts may be required for use in other
applications that cannot read these file types. QIIME 2 artifacts are simple zip files,
and so their content can be extracted using any unzipping software. They can also be
extracted readily using the qiime tools extract plugin, which extracts the raw
data as well as QIIME 2’s metadata about that artifact—including for example the ar-
tifact’s provenance—into the output directory in plain-text format. The extracted files
will be placed in a new directory whose name is the artifact’s universally unique iden-
tifier (UUID). Alternatively, when only the raw data are desired without the metadata,
qiime tools export can be used. When exporting an artifact, only the data files
will be placed in the output directory. For example, a user may be interested in visualizing
a phylogenetic tree using a package in R. To obtain the raw tree file (in Newick format),
simply run:

qiime tools export \
--input-path insertion-tree.qza \
--output-path extracted-insertion-tree

Analysis of shotgun metagenomic data

Whole-metagenome shotgun (WMS) sequencing explores the totality of genomes in the
microbial community. Compared to amplicon-based analyses, it provides higher taxo-
nomic resolution (typically beyond the genus level), direct observation of functional
genes, and further information on the genome organization. Although assembly into draft
genomes usually demands high sequencing depth, which is expensive, investigation of
the microbial community can be as affordable as amplicon sequencing, hence enabling
survey of larger quantity of samples. It has been demonstrated that “shallow” shotgun
sequencing (0.5 million sequences per sample) delivers nearly equal insights into the
community’s taxonomic composition compared to sequencing with 100 times as much
depth (Hillmann et al., 2018)—although functional profiles are not nearly as accurate in
shallow shotgun sequencing. Therefore, experimental design and budget arrangements
should be made based on the goals of the study.

Two plugins that are dedicated to shotgun metagenomics are currently available for QI-
IME 2: q2-shogun (Hillmann et al., 2018) and q2-metaphlan2 (Truong et al.,
2015). They need to be installed separately. In the example below, we demonstrate the
use of q2-shogun, a wrapper for the SHOGUN pipeline (Hillmann et al., 2018).

1. Install QIIME 2 shotgun metagenomics plugins by running:

conda install -c bioconda bowtie2
conda install cytoolz
pip install https://github.com/knights-lab/SHOGUN/
archive/master.zip

pip install https://github.com/qiime2/q2-shogun/
archive/master.zip

qiime dev refresh-cache

2. Download all the required example files from the q2-shogun repository:

for i in query refseqs taxonomy bt2-database; do
wget https://github.com/qiime2/q2-shogun/raw/
master/q2_shogun/tests/data/$i.qza; done

3. Run shotgun metagenomics pipeline with the following commands:

qiime shogun nobunaga \
--i-query query.qza \

Estaki et al.
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--i-reference-reads refseqs.qza \
--i-reference-taxonomy taxonomy.qza \
--i-database bt2-database.qza \
--o-taxa-table taxatable.qza

In this example, SHOGUN is called to align query sequences query.qza against
a reference sequence database refseqs.qza using the popular short-sequence
aligner Bowtie2 (Langmead & Salzberg, 2012). The query sequences may be demul-
tiplexed or multiplexed data. In the latter case, SHOGUN will automatically stratify
alignment results by sample ID. The taxonomy artifact taxonomy.qza defines the
mapping of reference sequences to taxonomic lineages. In addition to taxonomy, this
artifact could be any hierarchical (semicolon-delimited) or simple mappings, for ex-
ample, functional annotations. A Bowtie2 index containing the reference sequence
database is necessary for this operation.

The output file, taxatable.qza, is a feature table in which columns are sample
IDs and rows are taxonomic lineages. Starting from this table, we may perform vari-
ous subsequent analyses in a similar manner to amplicon sequencing data, as detailed
above, such as taxonomy plots, alpha and beta diversity analyses, and differential
abundance testing.

If the user wants to prepare a custom reference sequence database from a multi-
FASTA file (e.g., refseqs.fa), it can be done as follows:
NOTE: The below sections are presented for demonstration purposes only and are not
to be executed unless the file refseqs.fa is first imported by the user.

4. Import the sequences into QIIME 2:

qiime tools import \
--input-path refseqs.fa \
--type FeatureDate[Sequence] \
--output-path refseqs.qza

5. Build a Bowtie2 index based on the sequences:
QIIME 2 is flexible in the types of metagenomic analyses it supports. In addition
to calling SHOGUN or MetaPhlAn2 from the QIIME 2 interface, one may perform
taxonomic or functional profiling of shotgun metagenomic data separately using any
external tool, then import the resulting profile into QIIME 2. BIOM formatted files
are supported as input. Questions about other supported formats should be directed
to the QIIME 2 Forum, as this will expand over time.

Source tracking

Source tracking of microbial communities attempts to estimate the relative contribu-
tions of a set of host, environmental, and contamination sources to a novel community.
QIIME 2 currently offers two methods for microbial source tracking through the ex-
ternal plugins q2-FEAST (https://github.com/cozygene/FEAST) (Shenhav et al., 2019)
and q2-SourceTracker2 (https://github.com/biota/sourcetracker2) (Knights et al.,
2011). FEAST (Fast Expectation-mAximization microbial Source Tracking) and Source-
Tracker2 vary in their statistical approach and assumptions for the estimation of source
contributions. Therefore, we view method selection here as a personal choice that re-
search teams should make if they do not have a prior hypothesis that one tool addresses
directly.

Compositional data analysis

Feature tables contain magnitudes determined by random sequencing depths that vary
dramatically between samples irrespective of the initial microbial load, making the data
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compositional in nature (Fernandes et al., 2014). Compositional data contain relative in-
formation where the abundance of one feature can only be interpreted relative to another.

Numerous normalization methods have been proposed to restore absolute abundances
such as rarefaction (Weiss et al., 2017), as well as median (Love, Huber, & Anders,
2014), quantile (Paulson, Stine, Bravo, & Pop, 2013), and constant sum normalization.
However, due to erroneous assumptions, these methods cannot control false-positive rates
(Hawinkel, Mattiello, Bijnens, & Thas, 2019; Morton et al., 2017) and contribute to irre-
producibility (Fernandes et al., 2014; Gloor, Macklaim, Pawlowsky-Glahn, & Egozcue,
2017; Gloor, Wu, Pawlowsky-Glahn, & Egozcue, 2016).

Transformation-independent and -dependent methods developed in the field of com-
positional data analysis (CoDA) offer an assumption-free solution (Quinn et al.,
2019). Transformation-dependent methods such as the centered- (clr; Aitchison, 1982),
isometric- (ilr; Egozcue, Pawlowsky-Glahn, Mateu-Figueras, & Barceló-Vidal, 2003),
and additive- (alr; Aitchison, 1982) log ratio transform the data with regard to a refer-
ence. Transformation-independent methods operate on a single feature or ratios of fea-
tures (Greenacre, 2019).

CoDA methods rely on logarithms to enforce symmetry in the weighting of relative in-
creases or decreases between features (Aitchison, 1982). The logarithm of zero is un-
defined, and therefore the non-trivial task of zero handling is often the first step in
CoDA analysis (Silverman, Roche, Mukherjee, & David, 2018). There are many pro-
posed methods (Martín-Fernández, Barceló-Vidal, & Pawlowsky-Glahn, 2003), but QI-
IME 2 provides two steps to ameliorate the zero problem. First, features that have
only a few entries across many samples can be filtered out (https://docs.qiime2.org/
2019.10/plugins/available/ feature-table/filter-features/ ). Second, a small pseudocount
value (often of one) can be added uniformly to the data prior to applying a transform
(https://docs.qiime2.org/2019.10/plugins/available/composition/add-pseudocount/ ).

After zero handling, multiple CoDA transforms are available in QIIME 2, includ-
ing clr and ilr on both a hierarchical and phylogenetic basis via gneiss (https://docs.
qiime2.org/2019.10/plugins/available/gneiss/ ) (Morton et al., 2017). Downstream anal-
ysis of transformed data is often focused on finding differential features between sam-
ple groups. In QIIME 2, both Songbird (https://github.com/biocore/songbird) (Mor-
ton et al., 2019) and ALDEx2 (https://github.com/ggloor/q2-aldex2) (Fernandes et al.,
2014) provide supervised differential abundance ranking. QIIME 2 also provides com-
positional unsupervised dimensionality reduction methods in two forms of Aitchison
distance that use different zero-handling methods (https://docs.qiime2.org/2019.10/
plugins/available/diversity/beta/ ; https:// library.qiime2.org/plugins/deicode) (Martino
et al., 2019; Pawlowsky-Glahn, Egozcue, & Tolosana-Delgado, 2015). Using both su-
pervised and unsupervised CoDA methods, the differential features can be obtained with
regard to sample groupings (e.g., armpit versus foot).

After identifying differential features, QIIME 2 also provides methods for transform-
independent analysis using Qurro (https:// library.qiime2.org/plugins/qurro; https://doi.
org/10.1101/2019.12.17.880047). By taking the log-ratio between two or the sum of
multiple differential features, the sample groupings can be directly visualized.

Supervised classification and regression methods for predicting sample metadata

Supervised learning (SL) methods predict sample data (e.g., metadata values) as a func-
tion of other sample data (e.g., microbiota composition) by training an SL model on
training data. Various SL methods can predict either categorical data (a classification
problem) or continuous values (a regression problem). SL methods have become increas-
ingly common in microbiome studies to predict sample characteristics (e.g., disease stateEstaki et al.
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or location data) or to identify features that are associated with particular characteristics
or sample classes (Bokulich, Collins, et al., 2016; Knights et al., 2011; Pasolli, Truong,
Malik, Waldron, & Segata, 2016). The ability of many SL methods to perform feature
selection—the identification (and ranking) of features associated with particular sample
classes or values—is a particularly useful feature of these methods for application in
microbiome experiments. The QIIME 2 plugin q2-sample-classifier (Bokulich,
Dillon, Bolyen, et al., 2018; https:// library.qiime2.org/plugins/q2-sample-classifier/ )
contains methods for performing supervised classification/regression and feature selec-
tion using microbiome data and metadata.

Metadata preparation

Metadata are a critical component of a successful study and, unlike other elements such as
sequencing quality or completeness of the reference database, metadata are largely under
the control of the investigator. Unfortunately, they are often treated as an afterthought,
leading to uninterpretable results due to missing information. To ensure a successful data
analysis, begin metadata generation at the time of sample collection. Be sure to record
all sample attributes that are relevant to your hypotheses, as these attributes are the basis
of QIIME 2’s visualizations and statistical tests.

Spreadsheets are the most commonly used vehicle for metadata storage and manage-
ment due to their ubiquity and convenience, but they have well-known drawbacks.
For example, by default Microsoft Excel performs irreversible modification of cer-
tain kinds of inputs into dates or floating-point numbers (Zeeberg et al., 2004), and
auto-completes values based on earlier entries (https:// support.office.com/en-ie/article/
turn-automatic-completion-of -cell-entries-on-or-off -0f4aa749-b927-4ea7-adaa-86f8d4
f9fe20). As these modifications are performed silently, without warning to the user, they
frequently lead to mangled metadata. Although other spreadsheet programs (such as
Google Sheets and LibreOffice) have slightly different defaults, all have “convenience”
features that can cause data corruption, so it is critical to learn the default features of
your preferred spreadsheet program, follow spreadsheet best-practices (Broman & Woo,
2018), and actively monitor the validity of your records. Alternatively, generate your
metadata file in a dedicated software tool such as ISAcreator (Rocca-Serra et al., 2010),
which provides a structured interface designed to prevent common errors.

Consistency is the key to high-quality metadata. Much effort has already been put into
identifying and standardizing the crucial pieces of metadata for various sorts of stud-
ies, so investigate these guidelines before beginning your metadata collection. The Ge-
nomic Standards Consortium (GSC) has created the “Minimum Information about any
(x) Sequence” (MIxS) and “Minimum Information about a MARKer gene Sequence”
(MIMARKS) specifications (Yilmaz et al., 2011) as well as 15 “environmental packages”
that extend and refine these standards for samples from environments ranging from air to
human skin to waste water. To ease compliance with these standards, the GSC provides
checklists outlining the expected inputs, syntax, preferred units, and more for the fields
in each standard and package (https://press3.mcs.anl.gov/gensc/mixs/ ). Many of these
fields take values specified by subsets of controlled vocabularies such as the Experimen-
tal Factor Ontology (Malone et al., 2010) and the Environment Ontology (Buttigieg et al.,
2016). Consider employing a tool such as the stand-alone ISAconfigurator (Rocca-Serra
et al., 2010) or the Excel-based QIIMP (The Quick and Intuitive Interactive Metadata
Portal; https://qiita.ucsd.edu/ iframe/?iframe=qiimp) to identify all the fields necessary
for your study type and to enforce the validity of their content.

While creating and maintaining consistent and compliant metadata is not trivial, it is
well worth the effort. Not only are standards-compliant metadata required for sub-
mission to a growing number of public databases and journals [e.g., the European Estaki et al.
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Nucleotide Archive (https://www.ebi.ac.uk/ training/online/course/ebi-metagenomics-
portal-submitting-metagenomics-da/what-are-metadata-and-why-are-they-so-impo),
Qiita (https://qiita.ucsd.edu/static/doc/html/ tutorials/prepare-information-files.html#
required-fields-for-centralized-qiita), and Microbiome Journal (https://microbiomejour
nal.biomedcentral.com/submission-guidelines/preparing-your-manuscript/microbiome
-announcement)], but they are also critical to enable future meta-analyses—both be-
tween your own data and others’—and between your own data today and your new
data tomorrow! It is much easier to record required information up front than it is to
retroactively track this information down when you are working toward a tight paper
submission deadline.

COMMENTARY

Background Information
Advances in the ease of microbiome data

acquisition, due in large part to improved DNA
sequencing instruments and standardized pro-
tocols, have led to a dramatic increase in the
need to analyze the data. However, because so
many studies have already been done, it is no
longer the best approach to analyze each data
set in isolation. Rather, combining the data
with what is already known from other studies
can have considerable advantages. Therefore,
in this article, we show both analysis of an
individual dataset and combination with data
from other studies. Although we show an ex-
ample relevant to the human microbiome, we
stress that QIIME 2 is useful for analyzing mi-
crobiomes from any environment, including
soil, seawater, animals, plants, industrial sys-
tems, built environments, foods, and a wide
range of others that we never anticipated.

QIIME 2 allows rapid meta-analyses across
studies, but these can often be limited due to
protocol variation and incomplete or incom-
patible metadata. Comparing multiple stud-
ies directly relies on complete standardized
sample metadata, experimental protocols, and
bioinformatics analysis. Incomplete metadata
with mislabeled or non-standardized entries
severely limits the ability to compare be-
tween studies, and leads to spurious con-
clusions. Experimental protocols that am-
plify non-standard variable regions of the 16S
rRNA gene, or that use custom sequencing
barcodes/adaptors, can also prevent studies
from being combined into one analysis. Mak-
ing the raw data from each study available in
public databases, as required by many jour-
nals and funding agencies, and using standard
methods, can greatly facilitate re-use and cita-
tion of your dataset.

Critical Parameters
Several points are important to consider be-

fore beginning your analysis, and have been
reviewed recently to provide best practices for

microbiome studies (Allaband et al., 2019;
Knight et al., 2018). QIIME 2 tries its best
to provide reasonable defaults, but some plug-
ins require considerable biological or subject-
matter knowledge for picking the parameters.
Rarefaction provides a good example, because
knowledge of which samples cannot be left out
of the analysis to obtain biologically mean-
ingful results is needed in order to choose
the number of sequences per sample to keep.
Similarly, for processing raw sequencing data
into a FeatureTable[Frequency] arti-
fact, it is absolutely necessary to know how the
samples have been processed, including com-
prehensive preparation metadata for process-
ing and troubleshooting, as well as the type of
barcodes used for multiplexed samples. Meta-
data must be carefully considered, because the
analysis cannot use information that you did
not provide. For example, if you want to check
whether a parameter such as immune function
is correlated with the microbiome, that param-
eter must actually be measured and included in
the metadata table.

Because capabilities in QIIME 2 are
rapidly expanding, and because topics such as
compositional data analysis are receiving in-
tense focus from the statistics community at
present, this document will be continuously
updated after publication on the QIIME 2 web-
site (https://qiime2.org/ ). For questions be-
yond the scope of this document, we encour-
age you to use the QIIME 2 forum (https://
forum.qiime2.org/ ), which provides rapid an-
swers to a wide range of questions. We look
forward to reading about your applications of
QIIME 2 to answer a wide range of com-
pelling questions that touch on the micro-
biome, whether in the sea, the soil, or the hu-
man body!

Troubleshooting
All actions in QIIME 2 have built-in help,

accessible by including the --help param-
eter following any action name, e.g., qiime

Estaki et al.

40 of 46

Current Protocols in Bioinformatics

https://www.ebi.ac.uk/training/online/course/ebi-metagenomics-portal-submitting-metagenomics-da/what-are-metadata-and-why-are-they-so-impo
https://www.ebi.ac.uk/training/online/course/ebi-metagenomics-portal-submitting-metagenomics-da/what-are-metadata-and-why-are-they-so-impo
https://qiita.ucsd.edu/static/doc/html/tutorials/prepare-information-files.html#required-fields-for-centralized-qiita
https://qiita.ucsd.edu/static/doc/html/tutorials/prepare-information-files.html#required-fields-for-centralized-qiita
https://microbiomejournal.biomedcentral.com/submission-guidelines/preparing-your-manuscript/microbiome-announcement
https://microbiomejournal.biomedcentral.com/submission-guidelines/preparing-your-manuscript/microbiome-announcement
https://microbiomejournal.biomedcentral.com/submission-guidelines/preparing-your-manuscript/microbiome-announcement
https://qiime2.org/
https://forum.qiime2.org/
https://forum.qiime2.org/


feature-table filter-samples -
-help. Additionally, technical support is
available through https:// forum.qiime2.org,
as discussed in the Introduction to this article.
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APPENDIX

The QIIME 2 website provides two glossaries, one written for users (see https://docs.
qiime2.org/2019.10/glossary/ ) and one written for developers (see https://dev.qiime2.
org/ latest/glossary/ ). The user-focused glossary is reproduced here as it appeared at the
time of publication of this paper. We refer readers to the online version for updated ver-
sion.

QIIME 2 User Glossary

action: A general term for a method, a visualizer, or a pipeline. Actions are always defined
by QIIME 2 plugins.

artifact: Artifacts are QIIME 2 results that are generally considered to represent interme-
diate data in an analysis, meaning that an artifact is generated by QIIME 2 and intended
to be consumed by QIIME 2 (rather than by a human). Artifacts can be generated either
by importing data into QIIME 2 or as output from a QIIME 2 action. When written to
file, artifacts typically have the extension .qza, which stands for “QIIME Zipped Arti-
fact.” Artifacts can be provided as input to QIIME 2 actions, loaded with tools such as
the QIIME 2 Artifact API for use with Python 3 or qiime2R for use with R, or exported
from QIIME 2 for use with other software.

data provenance: See decentralized data provenance.

data format: A view of an artifact as a file or multiple files stored on disk. QIIME 2
supports many data (or file) formats, and multiple data formats are sometimes available
for importing or exporting of QIIME 2 artifacts of a given semantic type.

data type: A view of an artifact as an in-memory data representation. Data types are
generally only encountered by Artifact API users or plugin developers. QIIME 2 supports
many data types, and multiple data types are sometimes available for viewing QIIME 2
artifacts of a given semantic type.

decentralized data provenance: Information describing how a QIIME 2 result was gen-
erated. This will include details on all of the QIIME 2 actions that led to the creation ofEstaki et al.
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an artifact, including the values of all parameters, and references to all inputs and results
as UUIDs. Data provenance additionally contains the literature citations that are relevant
to the generation of a QIIME 2 result. Those citations should be included in all published
work that derives from a given QIIME 2 result. All QIIME 2 results contain embedded
data provenance which can be visualized with QIIME 2 View (https://view.qiime2.org).
Because the data provenance is embedded in the results themselves, as opposed to be-
ing stored in a centralized database that maintains records on all results (for example),
QIIME 2’s data provenance is described as being decentralized.

feature: A unit of observation, such as an operational taxonomic unit, a sequence variant,
a gene, or a metabolite. This generic term is used because QIIME 2 can support many
different types of features.

input: An artifact (i.e., non-primitive) provided to an action. For example, table is an
input to the filter-features action in the q2-feature-table plugin.

method: A type of QIIME 2 action that takes one or more artifacts or parameters as input,
and produces one or more artifacts as output. For example, the filter-features action in
the q2-feature-table plugin is a method.

output: A result generated by running an action. For example, filtered-table is an output
from the filter-features action in the q2-feature-table plugin.

parameter: A primitive (i.e., non-artifact) provided to an action. For example, min-
frequency is a parameter to the filter-features action in the q2-feature-table plu-
gin. See primitive type.

pipeline: A type of QIIME 2 action that typically combines two or more other actions.
A pipeline takes one or more artifacts or parameters as input, and produces one or more
results (artifacts and/or visualizations) as output. For example, the core-metrics action
in the q2-diversity plugin is a pipeline.

plugin: A plugin provides analysis functionality in the form of actions. All plugins can
be accessed through all interfaces. Plugins can be developed and distributed by anyone.
As of this writing, a collection of plugins referred to as the “core distribution” is provided
on installation of QIIME 2. Additional plugins can be installed, and the primary resource
enabling discovering additional plugins is the QIIME 2 Library (https:// library.qiime2.
org). Anyone with a QIIME 2 Forum account can share their plugins on the QIIME 2
Library. We plan to phase out the “core distribution” as we move toward distributing all
QIIME 2 plugins through the QIIME 2 Library.

provenance: See decentralized data provenance.

primitive type: A type used to define a parameter to a QIIME 2 action. For example,
strings (i.e., text), integers, and booleans (i.e., true or false values) are primitives. Primi-
tives are only used as input to actions, and never generated as output by QIIME 2.

qza: See artifact.

qzv: See visualization.

result: A general term for an artifact or a visualization.

sample: An individual unit of study in an analysis.

semantic type: A semantic type describes the meaning of data in QIIME 2. All re-
sults in QIIME 2 have a single semantic type associated with them, and when importing
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data into QIIME 2, the user must provide the semantic type of that data. The use of
semantic types by QIIME 2 provides an unambiguous way to communicate with oth-
ers about data, and allows QIIME 2 to reason about data and help users prevent error.
An example is helpful for illustrating what semantic types are and how they’re used by
QIIME 2. QIIME 2 contains two related semantic types, Phylogeny[Rooted] and
Phylogeny[Unrooted], which represent rooted and unrooted phylogenetic trees,
respectively. Both rooted and unrooted phylogenetic trees can be stored in Newick files,
and it is not possible to easily tell if the phylogenetic tree is rooted or not without parsing
the file. Some analyses, such as computing UniFrac distances, should be applied only to a
rooted phylogenetic tree. By associating a semantic type with a phylogenetic tree artifact,
QIIME 2 can determine if the correct type of data is being provided to an action, without
having to first parse the file (which might be slow, and therefore delay the amount of time
before an error can be presented to a user), and then possibly make assumptions based on
what is observed. If a user accidentally provides data of a semantic type that is not accept-
able for a QIIME 2 action, QIIME 2 can quickly detect this mismatch and provide the
user with detailed information on the error and how to correct it. Semantic types should
not be confused with data formats, which define how data are represented on disk. For
example, another QIIME 2 semantic type, the FeatureTable[Frequency], can be
written to a BIOM-formatted file or to a tab-separated text file. By differentiating data
formats from semantic types, QIIME 2 can support import and export of different file
formats based on a user’s needs. Semantic types should also not be confused with data
types. For example, the FeatureTable[Frequency] semantic type could be repre-
sented in memory as a biom.Table object or a pandas.DataFrame object, and for
different applications, one of these representations might be more useful than the other.
Regardless of which in-memory representation is used, the meaning of the data is the
same. By differentiating data types and semantic types, QIIME 2 allows developers and
users to choose the data structure that is most convenient for them for a given task.

type: Type is an ambiguous term, and we therefore try to avoid using it in favor of the
more specific terms semantic type, primitive type, data format, or data type.

UUID: QIIME 2 uses UUIDs, or “Universally Unique Identifiers,” to reference all re-
sults, and all executions of actions. These can be used, for example, to determine that a
given artifact was generated as output from a specific execution of an action using data
provenance. UUIDs are an unambiguous way to refer to QIIME 2 results, because they
can never change without invalidating a QIIME 2 artifact (unlike file names, for example,
which are easy to change and can thus cause errors in tracking results).

view: A particular representation of an artifact’s data, for example as a data format or
data type.

visualizer: A type of QIIME 2 action that takes one or more artifacts or parameters
as input, and produces exactly one visualization as output. For example, the summarize
action in the q2-feature-table plugin is a visualizer.

visualization: Visualizations are QIIME 2 results that represent terminal output in an
analysis, meaning that they are generated by QIIME 2 and intended to be consumed
by a human (as opposed to being consumed by QIIME 2 or other software). Visualiza-
tions can only be generated by QIIME 2 visualizers or pipelines. When written to file,
visualizations typically have the extension .qzv, which stands for “QIIME Zipped Vi-
sualization.” Visualizations can be viewed with QIIME 2 View (https://view.qiime2.org)
on systems that do not have QIIME 2 installed, and QIIME 2 interfaces typically provide
their own support for viewing (such as the qiime tools view command available through
the QIIME 2 command-line interface).
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