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1 | INTRODUCTION

Many aspects of gastrointestinal physiology are under the control
of the enteric nervous system (ENS),! which is an extensive neural
network embedded within the wall of the entire gastrointestinal
tract and operates, to a large extent, independently from commands
arriving from the central nervous system.2 Enteric neurons and en-
teric glial cells (EGCs) form the core of the ENS and are assembled
into two interconnected ganglionated plexus layers.® While the cell
bodies of enteric neurons are mainly localized within the submuco-
sal plexus (SMP),* and between the circular and longitudinal muscle

layers, within the myenteric plexus (MP),*"3>¢ EGCs can also be found
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Background: The enteric nervous system (ENS) is an extensive neural network em-
bedded in the wall of the gastrointestinal tract that regulates digestive function and
gastrointestinal homeostasis. The ENS consists of two main cell types; enteric neu-
rons and enteric glial cells. In vitro techniques allow simplified investigation of ENS
function, and different culture methods have been developed over the years helping
to understand the role of ENS cells in health and disease.

Purpose: This review focuses on summarizing and comparing available culture pro-
tocols for the generation of primary ENS cells from adult mice, including dissection
of intestinal segments, enzymatic digestions, surface coatings, and culture media. In

addition, the potential of human ENS cultures is also discussed.

adult mouse, enteric glial cells, enteric neurons, primary ENS culture, protocol

in the mucosa and muscle layers. Different enteric neuron subtypes
can be classified according to their morphological, electrical, neuro-
chemical, and molecular properties.”” EGC subtypes can be classi-
fied based on their morphology and location.&1%1!

Owing to its location close to the contractile gut musculature and
intimate association with other intestinal cell types, such as epithelial,
immune, and stromal cells, the development of adequate methodol-
ogy to study the ENS has been a major challenge to the field.'?* The
generation of in vitro techniques has allowed the acquisition, expan-
sion, and manipulation of ENS cells for a wide variety of research ques-
tions. They include (but are not limited to) primary ENS cell cultures

in (semi-)monolayer, stem cell-derived 3D neurospheres, induced ENS
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cells from stem cell origin, and established cell lines. Initially, the inves-
tigation of the ENS using in vitro systems was established mostly in
guinea pig gut,is'19 because of the extensive knowledge on anatomy,
physiology, and chemical coding of guinea pig neurons.”?® However,
the lack of genetically modified strains, as well as higher costs for
housing and longer breeding times, made the ENS of mice the more
commonly used exemplary.?! Primary ENS cells in early culture sys-
tems were extracted from neonatal tissue,'®%22 but advancements in
culture conditions, such as media and addition of growth factors have
enabled the culture of adult primary ENS cells. To culture mature neu-
ronal cells can still be challenging for different reasons: (1) they do not
take part in cell division, so they can only be maintained for a limited
amount of time; (2) the risk of overgrowth by other non-ENS contam-
inants, for instance, fibroblasts and smooth muscle cells; (3) possible
overgrowth of EGCs when the main interest is enteric neurons; and
(4) risk of contamination by luminal contents containing bacteria and
fungi. In this review, we summarize and compare currently available
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protocols for the isolation and culture of primary enteric neurons and
EGCs obtained from the adult mouse intestine. We also discuss the

methodology to generate human ENS cell cultures.

2 | GENERATION OF MURINE PRIMARY
ENS CULTURES

The generation of primary ENS cell cultures occurs in different
steps. Below we discuss the different possibilities for isolation of
the target tissue, the available approaches for the dissociation of the
target cells, and possible culture maintenance techniques for murine
primary ENS cultures. We will discuss culture methodology for ENS
cultures focused on the isolation of neuronal cells (termed “ENS cul-
tures”, as these cultures never consist of neurons solely) and for ENS
cultures focused on the isolation of glial cells (termed “EGC cultures”,
as they can be more purified).
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FIGURE 1 Schematic representation of the steps involved in the dissection of tissue to isolate ENS cells. A Tissue dissection from the
adult mouse, highlighting the different segments of the intestines. Isolated segments are cleaned and kept viable in BSS. B Two different
isolation techniques for the LMMPs. Technique | involves the isolation of LMMPs from unopened segments and technique Il includes
opening intestinal segments and isolating the LMMP from the underlying mucosa and submucosa. C Rinsing of isolated tissue pieces

by centrifugation in ice-cold BSS and resuspension of the pellet. Abbreviations: BSS = basal salt solution; LMMP = longitudinal muscle

myenteric plexus. Created with BioRender.com.
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2.1 | Dissection and isolation

Depending on the research questions, different regions of the gut
can be used (Figure 1A). In the small intestines of adult mice, for in-
stance, the ENS meshwork is loosely arranged, with longer connect-
ing nerve fiber strands resulting in a less compact structure.

In the colon, however, specifically in the proximal colon, ENS or-
ganization is more compact and dense within the MP, making the
separation of the muscle layer from the underlying submucosal layer
rather difficult, as observed in rat.?®

The organ of choice can be isolated from the animal by steriliz-
ing and opening the abdominal wall, without injuring the underlying
structures to expose the gastrointestinal tract, lifting the intestine
with forceps, and cutting through the mesentery with scissors. After
removing the intestine(s) from the animal, it is essential to keep the
tissue viable by continuously maintaining adequate levels of ionic
and osmotic balance.?* This can be achieved by placing it imme-
diately in a balanced basal salt solution (BSS) supplemented with
carbohydrates (Figure 1A). Different basal salt solutions have been
used including Hank's balanced salt solution (HBSS),25 Krebs,?4?7
Krebs—HBSS,28 Krebs-Ringer solution,29 and DPBS,3°’31 generally
containing the same essential constituents: calcium, magnesium, po-
tassium, sodium, and phosphate. The function of BSS is fivefold: (l)
the maintenance of intra- and extracellular osmotic balance during
washing and dilution steps; (1) the preservation of intracellular water
and ion concentrations essential for healthy cell physiology; (lll)
buffering the medium to maintain a physiological pH range; (IV) in
case of supplementation with carbohydrates it provides a principle
energy source; and (V) the provision of oxygen in case of bubbling
with an 0,/CO, gas mixture.”*

Depending on the type of cell culture, different plexus layers
may be prioritized. For example, for ENS cultures, composed of
both neurons and EGCs, longitudinal muscle containing the my-
enteric plexus (LMMP) preparations are commonly used as the MP
accommodates a larger number of neurons than the SMPp,2°27:29:32
However, it must be noted that SMP neurons and EGCs have differ-
ent properties than MP neurons and EGCs.>*° Cultures consisting
solely of MP neurons might thus not adequately represent the prop-
erties of SMP neurons, which has to be taken into consideration.
For cultures focused on the isolation of EGCs, the submucosa and
mucosa, as well as the LMMP, have been used as tissue sources, %31
indicating that either tissue source can be used depending on the
research question.

Because the layers of the intestinal walls in rodents are very
thin, soft, and delicate, the dissection and isolation of the ENS re-
quire careful tissue manipulation. Following the removal of debris
and feces from the intestinal segments, the isolation of the plexus
layers is usually performed by either of two techniques. Technique |
includes cutting the intestine in small pieces and making a gentle in-
cision along the line where the mesentery was attached after placing
the segment on a small rod or syringe, followed by gentle stroking
with a wetted cotton swap along the entire segment to peel away
the LMMP (Figure 1B). Technique Il involves longitudinal opening of
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the intestinal segment along the mesenteric line and then peeling off
the LMMP (Figure 1B). In both techniques, it is crucial to cut along
the mesenteric line, as the dissection of the MP is hindered here
due to the presence of ducts and blood vessels.®® It should be noted
that technique Il requires more time than technique I, but allows for
a more precise separation of the muscularis externa from the lam-
ina propria mucosa. The majority of the reviewed protocols utilized

12629 compared to technique 11.2>3! Some modi-

isolation technique
fications have been made on both techniques. For instance, Wahba
et al. described a technique involving stretching and pinning of the
unopened segment on a Sylgard plate instead of placing it on a rod,
followed by scraping off the LMMP from the entire length of the
intestinal segment with curved forceps.?’

In the protocol used by Verissimo et al. (2019) for EGC culture,
technique Il is adapted by only removing the mucosa to obtain ENS
cells from the SMP and MP.®! Wang et al. (2018), focusing on the
isolation of EGCs from the mucosa, submucosa, and circular muscle,
used technique | to separate the LMMP, but discarded it and used
the remaining tissue containing the SMP and lamina propria for fur-
ther processing.®° Following the isolation of the plexus, dissociated
cells are cleaned and separated from remaining debris by rinsing and
centrifuging three to four times with BSS, a step shared by all ana-
lyzed protocols (Figure 1C).

2.2 | Celldissociation

The dissociation of ENS cells for culturing can be achieved mechani-
cally and/or enzymatically. Mechanical dissociation involves either
cutting, sieving, or triturating the isolated tissue and can be much
faster than enzymatic digestion. It is suitable for large amounts of
soft tissue, but can lead to tissue damage and lower yield of viable
cells.”

Enzymatic digestion of cell-cell adhesion components using
proteases is the most common step for cell isolation from adjacent
tissues. Proteases are distinctive in their molecular specificity, and
different tissues therefore require different enzymatic activity de-
pending on their matrix composition.®® In addition, DNase can be
used to digest the DNA that is released due to the digestion of con-
nective tissue and smooth muscle cells, as it can form long strings
that tie up cells. The most common enzymes used in the protocols
analyzed in this review were collagenases, trypsin, DNase, or a com-
bination thereof (Table 1). Only the study by Wang et al. made use of
non-enzymatic digestion (EDTA), which is also the only study using
the submucosa, mucosa, and circular muscle instead of the LMMP.

Next to the choice of the particular enzyme(s) and their con-
centration, also the temperature and time of incubation are crucial
determinants of successful enzymatic digestion. In order to allow
the enzymes to reach their targets, the removal of fat tissue and
unwanted muscle layers, and a sufficient level of mechanical dissoci-
ation prior to the digestion step greatly influence the efficacy of en-
zymatic dissociation of ENS cells. Together, these factors determine
how well the tissue is dissociated and the subsequent cell viability.>?
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TABLE 1 Different enzymatic digestion conditions included in the reviewed protocols. Concentrations are shown as described in the
protocols, temperatures are indicated in Celsius, incubation times are presented in minutes. Missing values indicated by (-).

Protocol source Enzyme Concentration

Zhang and Hu. 2013% Collagenase IV 1 mg/ml
Trypsin 0.05%

Smith et al. 2013%” Collagenase Il 1.3 mg/ml
Trypsin 0.05%

Lowette et al. 2014%® Collagenase 14.67 mg/ml
Protease 10 mg/ml
Albumin 5% in PBS

Wahba et al. 2016%’ Collagenase IV 1 mg/ml
Trypsin 0.05%

Brun and Akbarali. 2018%°  Collagenase | 0.5 mg/ml
DNase | 0.5 mg/ml

Verissimo et al. 2019%* Collagenase Il -

EGCs DNase |

Wang et al. 2018%° Non-enzymatic digestion -

EGCs

After dissociation, enzymes should be removed from the samples
before seeding with gentle centrifugation steps to ensure that no
further damage is exerted on the cells.%’

One advantage of using enzymatic digestion for the isolation of
ENS cells is the absence of collagen within the MP. The use of col-
lagenase therefore allows almost complete digestion of surrounding
muscle- and connective tissues while maintaining the structure of
the ENS.324%41 However, over-digestion, thus destroying the extra-
cellular matrix (ECM) and endogenous structure completely, will lead
to lower viable cell yield.

Collagenase cleaves the peptide bonds between neutral amino
acids and glycine, a sequence commonly found in collagen.’
Different types of collagenase exist, each recommended for dif-
ferent types of tissue. Collagenase exists in crude and highly puri-
fied form, whereas the crude collagenase mixtures usually contain
a mixture of collagenase, and other enzymes with tryptic activity,
enabling the digestion of other ECM components.®’

Trypsin is a serine protease that cleaves peptide bonds at the
C-terminal end of positively charged side chains of lysine or ar-
ginine. It is innately found in the pancreas of most vertebrates
and aids the cleavage of dietary proteins into peptides.39 Trypsin
has the strongest relative digestive power and is one of the most

specific proteases known,®

making it less effective for tissue
dissociation due to its decreased selectivity for extracellular pro-
teins.®® The tryptic activity has to be neutralized by either serum
or trypsin inhibitors to reduce residual activity after washing.37
It is important to note that the use of trypsin can alter excitabil-
ity of enteric neurons.*>** Neither of the protocols included in
this review used trypsin alone for cell dissociation. It is mostly
combined with collagenase to increase the specificity for ECM
proteins, allowing the breakup of enteric ganglia and release of
individual neurons.?’

Deoxyribonuclease | (DNase 1) is an endonuclease that cleaves

phosphodiester linkages in single- and double-stranded DNA and

Serial/combinatory Incubation time  Temperature

Serial 15 min 37°C water bath shaker
10 min

Serial 60 min 37°C water bath shaker
7 min

Combinatory 8 min 37°C

Serial 15 min 37°C water bath
10-15 min manual rotation

Serial 35 min 37°C water bath shaker

Combinatory 60 min 37°C

has a less aggressive digestive capacity. It is often included in tissue
dissociation mixtures to digest nucleic acids leaking into the dissoci-
ation medium, without damaging the intact cells in order to decrease
viscosity and improve cell yield.*® Caution is warranted when com-
bined with other proteases, such as trypsin, which proteolytic activ-
ity inactivates other enzymes. Therefore, DNase | and trypsin should
not be added together, but serially after washing.®’

Both serial and combinatory enzymatic digestion steps were
used in the reviewed articles (Table 1), and the most common com-
bination used was a type of collagenase together with trypsin, 22727
followed by a collagenase and DNase 1.2%3! All enzymatic digestion

steps were performed at 37°C.

2.3 | Culture maintenance

It is essential for neuronal survival in vitro to provide a coating
substrate to facilitate adhesion.*>*¢ Prior investigations showed
that ganglia in the adult (mammalian) MP are surrounded by an
ECM arrangement of collagen IV, laminin, fibronectin, and proteo-
glycans.**8 It has been shown that poly-D-lysine coated cover-
slips can support the attachment of primary neurons and neural
precursor cells, and specifically enteric neurons, when combined
with fibronectin or laminin.*’ All reviewed studies reported to coat
coverslips or wells themselves, although commercially available
coated coverslips and culture plates are currently readily available.
The most used coating substrates for enteric neuronal cultures in-
clude Matrigel, laminin, poly-D-lysine, and poly-L-lysine. However,
the choice for the adequate coating substrate for ENS and EGC
cultures also greatly depends on experimental setup and purpose.
Coating is especially beneficial for downstream microscopic analy-
sis, as cells less likely adhere to glass, the preferred material for
most microscopic analyses, than to culture-treated plastics. Care
must be taken to ensure that the chosen coating does not interfere
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with downstream analyses, such as second-harmonic genera-
tion imaging of cells grown on a collagen-containing matrix, like
Matrigel.

Poly-D-lysine and poly-L-lysine are chemically synthesized ECM
molecules, and the most commonly used coating substrates to aid
cell adhesion in pre-treated tissue culture surfaces. The structure
and molecular weight of Poly-D-lysine make it ideal for neuronal cul-
ture applications since this isoform is less readily digested by extra-
cellular proteases.50

Laminin is a glycoprotein component of the basement mem-
brane which modulates cellular functions including attachment,
spread, growth, and mobility by binding to itself and other matrix
components.51 Laminin is often used as a coating substrate in neu-
ronal cultures since many neuronal cells express specific laminin-
binding proteins.52 It is also part of the basement membrane and
ECM surrounding the ENS,*8 as well as in the muscle layers of the
adult mouse gut.31 In enteric neuronal development, laminin also
stimulates neurite outgrowth.>3

Fibronectin is an ECM glycoprotein produced by fibroblasts and
is involved in cell migration and adhesion during ENS development.
It is frequently used in vitro to enhance cell attachment and prolif-
eration. Similar to laminin, fibronectin is part of the basement mem-
brane in the MP.*8

Matrigel is a commercially available soluble basement membrane
extract containing predominantly laminin, fibronectin, and proteo-
glycans. Its adherent matrices simulate the cells’ ECM environment
more closely due to the mixture of several matrix components,47’48
as is found in ECM in vivo. The usage of Matrigel in neuronal cul-
ture models is predominantly optimal for neural stem- or progenitor

5455 where it has been proven to enhance survival and differ-

cells,
entiation of neural crest cells from human and mouse.’® Zhang et al.
2013 also achieved the highest efficacy in attachment and growth
of primary enteric neurons, and differentiating and neural stem/pro-
genitor cells with Matrigel-coated coverslips.25 Similarly, Wahba et al.
2015 reached the highest cell density with Matrigel-collagen coat-
ings, compared to other single and double coating substrates.?’ The
most commonly used double coatings are poly-lysine and laminin,

27,28,30,31

with poly-D-lysine being the prioritized isoform over poly-

L—Iysine.26 Matrigel coatings were applied in two ENS cultures.?>%’

Coating substrates in EGC cultures included poly-D-lysine-laminin®°
and poly-L-lysine-laminin.®!

Furthermore, the success of a cell culture experiment is greatly
influenced by the choice of the cell culture medium, and the constit-
uent cell types largely determine which medium is required. Basal
culture media dispense a source of energy, maintain beneficial ionic
strength, pH concentration, and take up debris and metabolites from
cultured cells.”” Essential components usually include inorganic
salts, glucose or other carbohydrates, essential amino acids, vita-
mins (B complex), and phenol red as a pH indicator.>® Besides these
essential components, antibiotics and antimycotics are included to
prevent microbial contamination. Despite the availability of spe-
cialized neuronal media (Neurobasal-A, Gibco), standard DMEM
medium supplemented with the F12 nutrient mix (Gibco)?>28-3! and

50f16
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cell type-specific supplements are most frequently used in murine
primary ENS cultures.

The addition of serum to the basal culture media is used to pro-
vide signals for survival, growth, and differentiation. Generally fetal
bovine serum (FBS),2°! in concentrations ranging from 1 to 10%,
was used for ENS cultures. Only one protocol uses chick embryo
extract (CEE) instead of FBS.?> FBS is the most widely used form
of serum due to low contents of complement factors and immu-
noglobulins.59 However, serum-free media and supplements allow
culturing of neurons at low density, which enables the study of
individual neurons and their projections,60 Next to serum, certain
growth factors, for example, nerve growth factor (NGF) and glial
cell line-derived neurotrophic factor (GDNF), and hormones are
often added as well. These can be supplied individually or as part
of commercially available supplement mixtures such as B27, N2,
and G5. Despite the supplements, no major differences have been
observed between the use of media for ENS cultures compared to
EGC cultures. Table 2 gives a detailed overview of the culture pro-
tocols used in the reviewed studies, including culture type, isolation
techniques, enzymatic digestion, coating substrates, and culture

media.

2.4 | Cell density, viability, and functionality
Although the protocols show similarities in the different steps of es-
tablishing culture systems (Table 2), the lack of representative out-
come parameters regarding viability, functionality, and the presence
of subtypes represents a significant limitation in our comparison.

241 | ENS cultures

Zhang and Hu (2013) proposed a standardized protocol for the iso-
lation of primary ENS cells, with the extension of generating neu-
rospheres starting from the same protocol. Briefly, the intestines
of 8 week-old mice were isolated by technique Il described above
(Figure 1B), and enzymatic digestion was performed with collagenase,
followed by trypsin. After 1-2 days in culture, the cells attached
to the substrate and developed longer processes. Morphological
changes could be observed daily, and the attempts to form plexuses
over a layer of glial cells, resembling ganglionic structures, were seen
after 5-7 days in vitro. Staining with the neuronal marker lll tu-
bulin validated the presence of enteric neurons in these cultures.
However, no data on the density, count, or functionality of cultured
cells were shown in this study, nor in other studies using the same
protocol.®4? Brun and Akbarali (2018) developed a protocol for the
isolation of ENS cultures from the ileum of adult mice, providing two
variations depending on the subsequent use of the cell culture: (1) a
gentler digestion method involving only collagenase Il is proposed
for suspension cultures, which were used to assess the phenotype of
neurons after stimulation; (2) extensive digestion for electrophysi-
ological studies, involving serial treatment with collagenase Il and
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trypsin. However, no results regarding cell viability, density, count,
and functionality were reported for this protocol.53%*

The protocols by Smith et al. and Wahba et al. both assessed
functionality of the cultured ENS cells by calcium imaging after one
week in vitro, confirming functionally viable cells in culture,?’ iden-
tifying two electrophysiological distinct neuronal subtypes with a
current clamp; synaptic (S-) and after-hyperpolarization (AH-)neu-
rons.?” Both protocols are based on dissection technique | and per-
formed serial digestion with collagenase and trypsin, while Wahba
et al. used DMEM/F12 and Smith et al used Neurobasal-A medium
supplemented with B27. Moreover, Wahba et al. tested a variety
of coating substrates (Table 2). Immunofluorescence staining after
5-7 days in culture for DAPI, Blll tubulin, neuronal subtype mark-
ers, and the glial cell marker GFAP confirmed the presence of dis-
tinctive neurochemical subtypes (nNOS, VIP, and ChAT) in culture
established by Wahba et al., and the presence of EGCs and enteric
neurons in both studies. In the study by Wahba et al., the cellular
density was found to be the highest when using collagen-Matrigel
double coatings, whereas Smith et al. kept the cell density low to
avoid contamination, reaching 10%-40% confluence after one day
in culture with Poly-D-lysine-aminin coatings.

The cell culture approach developed by Smith et al. has been
adopted in several other studies, investigating viability, and func-
tionality of enteric neurons in response to fungal extracts®® and
morphine,®® as well as in studies using optogenetics analysis.®’
Furthermore, the same protocol has been used to study EGCs,%® to
generate other protocols for EGC cultures®® and was used together
with intestinal stem cells and epithelial cells in co-culture models.®’?

The protocol for primary ENS cultures used by Lowette et al.
(2014) to investigate the role of corticosterone in the ENS, was sim-
ilar to the study from Smith et al. in most steps, except for the

enzymatic digestion, in which a combinatory digestion mixture of

TABLE 3 Key applications of murine

ENS cultures. ENS culture type

ENS culture

EGC culture
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collagenase and proteases was used (Table 1). However, no data re-
garding viability, heterogeneity, or density of ENS cells in culture was

described and can therefore not be compared.28

2.4.2 | EGC cultures

The protocols for EGCs cultures showed similarities by using DMEM/
F12 culture media and serial enzymatic digestion with collagenase and
DNase. The protocol by Wang et al. (2018), however, applies an en-
tirely different approach by isolating the EGCs from the submucosa
and lamina propria, instead of extracting them from the LMMP, fol-
lowed by enzyme-free digestion using EDTA incubation.*° Flow cy-
tometry confirmed the presence of more than 95% EGCs after three
days in culture. Yields of about 40,000-100,000 cells morphologically
consistent with EGCs in vivo were confirmed after 1-3 days in culture
on poly-D-lysine-laminin substrate and expressed the main glial cell
markers such as S1008, GFAP, and Sox10. Verissimo et al. (2019) estab-
lished a protocol for the isolation of primary EGCs from both the SMP
and MP to investigate the effects of laminin and environmental cues
on the differentiation of EGCs into neurons.®* Immunofluorescence
staining for glial- (GFAP and Sox10) and neuron-specific markers
(BllI-tubulin) was employed to investigate the proportions of cells ex-
pressing one or both markers. The authors showed increased num-
bers of cells expressing both glial markers on the control substrate
fibronectin and decreasing numbers of cells expressing both glial and
neuronal markers on laminin substrate after seven days in vitro. Cell
viability and activity were not assessed, and cultures were maintained
for 21 days. Although comparing the ENS culture protocols in terms
of outcomes remains challenging, murine primary ENS cultures have
been used for many different research applications (a non-exhaustive

list of experimental methods used in ENS cultures is shown in Table 3).

Application

Phenotypic assessment (immunofluorescence)?>27:2%:61-66.69

Assessment of gene expression (RNA)®3

Assessment of protein levels/alterations®®
Cytokine measurements®’
Cytotoxicity®?

Viability®®

Activity (electrophysiology)?6-27:¢6¢7

Activity (calcium imaging)?8:6>¢7

Optogenetics®’

Co-culture®’

Phenotypic assessment (immunofluorescence)%31¢8:112

Assessment of gene expression (RNA)%!

Assessment of protein levels®®

Cytotoxicity*?

Viability'?

Activity (calcium imaging)®°
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(Continued)

TABLE 4

Coating

substrates and

plating

Dissection technique,

Culture
type

Medium and maintenance

Cell dissociation

intestine segment, and BSS

Donors

Source

Medium: DMEM-F12 (1:1),

No coating.

Digestion solution: Liberase

Technique Il

lleum
Krebs

EGC Patients with Crohn's

Grubisi¢ et al. 20207°

10% FBS, penicillin (100
U/ml), streptomycin

(0.125 mg/ml), Amphotericin B
(0.5pg/ml) in DMEM-F12.
Incubation time: 60 min at 37°C.

Spin down and resuspend in

disease

culture

(100 pg/ml), amphotericin

B (0.25 pg/ml).
Grow for 3-4 weeks and use

DMEM-F12 0.1% BSA and DNase
(50 pg/ml). Collect ganglia with

micropipette.

magnetic microbeads

linked to D7-Fib while

passaging to eliminate
fibroblasts. Perform
purification twice.
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3 | GENERATION OF HUMAN ENS
CULTURES

All protocols for the isolation and culture of human primary ENS cells
to date focus on the isolation of EGCs’%72 (Table 4). Cells are gen-
erally isolated from the MP of small intestine,”®”* but SMP’® and
also colon have been used as well.”>”* Technique Il is used for tissue

dissection327074

as the size of the tissue renders the use of technique
| inadequate. The human ENS is bigger and more complex, there-
fore, requiring longer digestion times for cell dissociation, which has
been tested in direct comparison with murine and rat ENS.”* Most
protocols use a combination of protease and collagenase’*”* for tis-
sue dissociation, while Grubisi¢ et al. have successfully used a se-
rial digestion with liberase (a blend of collagenase and protease)
and DNase. The primary human EGCs are either grown in a culture
dish without coating,’®”? or on glass slides coated with gelatin,’
or double coated with laminin and poly-D-lysine.”® In all protocols,
the human EGCs are maintained on DMEM-F12 medium with 10%
fetal calf serum (FCS)’*727* or FBS’%72 and antibiotic/antimycotic,
without additional (glia-specific) supplements. Instead, for purifying
the culture of human primary EGC, magnetic beads linked to specific
targets, such as Thy-1.1"%72 or D7-Fib’®’® are often used to elimi-
nate fibroblasts from the culture. With this method, Lifidn-Rico et al.
and Grubisi¢ et al. reached a cell enrichment of 10,000-20,000 fold.
Soret et al. took a different approach and switched the medium after
48h to a DMEM-based medium (hot DMEM-F12) without an addi-
tional purification step. They report a purity of around 80% EGCs
and 20% other cell types, determined by immunohistochemistry.

In addition to direct isolation of ENS cells from human tissue,
methods have been developed to differentiate human pluripotent
stem cells into ENS cells. These cells are self-renewing and can be
used for many applications. Several protocols have been established

to generate neural crest-derived cells from pluripotent stem cells”>®2

and further differentiate them to produce enteric neural Iineages.83'86

Generally, neural crest cell differentiation protocols depend on
the manipulation of the BMP, WNT, FGF, NOTCH, TGF, and EGF
pathways. In 2009, Chambers et al. formulated dual SMAD inhibition
in pluripotent stem cells to produce neural crest cells in 11 days.®’
This protocol has since been further optimized by the addition of the
WNT activator CHIR99021 to the differentiation recipe, enhanc-
ing the efficiency of differentiation to neural crest cells.®288 Later,
Fattahi et al. used retinoic acid (RA) between days 6 and 11 to pro-
mote the vagal fate of the neural crest cells which then expressed
HOXB2-B5, PAX3, EDNRB, and RET.® After an intermediate step
of suspension culture for 4 days in FGF2 and CHIR99021, further
differentiating vagal neural crest cells using ascorbic acid and GDNF
yielded TuJ* neurons expressing a spectrum of markers including 5-
HT, GABA, and nNOS. The presence of glial cells in these cultures
was not reported. In 2019, Barber et al. optimized the differentiation
protocol further by replacing the undefined serum in culture media,
and by the use of BMP4 in the first 2 days to promote neural crest
specification.®® With this culture method, not only TuJ* neurons
were evident, but also GFAP* and SOX10" glial cells. The parallel
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inhibition of NOTCH-signaling skews the differentiation toward neu-
ronal lineages.?

On the other hand, a combination of EGF and FGF2 was used
to induce the formation, and maintenance of neural crest cells that
can be directed to their vagal fate using RA.””78%% Coculturing these
neural crest cells with pluripotent stem cell-derived intestinal or-
ganoids or gut explants, or implanting them into aneural gut tissue

promotes their differentiation into enteric neurons and glia.””8%%°

4 | DISCUSSION

This review provides an overview and comparison of different
protocols to isolate and culture primary ENS cells from adult mice.
Overall, the reviewed articles described similar approaches to ob-
tain primary cultures from the ENS. However, because different out-
come parameters were used, a direct comparison between protocols
was difficult.

Different sections of the mouse intestine are used for primary
ENS cultures, with a preference for the small intestines, because
of differences in muscle layer thickness, plexus density,27 and total
number of ENS cells.”? It is important that dissection of the intestinal
segments is done rapidly, as lengthy dissection times may reduce cell
viability, due to degradation of the tissue in the presence of microbes
and pancreatic enzymes, as the tissue is no longer protected against
autodigestion by a functional intestinal barrier.”?% In general, two
techniques are being used for the isolation of ENS cells. Technique I,
the extraction of the LMMP from the unopened intestines (on a rod),
is a faster procedure than technique I, extracting the LMMP after
opening the intestines in a Sylgard dish, and technique | is therefore
recommended.

We found significant variation in the steps involving cell disso-
ciation. Both a combination of digestive enzymes, serial enzymatic
digestions, and enzyme-free cell dissociation are being applied.
Combinations of different enzymes allow for almost complete dis-
sociation of the tissue, while preventing over-digestion caused by
long incubation times or high enzyme concentrations. Depending
on the specific gut region that is targeted, incubation times have to

be adapted.32

Also, adult tissue appears to be more challenging to
dissociate due to increased complexity of the connective tissue and
ECM with age.37 The use of collagenase for primary ENS cells is ideal
due to the lack of internal collagen within the MP, allowing almost
complete digestion of surrounding muscle- and connective tissue
while keeping ENS structures mostly intact.®2#®*! Trypsin, the en-
zyme used in all reviewed protocols, has a very high digestive capac-
ity,3® making incubation times of no longer than 10 minutes optimal.

Regarding cellular adhesion, combinations of different coating
substrates can enhance the complexity of the adherence matrix in
in vitro systems, resulting in increased cell adhesion and survival.
Wahba et al. (2015) investigated the differences of coating sub-
strates on cell yield and density of cultures using poly-D-lysine,
collagen, and Matrigel as single coating substrates, and poly-D-
lysine-Matrigel and collagen-Matrigel double coating.?’ Using DAPI

to label individual cells, the authors observed the highest cell den-
sities with a collagen-Matrigel double coating. With respect to cell
attachment, similar results were obtained for poly-D-lysine and
Matrigel as single coatings. Adding poly-D-lysine or collagen to
Matrigel coatings further improved cell attachement.?’

Coating substrates may also influence cell differentiation in cul-
ture systems, more specifically, different compositions of the neural
ECM can modulate the differentiation of ENS progenitors.*’ A sim-
ilar setup was used in the study by Verissimo et al. (2019). By using
primary EGC cultures from adult murine intestines, the authors in-
vestigated the effects of laminin and other environmental cues on
the neurogenic potential of EGCs. The study suggests that laminin
possibly simulates the endogenous ECM microenvironment, result-
ing in significant inhibition of neuronal trans-differentiation of EGCs
in adult mice, compared to fibronectin-coated plates.31 This empha-
sizes the importance of selecting an appropriate coating substrate
for different adult ENS culture types. However, it is still not fully elu-
cidated how EGCs activate their neurogenic potential in vitro and in
vivo. Understanding the potential ability of these cells to give rise to
neurons is challenging but would provide beneficial advancements
on the role of ENS cells in regeneration and aging. As is the case
for coating substrates, medium composition also influences (trans)
differentiation and proliferation. The addition of specific growth
factors, such as GDNF, can favor survival and proliferation of ENS
(precursor) cells.”

One of the limitations of the current review was the lack of avail-
able data on the assessment of important cellular outcome param-
eters, such as cell viability and differentiation. The primary focus of
the studies included was to characterize morphological and neuro-
chemically defined subtypes of ENS cells in vitro by immunofluo-
rescence assays, as well as imaging and electrophysiological studies
to assess the functional properties of ENS populations. In order to
assess and compare isolation protocols, it is important to validate if
morphology, gene expression, and activity of ENS cells in vitro rep-
resent their characteristics in vivo. Potential markers to assess EGC
cultures are S100p, Sox10, and GFAP, as they represent the main
EGC phenotype in vivo.X® For ENS cultures, the presence and per-
centage of plll-tubulin® cells in the culture should be reported, ide-
ally with other neuronal subtype markers such as nNOS and ChAT.
Depending on the research question, other validation methods can
be added. This will improve the comparison between ENS culture
protocols and the translatability of in vitro models. For example,
Schneider et al. have validated purinergic receptor expression in
their EGC cultures, similar to in vivo expression,c’)S and the protocols
by Smith et al. and Wahba et al. have validated neuronal functional-
ity in their ENS cultures.?”%?’

Applications for primary ENS cultures include assessment of ENS
response to different signals, such as GLP-1,”® HIV protein,’” and
gastrin,®® and studying effects of drugs and toxic agents on cell via-
bility, proliferation, differentiation, and disease development.66 Co-
culture models with ENS cells and epithelium are also used to assess
possible interactions and cell-cell communication.®”?® However,

it is difficult to study the effects of one specific cell type in these
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primary cultures, as they are generally a mix of different cell types
including enteric neurons and glia. Of note, even though neuronal
markers, like plll tubulin, are expressed after several days of culture,
it is possible that these enteric neurons are derived from enteric
glia cells or enteric glia-like precursor cells that are present in adult
mice”?192 instead of being isolated enteric neurons.

Although this review focuses on primary ENS cultures from
adult mice, other available and robust methods for culturing ENS
cells from distinct developmental stages should not be overlooked.
A vast amount of primary ENS culture protocols that are currently
published have focused on embryonic- or postnatal animals as a tis-
sue source to obtain ENS cells.203105

Although they are less favorable to study the physiology of ma-
ture enteric neurons and glia as they are stem cell-derived cultures,
the generation of 3D neurospheres is another possibility to study
the ENS in vitro. They are mainly used to assess proliferation, multi-

potency, and stemness’?101:10¢

or are grown to serve as a source of
donor cells in cell transplantation studies.!”1%® Recently, progress
has been made in the generation of ENS cultures, thereby gener-
ating a possibility to study human ENS cells, enabling genetic ed-
iting and regenerative medicine purposes.109 In addition, intestinal
organoids with a functional ENS can be generated to study cell-cell
communication in a complex and more holistic approach.8%110:111
Nonetheless, primary murine ENS cultures are still a valuable tool to
understand fundamental aspects of ENS cell biology.

The use of primary ENS cultures from mice as a model to inves-
tigate the role of the ENS in health and disease has been instrumen-
tal to advance our current understanding of ENS physiology and
disease. Despite their limitations, primary cultures represent the
physiological state of the cells better when compared to cell lines
(generally derived from cancer cells), especially in the gut. ENS cul-
tures allow studies on the molecular pathways that drive the phys-
iological and pathological properties of these cells, which can be
difficult to observe in vivo. Although the absence of microenviron-
mental cues acting in vivo significantly reduces the physiological rel-
evance of in vitro studies, the improved accessibility to manipulate
different components of the ENS outside the organism represents
an important advantage for the understanding of specific questions
related to ENS cell biology.
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