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Abstract

Initially, direct oncolysis was thought to be the sole mechanism through which oncolytic viruses 

(OVs) exert their anti-tumor effect, and the immune system was perceived as the major obstacle in 

oncolytic virotherapy. Over the last decade, there has been a lot of debate on whether the immune 

system is a friend or foe of OVs. However, we are now at a stage where the initial thinking has 

been reversed as a result of compelling evidence that the immune system plays a critical role in the 

success of oncolytic virotherapy. In this review we discuss the importance of the involvement of 

innate and adaptive immunity for therapeutic efficacy of OVs, and the rational combination of OVs 

with other immunotherapies for further enhancement of overall therapeutic outcome.
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Introduction - Oncolytic Viruses

Oncolytic virotherapy is a novel therapeutic approach that utilizes replication-competent 

viruses, which selectively replicate in and lyse cancer cells while leaving normal cells 

unharmed. During the course of cancer evolution, cancer cells accrue multiple mutations 

that allow them to grow in an uncontrolled manner [1]. The very same mutations that 

help cancer cells to thrive are targeted by naturally occurring OVs (e.g. reovirus [2,3] and 

vesicular stomatitis virus (VSV) [4]) or genetically engineered OVs (e.g. adenovirus [5,6] 

and herpesvirus [7]). After infecting cancer cells, OVs hijack the cell death machinery 

allowing death to occur only after cellular resources have been fully exploited for maximum 

production of progeny viruses [8]. As such, the complex cell death caused by oncolysis 

may not always fit into conventional cell death classifications: apoptosis, necrosis and 
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autophagy [8,9]. Furthermore, unlike chemo- and radiation-therapy, OVs are self-amplifying 

therapeutics, whose therapeutic outcome is determined by a three-way race among tumor 

growth, virus replication, and immune activation [10].

Immunity and Cancer Therapy

The immune system’s role in cancer therapy has, historically, been neglected, which is 

evident from the fact that National Cancer Institute, USA, has used human xenografts 

in immune-deficient mice for testing oncologic drugs since 1976 [11,12]. Only recently 

the importance of immune system in cancer therapy is being appreciated. Indeed, recent 

studies suggest that the efficacy of chemo- and radiationtherapy, previously thought to 

exert their anti-tumor effect purely by direct cytotoxicity, depends on immune system 

involvement [13]. With the realization of the potent anti-tumor effect of appropriately 

activated immune system, the last two decades have seen a surge of interest in the field 

of cancer immunotherapy. Here we discuss the interactions among OVs, immune system and 

cancer, and the therapeutic outcome thereof.

OVs and Immune System

The innate immunity serves as a first line of defense against viruses, which limits 

the amplification and spread of viruses, whereas the adaptive immunity plays a major 

role against the virus during re-infection [14]. Antibodies could potentially neutralize 

OVs, greatly reducing the virus dose at the tumor site. This is a concern especially 

when delivering OVs systemically. Nevertheless, levels of neutralizing antibodies do not 

appear to correlate with efficacies of OVs in clinical studies [15,16]. Kim et al. reported 

‘antibody-mediated complement-dependent cancer cell lysis’ as an important mechanism for 

therapeutic efficacy of the oncolytic virus JX-549 both in an animal model as well as in 

humans [17].

In the context of cellular innate immunity, natural killer (NK) cells are considered to 

have potent anti-tumor as well as anti-viral effect. Virus-infected cancer cells tend to 

down-regulate their class I major histocompatibility complex (MHC) making themselves 

a good target for NK cells [18,19]. Although NK cells may kill infected cancer cells and 

limit the amplification of OVs, studies have found that NK cells often have positive effects 

on therapeutic outcomes of OVs [18–24]. Furthermore, NK cells may play a role in the 

maturation of dendritic cells (DCs) and they can also induce differentiation of cancer stem 

cells as well as poorly differentiated cancer cells, through secretion of IFN-γ and TNF-α 
[25,26]. In this regard, one would expect the combination of NK cells with OVs to result 

in greater anti-tumor effect. Indeed, several studies have shown that the combination of NK 

cells with OVs can result into additive or synergistic anti-tumor effect [27,28].

Viruses can be taken up by antigen presenting cells directly through macropinocytosis or 

indirectly when OV-infected cells are engulfed, leading to presentation of viral antigens to T 

cells and ultimately activating the adaptive arm of the immune system against viruses [29]. 

Despite this possibility of anti-OV effect of adaptive immunity, most studies suggest that 

adaptive immunity enhances the therapeutic outcome of OVs [30,31].
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Several preclinical studies have demonstrated a prime role of immune system in the 

therapeutic efficacies of a wide range of OVs (Table 1) [32–37]. Prestwich et al., 2009, 

published one of the most compelling studies demonstrating the requirement of immune 

system in oncolytic virotherapy [38]. Their study reported that an oncolytic reovirus was 

able to purge lymph node and splenic metastases from the murine melanoma cell line 

B16Ova, a line that is extremely resistant to reovirus in vitro, in immune-competent 

C57BL/6 mice but not in severe combined immunodeficient mice. This study concluded that 

virus-mediated immune responses, rather than virus-mediated oncolysis, were critical for the 

anti-tumor efficacy of the reovirus [38]. Similarly, Apostolidis et al. found that locoregional 

administration of an oncolytic Newcastle disease virus (NDV) in immune-competent mice 

could significantly delay growth of tumors established from the murine colon cancer cell 

line CT26, despite these cells being very resistant to NDV in vitro [39]. In line with this, 

Diaz et al. showed that an oncolytic VSV that replicates extremely aggressively in B16Ova 

cells in vitro has no anti-tumor effect against B16Ova tumors, in mice, in the absence 

of CD8+ T cells or NK cells [21]. Furthermore, incorporation of immune-stimulatory 

genes such GM-CSF [40], IL-12 [41], IL-2 [42], IL-15 [43] and RANTES [44] in OVs 

has been shown to enhance therapeutic efficacy of OVs in immune-competent animal 

models. Importantly, in some instances, even non-replicating, heat or UV-inactivated viruses 

have been shown to eradicate established tumors in immune-competent animal models, 

underscoring the impact of immune system on virus-mediated anti-tumor effect [45,46].

Although there is not enough clinical data to conclude if the importance of immunity in 

the overall therapeutic efficacy of OVs in human patients will be similar to what has been 

observed in preclinical studies, there are some indications that immune system would favor 

oncolytic virotherapy in the clinical setting (Table 1). For example, in a phase I clinical 

trial, Talimogene laherparepvec or T-VEC, an oncolytic herpes simplex virus encoding 

human GM-CSF, was found to increase immune cell infiltration into OV-injected tumors, 

and 4 out of 30 patients showed extensive inflammation in uninjected tumors, suggestive 

of systemic anti-tumor immune responses [47]. T-VEC also showed anti-tumor activities 

in both injected and uninjected distant lesions including visceral metastases in melanoma 

patients in phase II and III clinical trials [48,49]. Analysis of immune cells in the patients 

revealed that intra-lesional injection of the virus induced local and systemic antigen-specific 

T cell responses, and significantly reduced immune-suppressive cells (Tregs and MDSCs) 

[50]. Likewise, an oncolytic vaccinia virus JX-594, which also encodes hGM-CSF was 

shown to regress both injected and uninjected liver tumors in a phase I clinical trial [16]. 

Regression of the uninjected tumors was thought to be due to activation of systemic anti-

tumor immunity, although there was no direct evidence to prove this. Furthermore, in a case 

report of an ovarian cancer patient treated with an oncolytic adenovirus encoding hGM-CSF 

(ONCOS-102), progressive infiltration of CD8+ T cells in the tumor and concomitant 

systemic induction of tumor-specific CD8+ T cells were observed [51]. Taken together, 

these preclinical and clinical studies make a strong case for the critical role of immunity in 

the success of oncolytic virotherapy.
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Mechanism of Anti-tumor Immune Modulation by OVs

In the last two decades the field of cancer immunotherapy has seen some major 

breakthroughs culminating into the FDA approval of several immunotherapeutics. While 

the approved immunotherapeutics, mostly immune checkpoint inhibitors (ICIs), have shown 

impressive and long-lasting responses in a subset of cancer patients, majority of patients 

fail to respond to these agents [52]. ICIs, such as anti-PD-1/PD-L-1 and anti-CTLA-4, act 

by restoring T cell function and rely on pre-existing tumor-specific T cells for therapeutic 

success [52,53]. Immunologically unresponsive or ‘cold’ tumors have one or more of the 

following characteristics: lack of tumor antigens, lack of T cells recognizing tumor antigens, 

heavy presence of immunosuppressive cells such as regulatory T cells (Tregs), myeloid-

derived suppressor cells (MDSC), M2 macrophages and immunosuppressive cytokines such 

as IL-10 and TGF-β [52,54], and are very likely to be resistant to ICIs [54].

OVs have the potential to convert immunologically ‘cold’ tumor into an inflamed, 

immunologically ‘hot’ tumor (Figure 1). There are a variety of mutually non-exclusive 

mechanisms through which OVs could modulate the tumor microenvironment (TME). First, 

oncolysis by OVs could cause the release of tumor associated/specific antigens and enhance 

cross-presentation of such antigens by dendritic cells (DCs), ultimately eliciting adaptive 

immunity against tumor [55–60]. Second, OVs are known to induce immunogenic cell 

death (ICD) [61], which plays an important role in the induction of anti-tumor adaptive 

immunity [62]. Discussion of the mechanisms through which OVs induce ICD is beyond 

the scope of this review; readers are encouraged to see an excellent review by Guo and 

Bartlett on this topic [63]. Third, some OVs such as reovirus [64] and VSV [65] can 

directly interact with DCs and enhance their antigen priming capability. Fourth, OVs have 

the ability to reduce immune-suppressive Tregs and MDSCs in the TME [50]. Lastly, 

OVs can modulate the cytokine milieu in the TME e.g., reovirus infection in human 

melanoma cells has been shown to abrogate the immunosuppressive cytokine IL-10 and 

enhance secretion of the proinflammatory cytokines IL-6, IL-8, RANTES and MIP-1α/β 
[66]. Likewise, infection with oncolytic VSV in murine melanoma cells rapidly induced 

proinflammatory cytokines including IL-6, type I IFN and TNF-α [67]. Interestingly, the 

cytokines/chemokines upregulated by these OVs are not only immunostimulatory in function 

but they can also kill residual uninfected cancer cells [67]. Perhaps the best evidence 

for the therapeutic potency of simply modulating TME through virus infection comes 

from a recent study by Dai et al. [46]. In this study the authors showed that repeated 

intra-tumoral injection of heat-inactivated modified vaccinia virus Ankara could eradicate 

tumors in different aggressive murine tumor models. Although the virus used in this study 

is not an oncolytic virus, this study provides an insight into the anti-tumor potency of 

virally-modulated TME. Taken together, these studies suggest that OVs have the potential to 

modulate TME from immunologically ‘cold’ to immunologically ‘hot’ status.

Combination of OVs with Immunotherapeutics

Given the potential of OVs to modulate the immune landscape in TME, it would be logical 

to surmise that combination of OVs with immunotherapeutics may result in synergistic 

therapeutic effect. Indeed, a study by Woller et al. showed that localized tumor infection 
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with an oncolytic adenovirus could overcome systemic tumor resistance to PD-1 inhibitor by 

broadening neoantigens-directed T cell responses in mice [58]. Interestingly, the tumor cells 

were found to upregulate their PD-L1 expression in response to virus infection. Therefore, 

both the therapeutics complemented each other and the outcome was a synergistic anti-

tumor effect [58]. Very recently, Ribas et al. reported the findings of a phase Ib trial in 

which they studied the impact of T-VEC on therapeutic efficacy of anti-PD-1 antibody 

pembrolizumab in patients with metastatic melanoma [68]. The combination treatment was 

well tolerated; T-VEC was found to promote T cell infiltration into tumors and improved the 

overall therapeutic efficacy of pembrolizumab. This clinical trial essentially confirmed the 

findings from animal study that OVs can enhance the therapeutic efficacies of checkpoint 

inhibitors by converting immunologically ‘cold’ tumors into immunologically ‘hot’ tumors 

[54,58,60]. This study provides the hope that the benefits of checkpoint inhibitors may be 

harnessed in combination with OVs, even in tumor types that have previously shown very 

poor response to checkpoint inhibitors, such as breast, prostate and colon cancer [52].

Another logical combination of OVs would be with chimeric antigen receptor (CAR)-

redirected T cells. CAR-T cells can recognize whole antigens (MHC unrestricted) on tumor 

cell surface, minimizing the probability of cancer cell escape by MHC I downregulation 

[69]. Several studies have shown the feasibility of using CAR-T cells for targeting virus-

encoded antigens [70–72]. The combination of an OV encoding a unique tumor antigen with 

a CAR-T that recognizes the virus-encoded antigen should work synergistically potentially 

through: (i) tumor debulking by the OV, (ii) positive modulation of immunity in TME by OV 

for optimal function of CAR-T cells, and (iii) CAR-T cells should be able to kill infected 

residual cancer cells that may be resistant to the OV.

Conclusion

The success of oncolytic virotherapy depends on its ability to mobilize the host’s immune 

system against tumor. The approval of T-VEC has sparked great optimism in the field of 

oncolytic virotherapy with several more OVs currently being evaluated in the advanced 

phase of clinical trials. On the other hand, immunotherapeutics such as ICIs have shown 

unprecedented response rates in the clinic, bringing the field of immunotherapy into the 

main limelight of cancer therapy. However, both of these therapeutical platforms are still far 

from being adequate and more work needs to be done in order to expand the therapeutic 

benefits to broader population of cancer patients. Given the ability of oncolytic virotherapy 

and immunotherapy to complement each other, it would be reasonable to expect that their 

combination would be more effective in the battle against cancer.
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Highlights

• Oncolytic viruses (OVs) elicit innate and adaptive immune responses against 

tumors

• Although the immune system can react against OVs, a functional immune 

system is key to OV efficacy

• OVs induce immunogenic cell death in cancer cells

• OVs can change the immunologic landscape of tumor milieu from “cold” to 

“hot”

• Combination of OV and immunotherapies may result in synergistic anti-tumor 

effect

Chaurasiya et al. Page 11

Curr Opin Immunol. Author manuscript; available in PMC 2022 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Modulation of the tumor microenvironment by OVs and elicitation of anti-tumor 
immunity.
(i) OVs convert immunologically “COLD” tumors to immunologically “HOT” tumors: 

tumors generally have high concentration of immunesuppressive cells and cytokines, which 

make them immunologically less responsive i.e. immunologically “COLD”. OVs induce 

inflammation and inhibit immunosuppressive cells (Tregs and MDSCs) and cytokines (IL-10 

and TGF-β). Conversely, OVs also increase proinflammatory cytokines (IL-6 and IL-8) 

and foster tumor infiltration by NK cells and other TILs. This complex modulation of the 
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TME by OVs converts the tumor to inflamed, immunologically “HOT”. (ii) OV infection 

increases NK cell-mediated killing of tumor cells: tumor cells tend to reduce their MHC 

I levels in response to virus infection. Reduction in MHC I allows recognition and killing 

of virus infected cancer cells by NK cells. (iii) Oncolysis by OVs causes the release of 

tumor-associated/specific antigens, and OVs also induce immunogenic cell death (ICD). 

(iv) Antigen-loaded APCs migrate to the lymph node, where (v) they cross-present tumor 

antigens to CD8+ T cells. (vi) Following activation, the tumor-specific CD8+ T cells 

undergo expansion. (vii) Finally, the tumor-specific T cells move to both OV injected and 

uninjected tumors (distant metastases) where they can exert anti-tumor effect.
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