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Abstract

We consider in this paper detection of signal regions associated with disease outcomes in whole 

genome association studies. Gene- or region-based methods have become increasingly popular 

in whole genome association analysis as a complementary approach to traditional individual 

variant analysis. However, these methods test for the association between an outcome and the 

genetic variants in a pre-specified region, e.g., a gene. In view of massive intergenic regions in 

whole genome sequencing (WGS) studies, we propose a computationally efficient quadratic scan 

(Q-SCAN) statistic based method to detect the existence and the locations of signal regions by 

scanning the genome continuously. The proposed method accounts for the correlation (linkage 

disequilibrium) among genetic variants, and allows for signal regions to have both causal and 

neutral variants, and the effects of signal variants to be in different directions. We study the 

asymptotic properties of the proposed Q-SCAN statistics. We derive an empirical threshold that 

controls for the family-wise error rate, and show that under regularity conditions the proposed 

method consistently selects the true signal regions. We perform simulation studies to evaluate the 

finite sample performance of the proposed method. Our simulation results show that the proposed 

procedure outperforms the existing methods, especially when signal regions have causal variants 

whose effects are in different directions, or are contaminated with neutral variants. We illustrate 

Q-SCAN by analyzing the WGS data from the Atherosclerosis Risk in Communities study.
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1 Introduction

An important goal of human genetic research is to identify the genetic basis for human 

diseases or traits. Genome-Wide Association Studies (GWAS) have been widely used to 

dissect the genetic architecture of complex diseases and quantitative traits in the past 

ten years. GWAS uses an array technology that genotypes millions of Single Nuclear 

Polymorphisms (SNPs) across the genome, and aims at identifying SNPs that are associated 

with traits or disease outcomes. GWAS has been successful for identifying thousands of 

common genetic variants putatively harboring susceptibility alleles for complex diseases 

(Visscher et al., 2012). However, these common variants only explain a small fraction of 

heritability (Manolio et al., 2009) and the vast majority of variants in the human genome are 

rare (The 1000 Genomes Project Consortium, 2010). A rapidly increasing number of Whole 

Genome Sequencing (WGS) association studies are being conducted to identify susceptible 

rare variants, for example the Genome Sequencing Program of the National Human Genome 

Research Institute, and the Trans-Omics for Precision Medicine Program of the National 

Heart, Lung, and Blood Institute.

A limitation of GWAS is that it only genotypes common variants. A vast majority of variants 

in the human genome are rare (The 1000 Genomes Project Consortium, 2010; Tennessen et 

al., 2012). Whole genome sequencing studies allow studying rare variant effects. Individual 

variant analysis that is commonly used in GWAS is however not applicable for analyzing 

rare variants in WGS due to a lack of power (Bansal et al., 2010; Kiezun et al., 2012; 

Lee et al., 2014). Gene-based tests, as an alternative to the traditional single variant test, 

have become increasingly popular in recent years in GWAS analysis (Li and Leal, 2008; 

Madsen and Browning, 2009; Wu et al., 2010). Instead of testing each SNP individually, 

these gene based tests evaluate the cumulative effects of multiple variants in a gene, and can 

boost power when multiple variants in the gene are associated with a disease or a trait (Han 

et al., 2009; Wu et al., 2010). There is an active recent literature on rare variant analysis 

methods which jointly test the effects of multiple variants in a variant set, e.g., a genomic 

region, such as burden tests (Morgenthaler and Thilly, 2007; Li and Leal, 2008; Madsen 

and Browning, 2009), and non-burden tests (Wu et al., 2011; Neale et al., 2011; Lin and 

Tang, 2011; Lee et al., 2012), e.g., Sequence Kernel Association Test (SKAT) (Wu et al., 

2011). The primary limitation of these gene-based tests is that it needs to pre-specify genetic 

regions, e.g., genes, to be used for analysis. Hence these existing gene-based approaches 

are not directly applicable to WGS data, as analysis units are not well defined across the 

genome, because of a large number of intergenic regions. It is of substantial interest to scan 

the genome continuously to identify the sizes and locations of signal regions.

Scan statistics (Naus, 1982) provide an attractive framework to scan the whole genome 

continuously for detection of signal regions in whole genome sequencing data. The classical 

fixed window scan statistics allow for overlapping windows using a moving window of a 

fixed size, which “shifts forward” a window with a number of variants at a time and searches 

for the windows containing signals. A limitation of this approach is that the window size 

needs to be pre-specified in an ad hoc way. In cases where multiple variants are independent 

in a sequence, Sun et al. (2006) proposed a region detection procedure using a scan statistic 

that aggregates the p-values of individual variant tests. However this is not applicable 
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to WGS due to the linkage disequilibrium (LD), i.e,. correlation, among nearby variants. 

Recently, McCallum and Ionita-Laza (2015) proposed likelihood-ratio-based scan statistic 

procedure to refine disease clustering region in a gene, but not for testing associations across 

the genome. Furthermore, this method does not allow for covariates adjustment (e.g., age, 

sex and population structures), and can be only used for binary traits.

The mean-based scan statistic procedures have been used in DNA copy number analysis. 

Assuming all variants are signals with the same mean in signal regions, several authors 

have proposed to use the mean of marginal test statistics in each candidate region as a 

scan statistic. Specifically, Arias-Castro et al. (2005) proposed a likelihood ratio-based mean 

scan procedure in the presence of only one signal region. Zhang et al. (2010) described 

an analytic approximation to the significance level of this scan procedure, while Jeng et 

al. (2010) showed this procedure is asymptotically optimal in the sense that it separates 

the signal segments from the non-signals if it is possible to consistently detect the signal 

segments by any identification procedure. This setting is closely related to the change-point 

detection problem. Olshen et al. (2004) developed an iterative circular binary segmentation 

procedure to detect change-points, whereas Zhang and Siegmund (2007, 2012) proposed a 

BIC-based model selection criterion for estimating the number of change-points. However, 

the key assumption of these mean scan procedures that all observations have the same 

signals in signal regions generally does not hold in genetic association studies.

Indeed, although the mean based scan statistics are useful for copy number analysis, these 

procedures have several limitations for detecting signal regions in whole genome array and 

sequencing association studies. Specifically, they will lose power due to signal cancellation 

in the presence of both trait-decreasing and trait-increasing genetic variants, or the presence 

of both causal and neural variants in a signal region. Both situations are common in practice. 

Besides, these procedures assume the individual variant test statistics are independent across 

the whole genome. However, in practice, the variants in a genetic region are correlated due 

to linkage disequilibrium.

In this paper, we propose a quadratic scan statistic based procedure (Q-SCAN) to detect the 

existence and locations of signal regions in whole genome association studies by scanning 

the whole genome continuously. Our procedure can consistently detect an entire signal 

segment in the presence of both trait-increasing and trait-decreasing variants and mixed 

signal and neutral variants. It also accounts for the correlation (LD) among the variants 

when scanning the genome. We derive an empirical threshold that controls the family-wise 

error rate. We study the asymptotic property of the proposed scan statistics, and show that 

the proposed procedure can consistently select the exact true signal segments under some 

regularity conditions. We propose a computationally efficient searching algorithm for the 

detection of multiple non-overlapping signal regions.

We conduct simulation studies to evaluate the finite sample performance of the proposed 

procedure, and compare it with several existing methods. Our results show that, the proposed 

scan procedure outperforms the existing methods in the presence of weak causal and neutral 

variants, and both trait-increasing and trait-decreasing variants in signal regions. We applied 

Li et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the proposed procedure to the analysis of WGS lipids data from the Atherosclerosis Risk in 

Communities (ARIC) study to identify genetic regions which are associated with lipid traits.

The remainder of the paper is organized as follows. In Section 2, we introduce the 

hypothesis testing problem and describe our proposed scan procedure and a corresponding 

algorithm to detect multiple signal regions. In Section 3, we present the asymptotic 

properties of the scan statistic, as well as the statistical properties of identifiable regions. In 

Section 4, we compare the performance of our procedure with other scan statistic procedures 

in simulation studies. In Section 5, we apply the proposed scan procedure to analyze WGS 

data from the ARIC study. Finally, we conclude the paper with discussions in Section 6.

2 The Statistical Model and the Quadratic Scan Statistics for Signal 

Detection

2.1 Summary Statistics of Individual Variant Analysis Using Generalized Linear Models

Suppose that the data are from n subjects. For the ith subject (i = 1, ⋯, n), Yi is an outcome, 

Xi = (Xi1, …, Xiq)T is a vector of q covariates, and Gij is the jth of p variants in the genome. 

Under the global null model, there is no genetic effect. One constructs individual variant 

test statistics in GWAS and WGS studies by regressing Yi on each variant Gij adjusting 

for the covariates Xi. Conditional on (Xi, Gij), Yi is assumed to follow a distribution in the 

exponential family with the density f(Yi) = exp{Yiθi − b(θi) / ai(ϕ) + c(Yi, ϕ)}, where ai(·), 

b(·) and c(·) are some known functions, and θi and ϕ are the canonical parameter and the 

dispersion parameter, respectively (McCullagh and Nelder, 1989). Denote by ηij = E(Yi | Xi, 

Gij) = b′(θi).

Under the global null model, there is no genetic effect across the genome and hence ηij 

= ηi for j = 1, …, p. We consider the null Generalized Linear Model (GLM) g ηi = Xi
Tα, 

where g(·) is a monotone link function. For simplicity, we assume g(·) is a canonical link 

function. Under the global null model, the variance of Yi is var(Yi) = ai(ϕ)v(ηi), where v(ηi) 

= b″(θi) is a variance function. Let η0i = g−1 Xi
Tα , where α is the Maximum Likelihood 

Estimator (MLE) of α, and ϕ is the MLE of ϕ, both under the global null model. Assume 

Λ = diag a1(ϕ)v η01 , …, an(ϕ)v η0n  and P = Λ−1 − Λ−1 X (XT Λ−1 X)−1 XT Λ−1.

The test statistic for the jth variant is constructed using the working marginal model 

g ηi = Xi
Tα + Gijβj, and the marginal score test statistic for βj of the jth variant is

Uj = G ⋅ jT Y − η0 / n,

where Gj = (G1 j, ⋯, Gnj)T denotes the jth variant data of n subjects, η0 = η10, ⋯, ηn0
T  and Y 

= (Y1, ⋯, Yn)T. These individual variant test statistics are asymptotically jointly distributed 

as U ~ N(μ, Σ), where U = (U1, ⋯, Up)T, μ = E(U). Note that μ = 0 under the global null of 

all βj being 0, and Σjj′ can be estimated by
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Σjj′ = Gj
TPGj′/n . (1)

These individual SNP summary statistics Uj are often available in public domains or 

provided by investigators to facilitate meta-analysis of multi-cohorts.

Genetic region-level analysis has become increasingly important in GWAS and WGS rare 

variant association studies (Li and Leal, 2008; Lee et al., 2014). The existing region-based 

tests require pre-specification of regions using biological constructs, such as genes. For a 

given region, region-level analysis aggregates the marginal individual SNP test statistics 

Uj across the variants in the region to test for the significance of the region (Li and Leal, 

2008; Madsen and Browning, 2009; Wu et al., 2011). However, whole genome array and 

sequencing studies consist of many intergenic regions. Hence, analysis based on genes or 

prespecified regions of a fixed length, e.g., a moving window of 4,000 base pairs (bp), 

are not desirable for scanning the genome to detect signal segments. This is because region-

based tests will lose power if a pre-specified region is too big or too small. Indeed, it is of 

primary interest in whole genome association analysis to scan the whole genome to detect 

the sizes and locations of the regions that are associated with diseases and traits. We tackle 

this problem using the quadratic scan statistic.

2.2 Detection of Signal Regions Using Scan Statistics

Let a sequence of p marginal test statistics be U = {U1, …, Up}, where Ui is the marginal 

test statistic at location i and p is the total number of locations, e.g., the total number of 

variants in GWAS or WGS. We assume that the sequence U follows a multivariate normal 

distribution U ~ N(μ, Σ), where μ is an unknown mean of U and Σ = cov(U). Under 

the global null hypothesis of no signal variant across the genome, we have μ = 0. Under 

the alternative hypothesis of non-overlapping signal regions, there exist signals at certain 

non-overlapping regions I1, …, Ir satisfying μIj ≠ 0, where μIj = μi i ∈ Ij and j = 1, …, r. 

Note the lengths of the signal regions are allowed to be different. Besides, the signal region 

Ij satisfies that in a large area that contains Ij, there is no signal point (μ = 0) outside Ij and 

the edges of Ij are signal points. Denote a collection of the non-overlapping signal regions by 

ℐ = I1, …, Ir . Our goal is to detect whether signal segments exist, and if they do exist, to 

identify the location of these segments. Precisely, we wish to first test

H0:ℐ = ∅  against H1:ℐ ≠ ∅ , (2)

and if H0 is rejected, detect each signal region in ℐ.

A scan statistic procedure solves the hypothesis testing problem (2) by using the extreme 

value of the scan statistics of all possible regions,

Qmax = max
Lmin ≤ I ≤ Lmax

Q(I)
(3)

where Q(I) is the scan statistic for region I, | I | denotes the number of variants in region I, 
and Lmin and Lmax are the minimum and maximum variants number in searching windows, 
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respectively. A large value of Qmax indicates evidence against the null hypothesis. If the 

null hypothesis is rejected and results in only one region, the selected signal region is 

I = argmaxLmin ≤ |I | ≤ LmaxQ(I).

Jeng et al. (2010) and Zhang et al. (2010) proposed a scan procedure based on the mean 

of the marginal test statistics of a candidate region (M-SCAN). The mean scan statistic for 

region I is defined as

M(I) = ∑
i ∈ I

Zi/ I , (4)

where Zi = Ui/ var Ui  is the standardized score statistics. When the test statistics Zi are 

independent (Σ = In) with a common mean in a signal region (μi = μ for all i ∈ Ij), 

Arias-Castro et al. (2005) and Jeng et al. (2010) showed that the mean scan procedure is 

asymptotically optimal in the sense that it separates the signal segments from the non-signals 

as long as the signal segments are detectable.

However, in whole genome association studies, the assumptions that marginal tests Zi are 

independent and have the same mean in signal regions often do not hold. This is because, 

first, marginal test statistics in a region are commonly correlated due to the LD of variants; 

second, signal variants in a signal region are likely to have effects in different directions and 

be mixed with neutral variants in the signal regions. Hence application of the existing mean 

scan statistics (4) for detecting signal regions in whole genome association studies is likely 

to not only yield invalid inference due to failing to account for the correlation between the 

Zi’s across the genome, but also more importantly lose power due to cancellation of signals 

in different directions in signal regions.

2.3 The Quadratic Scan Procedure

To overcome the limitations of the mean scan procedure, we propose a quadratic scan 

procedure (Q-SCAN) that selects signal regions based on the sum of quadratic marginal test 

statistics, which is defined as,

Q(I) =
∑i ∈ I Ui

2 − E ∑i ∈ I Ui
2

var ∑i ∈ I Ui
2 =

∑i ∈ I Ui
2 − ∑i = 1

I λI, i

2∑i = 1
I λI, i

2
, (5)

where λI = (λI,1, λI,2, ⋯ λI,|I|)T is the eigenvalues of ΣI = GI
TPGI /n and ΣI is 

the covariance matrix of test statistics UI. In the presence of correlation among the 

test statistics Z’s, the null distribution of Q(I) is a centered mixture of chi-squares 

∑j = 1
|I| λI, j/ 2∑i = 1

|I| λI, i
2 × χ1j

2 − 1 , where the χ1j
2  are independent chi-square random 

variables with one degree of freedom. When signals have different directions, the proposed 

quadratic scan statistic avoids signal cancellation that will result from using the mean scan 

statistic (4). By using the standardization of the sum of quadratic marginal test statistics in 

region I, the scan statistics Q(I) handles different LD structure across the genome and are 

comparable for different region lengths.
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We reject the null hypothesis (2) if the scan statistic of a region is larger than a given 

threshold h(p, Lmin, Lmax, α). The threshold h(p, Lmin, Lmax, α) is used to control the 

family-wise error rate at exact α level. If this results in only one region, the estimated signal 

region is I = argmaxLmin ≤ |I | ≤ LmaxQ(I). If this results in multiple overlapping regions, we 

estimated the signal region as the interval whose test statistic is greater than the threshold 

and achieves the local maximum in the sense that the test statistic of that region is greater 

than the regions that overlap with it. We propose a searching algorithm to consistently detect 

true signal regions in the next section.

We propose to use Monte Carlo simulations to determine h(p, Lmin, Lmax, α) empirically. 

Specifically, we generate samples from N(0, Σ) and calculate Qmax. We repeat this for N 
times and use the 1 – α quantile of the empirical distribution as the data-driven threshold. 

Section 2.5 presents details on calculating the empirical threshold.

2.4 Searching Algorithm for Multiple Signal Regions

In general, there might be several signal regions in a whole genome. We now describe an 

algorithm for detecting multiple signal regions. Motivated by GWAS and WGS, we assume 

the signal regions are short relatively to the size of the whole genome, and are reasonably 

well separated. Hence intuitively, the test statistic for proper signal region estimation should 

achieve a local maximum. Following Jeng et al. (2010) and Zhang et al. (2010), our 

proposed searching algorithm first finds all the candidate regions with the quadratic scan 

statistic greater than a pre-specified threshold h(p, Lmin, Lmax, α). Then we select the 

intervals from the candidate sets that has the largest test statistic than the other overlapped 

intervals in the candidate set as the estimated signal regions. The detailed algorithm is given 

as follows:

Step 1. Set the minimum number of variants of searching windows as Lmin and the 

maximum number of variants of searching windows as Lmax, and calculate Q(I) for the 

intervals with the number of variants between Lmin and Lmax.

Step 2. Pick the candidate set

ℐ(1) = I :Q(I) > ℎ p, Lmin, Lmax, α , Lmin ≤ I ≤ Lmax

for some threshold h(p, Lmin, Lmax, α). If ℐ(1) ≠ ∅, we reject the null hypothesis, set j = 1 

and proceed with the following steps.

Step 3. Let I j = argmaxI ∈ ℐ(j)Q(I), and update ℐ(j + 1) = ℐ(j)\ I ∈ ℐ(j):I ∩ I j ≠ ∅ .

Step 4. Repeat Step 3 and Step 4 with j = j + 1 until ℐ(j) is an empty set.

Step 5. Define I 1, I 2, ⋯ as the estimated signal regions.

After the test statistic Q(I) is calculated for each region Lmin ≤| I |≤ Lmax, we can estimate 

the null distribution of Qmax. A threshold h(p, Lmin, Lmax, α) is set based on the null 
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distribution of Qmax. Specifically, the threshold h(p, Lmin, Lmax, α) is calculated to control 

for the family-wise error rate at a desirable level α by adjusting for multiple testing of all 

searched regions. Section 2.5 provides detailed discussions on calculating h(p, Lmin, Lmax, 

α) and Section 3.1 discussed the bound of h(p, Lmin, Lmax, α).

Steps 3–4 are used to search for all the local maximums of the scan statistic Q(I) by 

iteratively selecting the intervals from the candidate set with the largest scan statistics Q(I), 
and then deleting a selected signal interval and any other intervals overlapping with it from 

the candidate set before moving on to select the next signal interval. Step 5 collects all 

the local maximums as the set of selected signal regions. The intuition of this algorithm is 

as follows. Since we assume the signal segments are well separated in the sequence, for a 

signal region, no region with variants number between Lmin and Lmax overlaps with more 

than one signal region. Thus the test statistic of a signal region I is larger than the other 

intervals that overlap with it. It follows that a local maximum provides good estimation of a 

signal region.

Selection of the minimum and maximum variants numbers in searching windows, i.e., Lmin 

and Lmax, is an important issue in scan procedures. Specifically, to ensure that each signal 

region will be searched, Lmin and Lmax should be smaller and larger than the variants 

number in all signal regions, respectively. In the meantime, Lmax should be smaller than the 

shortest gap between signal regions to ensure that no candidate region I with Lmin ≤| I |≤ 

Lmax overlaps with two or more signal regions. These two parameters Lmin and Lmax also 

determine computation complexity. A smaller range between Lmin and Lmax requires less 

computation. Instead of setting the range of moving window sizes on the basis of the number 

of base pairs, we specify a range of moving window sizes on the basis of the number of 

variants. In practice, we recommend to choose Lmin = 40 and Lmax = 200. Different from the 

fact that the observed rare variants number in a given window increases with a fixed number 

of base pairs as sample size increases, such a range specification on the basis of the number 

of variants is independent of sample sizes.

2.5 Threshold for Controlling the Family-Wise Error Rate

Although the theorems in Section 3 shows that the family-wise error rate can be 

asymptotically controlled, it is difficult to use a theoretical threshold for an exact α – level 

test in practice. The standard Bonferroni correction for multiple-testing adjustment is also 

too conservative for the Q-SCAN procedure, because the candidate search regions overlap 

with each other and the scan statistics for these regions are highly correlated. Therefore, 

we propose to use Monte Carlo simulations to determine an empirical threshold to control 

for the family-wise error rate at the α – level. For each step, we estimate Σ using (1) and 

generated samples from N(0, Σ). Specifically, we first generate u ~ N(0, In) and calculate 

the pseudo-score vector by U = GP 1/2u/ n where G = G1
T , ⋯, Gn

T  is the p × n genotype 

matrix, n is the number of subjects in the study, and P is the n × n projection matrix of 

the null GLM. Then we calculate the extreme value Qmax of the test statistic Q(I) using 

(3) and (5) across the genome based on the pseudo-score U and the estimated covariance 

matrix Σ = GPGT / n. We repeat this for a large number of times, e.g, 2, 000 times, and 

use the 1 – α quantile of the empirical distribution of Qmax as the empirical threshold h(p, 
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Lmin, Lmax, α) for controlling the family-wise error rate at α. Both the calculation and the 

Q-SCAN procedure have been implemented in the R package QSCAN, available on github 

(https://github.com/zilinli1988/QSCAN).

3 Asymptotic Properties of the Quadratic Scan Procedure

In this section, we present two theoretical properties of the quadratic scan procedure. The 

first property shows the convergence rate of the extreme value Qmax and gives a bound of 

the empirical threshold h(p, Lmin, Lmax, α). The second property shows that, under certain 

regularity conditions, the quadratic scan procedure consistently detects the exact signal 

regions. The proofs of the theorems are provided in the online supplementary materials.

3.1 Bound of the Empirical Threshold

We first provide a brief summary of notation used in the paper. For any vector a, set 

a 1 = ∑i ai , a 2 = ∑iai2 and a
∞

= sup
i

ai . For two sequences of real numbers ap and 

bp, we say ap ≪ bp or ap = o (bp), when limsup ap / bp → 0. Recall that Ui = Gi
T (Y − μ)/ n

is the score statistic for variant i (i = 1,2, ⋯, p). Under the null hypothesis, Ui N 0, σi2

with σi2 = Gi
TPGi/n for all i = 1,2, ⋯, p, where P is the projection matrix in the null model. 

Assume there exists a constant c > 0 such that σi2 ≥ c. The following theorem gives the 

convergence rate of Qmax.

Theorem 1 If the following conditions (A)-(C) hold,

(A) max|I | = Lmax λI ∞ ≤ K0, where K0 is a constant,

(B) 
Lmin
log(p) ∞ and 

log Lmax
log(p) 0,

(C) Ui i = 1
p is Mp-dependent and 

log Mp
log(p) 0, then

max
Lmin ≤ I ≤ Lmax

Q(I)

2 log(p)
p 1,

as p → ∞ under the global null hypothesis.

Condition (A) holds when the lower bound of the minor allele frequency of variants is a 

constant that is greater than 0. In GWAS and WGS, the number of variants p is large, e.g., 

from hundreds of thousands to hundreds of millions. However, log(p) grows much slower 

and is comparable to the length of genes and of LD blocks, so that the condition (B) of Lmin 

and Lmax is reasonable in practice. Further, since two marginal test statistics are independent 

when two variants are sufficiently far apart in the genome, the assumption of Mp dependence 

in Condition (C) is reasonable in reality.

Note the empirical threshold h (p, Lmin, Lmax, α) is the (1 – α) th quantile of Qmax, that is,
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ℙ Qmax > ℎ p, Lmin, Lmax, α = α .

By Theorem 1, for any ϵ > 0, when p is sufficiently large, we have 

(1 − ϵ) 2 log(p) ≤ ℎ p, Lmin, Lmax, α ≤ (1 + ϵ) 2 log(p). Next we give a more accurate upper 

bound of h (p, Lmin, Lmax, α).

Theorem 2 If conditions (A) and (B) in Theorem 1 hold, for p sufficiently large, we have

ℎ p, Lmin, Lmax, α ≤ 2 log p Lmax − Lmin − log(α) +
2 log p Lmax − Lmin − log(α)

Lmin log(p)
1
4

.

By Theorems 1 and 2, for p sufficiently large, we give the bound of the empirical threshold 

as follows,

(1 − ϵ) 2 log(p) ≤ ℎ p, Lmin, Lmax, α ≤ 2γp +
2γp

Lmin log(p)
1
4

,

where ϵ is a small constant and γp = log{p(Lmax − Lmin)} − log(α).

3.2 Consistency of Signal Region Detection

In this section, we show the results of power analysis. We first show that the proposed Q-

SCAN procedure could consistently select a signal region that overlaps with the true signal 

region. Let μI = {μi}i∈I for any region I. Assume I* is the signal region with μI* ≠ 0 and 

Lmin ≤| I* |≤ Lmax. Denote the signal region by I* = τ1*, τ2*  that satisfies certain regularity 

conditions on its norm and edges, e.g., the L2 norm measuring the overall signal strength of 

I* is sufficiently large and the edges of I* are signal points, that is, μτ1* + 1 ≠ 0 and μτ2* ≠ 0. 

We also assume there is no signal point (μ ≠ 0) outside I* in a large area that contains I*, that 

is, there exists τ ≥ Lmax, such that μI1 = μI2 = 0, where I1 = τ1* − τ, τ1*  and I2 = τ2*, τ2* + τ

are the non-signal regions of length τ on the left and right of the signal regions I*. We 

formally present these in Conditions (D) and (E) in the following two theorems.

Theorem 3 Assume conditions (A)-(C) in Theorem 1 and the following condition (D) hold,

(D)
μI* 2

2

λI* 2
≥ 2 1 + ϵ0 log(p) for some constant ϵ0 > 0, 

then there exists constant C > 0, such that

ℙ Q I* > ℎ p, Lmin, Lmax, α ≥ 1 − 2p−Cϵ0
2

1.

as p → ∞.
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Condition (D) imposes on the signal strength of the signal region. This condition is similar 

to the condition assumed in Jeng et al. (2010) and ensures that the signal region I* will be 

selected in the candidate set ℐ(1). For each signal variant i, by our definition, μi = E(Ui) 

has the same convergence rate as n, where n is the sample size. In GWAS or WGS, the 

sample size is often large and thus condition (D) is reasonable in reality. Theorem 3 could 

consistently select a signal region that overlaps with the true signal region whose overall 

signal strength in sense of L2 norm is sufficiently large.

To show the consistency of signal region detection, we first introduce a quantity to measure 

the accuracy of an estimator of a signal segment. For any two regions I1 and I2, define the 

Jaccard index between I1 and I2 as J(I1, I2) = | I1 ∩ I2 | / | I1 ∪ I2 |. It is obvious that 0 ≤ J(I1, 

I2) ≤ 1, and J(I1, I2) = 1 indicating complete identity and J(I1, I2) = 0 indicating disjointness. 

Let ℐ = I 1, I 2, ⋯  be a collection of estimated signal regions, we define region I* is 

consistently detected if for some ηp = o(1), there exists I ∈ ℐ such that

ℙ J I , I* ≥ 1 − ηp 1,

as p → ∞. The following theorem shows that the proposed Q-SCAN could consistently 

detect existence and locations of the signal region I* under some regularity conditions.

Theorem 4 Assume conditions (A)-(D) in Theorem 3 and the following condition (E) hold,

(E) inf
I ⊊ I*

log μI* 2
2 − log μI 2

2

log λI* 2 − log λI 2
> 1,

then there exists constant C > 0, such that

ℙ J I , I* ≥ 1 − ηp ≥ 1 − p−Cϵ0
2

− p−Cηp2 1,

for any ηp that satisfies 
log Lmax

log(p)

1
2 ≪ ηp ≪ 1 as p → ∞.

Condition (E) specifies the properties of the overall signal strength that a signal region 

needs to satisfy in order for it to be consistently detected by the Q-SCAN procedure. This 

definition allows a signal region to consist of both signal and neutral variants, which is more 

realistic and commonly the case in GWAS and WGS. This condition is implicitly assumed 

when signals have the same strength and tests are independent. However this common 

strength assumption that is suitable for copy number variation studies is inappropriate 

for GWAS and WGS. Condition (E) also holds when the tests are independent and the 

sparsity parameter is constant in the signal region. To be specific, let s(I) be the number 

of signals in region I, that is, the number of μi’s that are not zero in region I. Assume 

s(I) = | I |ξ(I), where ξ(I) = ξ* is the sparsity parameter of region I. Although signals are 

sparse across the genome, we assume that signals are dense in the signal region (Donoho 
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and Jin, 2004; Wu et al., 2011) and hence ξ* >1 / 2. Then, for any I ⊊ I*, we have 

log( μI* 2
2 − log μI 2

2 )/ log λI* 2 − log λI 2 = 2ξ* > 1 and thus condition (E) holds.

The results in Theorem 4 show that the proposed quadratic scan procedure is consistent for 

estimating a signal region, and its consistency depends on the signals only through their 

L2 norm. This indicates that the direction and sparsity of the signals in a signal region do 

not affect the consistency of the proposed scan procedure. When marginal test statistics 

are independent and signals have the same strength in the signal region, i.e., μi = μ for 

all i ∈ I*, Jeng et al. (2010) developed a theoretically optimal likelihood ratio selection 

procedure based on the mean scan statistic (4). For the likelihood ratio selection procedure 

to consistently detect the signal region I*, the condition on μ is μ ≥ 2 1 + δp log(p)/ I*

for some δp such that δp logp ∞. It means that μI* 2
2 ≥ 2 1 + δp log(p). Because | I* 

| / log(p) → ∞, this condition is weaker than condition (D) in Theorem 4, which is 

μI* 2
2 ≥ 2 1 + ϵ0 I* log(p) for this situation. However, it is obvious that the quadratic 

procedure has more power than the mean scan procedure (Jeng et al., 2010) in the presence 

of both trait-increasing and trait-decreasing variants in the signal region. The quadratic scan 

procedure is also more powerful in the presence of weak or neutral variants in the signal 

region. We will illustrate this in finite sample simulation studies in Section 4.

4 Simulation Studies

4.1 Family-wise Error Rate for Quadratic Scan Procedure

In order to validate the proposed quadratic scan procedure in terms of protecting family-

wise error rate using the empirical threshold, we estimated the family-wise error rate 

through simulation. To mimic WGS data, we generated sequence data by simulating 20,000 

chromosomes for a 10-megabase (Mb) region on the basis of the calibration-coalescent 

model that mimics the linkage disequilibrium structure of samples from African Americans 

using COSI (Sanda et al., 2008). The simulation used the 10-Mb sequence to represent the 

whole genome and focused on low frequency and rare variants with minor allele frequency 

(MAF) less than 0.05. The total sample size n is set to be 2, 500, 5, 000 or 10, 000 and 

the corresponding number of variants in the sequence are 189, 597, 242, 285 and 302, 737, 

respectively.

We first consider the continuous phenotype generated from the model:

Y = 0.5X1 + 0.5X2 + ϵ,

where X1 is a continuous covariate generated from a standard normal distribution, X2 is 

a dichotomous covariate taking values 0 and 1 with a probability of 0.5, and ϵ follows a 

standard normal distribution. We selected the minimum searching window length Lmin = 40 

and the maximum searching window length Lmax = 200. We scan the whole sequence for 

controlling the family-wise error rate at 0.05 and 0.01 level by using the 2,000 Monte Carlo 

simulations based empirical threshold that introduced in Section 2.5. The simulation was 

repeated for 10, 000 times.
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We also conducted the family-wise error rate simulations for dichotomous phenotypes using 

similar settings except that the dichotomous outcomes were generated via the model:

logit ℙ Yi = 1 = − 4.6 + 0.5X1 + 0.5X2, i = 1, ⋯, n,

which means the prevalence is set to be 1%. Case-control sampling was used and the 

numbers of cases and controls were equal. The sample sizes were the same as those used for 

continuous phenotypes.

For both continuous and dichotomous phenotype simulations, we applied the proposed 

Q-SCAN procedure and M-SCAN procedure to each of the 10, 000 data sets. To control for 

LD, the mean scan statistic for region I is defined as

M(I) = ∑
i ∈ I

Ui
2
/var ∑

i ∈ I
Ui . (6)

The empirical family-wise type I error rates estimated for Q-SCAN and M-SCAN are 

presented in Table 1 for 0.05 and 0.01 levels, respectively. The family-wise error rate is 

accurate at both two significance levels and all the empirical family-wise error rate fall in the 

95% confidence interval of the 10,000 Bernoulli trials with probability 0.05 and 0.01. These 

results showed that both Q-SCAN procedure and M-SCAN procedure are valid methods and 

protect the family-wise error rate.

4.2 Power and Detection Accuracy Comparisons

In this section, we performed simulation studies to investigate the power of the proposed 

Q-SCAN procedure in finite samples, and compared its performance with the M-SCAN 

procedure using scan statistic (6) and the SKAT (Wu et al. 2011) conducted using a sliding 

window approach with fixed window sizes. Genotype data was generated in the same 

fashion as Section 4.1. The total sample sizes were set as n = 2, 500, n = 5, 000 and n = 10, 

000. We generated continuous phenotypes by

Y = 0.5X1 + 0.5X2 + G1
cβ1 + ⋯ + Gscβs + ϵ,

where X1, X2 and ϵ are the same as those specified in the family-wise error rate simulations, 

G1
c, ⋯, Gs

c are the genotypes of the s causal variants and βs are the log odds ratio for the 

causal variants. We randomly selected two signal regions across the 10-Mb sequence in each 

replicate and repeated the simulation 1,000 times. The number of variants in each signal 

region p0 was randomly selected from 50 to 80. Causal variants were selected randomly 

within each signal region. Assume ξ is the sparsity index, that is, s = p0
ξ. We assumed signals 

are dense in the signal region (ξ > 1 / 2) and considered two sparsity settings ξ = 2 / 3 

and ξ = 3 / 4. Each of causal variant has an effect size as a decreasing function of MAF, 

β = −c log10 (MAF). We set c = 0.185 for ξ = 2 / 3 and c = 0.14 for ξ = 3 / 4. We also 

considered three settings of effect direction: the sign of βi’s are randomly and independently 
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set as 100% positive (0% negative), 80% positive (20% negative), and 50% positive (50% 

negative).

We applied Q-SCAN to simulated datasets, and we compared its performance with the 

sliding-window procedure using SKAT wherein the sliding-window size was set to be fixed 

at 3 kilobase (kb), 4 kb and 5 kb. We controlled the family-wise type I error rate at the 

0.05 level by using the proposed empirical threshold for Q-SCAN and M-SCAN and the 

Bonferroni correction for sliding window procedures. We set the minimum and maximum 

numbers of variants in searching windows of Q-SCAN and M-SCAN as (Lmin, Lmax) = 

(40,200) and (Lmin, Lmax) = (50,80).

To evaluate power for these methods, we considered two criteria, the signal region detection 

rate and the Jaccard index as performance measurements. Let I1 and I2 be the two signal 

regions and I j  be a collection of signal regions. The signal region detection rate is defined 

as

1
2 1 I1 ∩ ∪ I j ≠ ∅ + 1 I2 ∩ ∪ I j ≠ ∅ ,

where 1(·) is an indicator function. Here we define the signal region as detected if it is 

overlapped with one of the detected regions. For the Jaccard index, we define it as

1
2 max 

j
J I1, I j + max 

j
J I2, I j ,

where J(·,·) is defined in Section 3.2.

Figure 1 summarizes the simulation results when the sparsity index ξ = 2 / 3. In this 

situation, the Q-SCAN procedure had a better performance for detecting signal regions than 

M-SCAN and the sliding window procedure using SKAT with a fixed window size, when 

the effects of causal variants are in different direction. Its performance was comparable 

to the M-SCAN procedure when the effects of causal variants were in same direction. 

Specifically, when the effects of causal variants were in different directions, Q-SCAN had 

a higher signal region detection rate and Jaccard index than that of the M-SCAN and the 

sliding window procedure using SKAT. The difference between Q-SCAN and M-SCAN was 

more appreciable when the proportion of variants with negative effects increased from 20% 

to 50%. When the effects of causal variants were in the same direction, both Q-SCAN and 

M-SCAN had a higher power than the sliding window procedure using SKAT both in terms 

of signal region detection rate and Jaccard index. Although M-SCAN had a highest signal 

region detection rate and Jaccard index, the performance of Q-SCAN was comparable to that 

of the M-SCAN and the difference decreased as the sample size increased. When the range 

of searching window was closer to the size of signal regions, both Q-SCAN and M-SCAN 

had better power, but the difference was small.

Although Q-SCAN and M-SCAN with (Lmin, Lmax) = (50,80) were three times faster than 

those with (Lmin, Lmax) = (40,200), the computation time for Q-SCAN with (Lmin, Lmax) 
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= (40,200) to perform whole genome analysis on 10,000 simulated samples only required 

75 minutes for 100 2.90 GHz computing cores with 3 gigabyte (Gb) memory. Further, 

setting Lmax = 200 also ensured that promoters are covered in the Q-SCAN procedure, 

since promoters are often defined as a 6-kb region which contains +/− 3-kb windows of 

the transcription starting site, and 90% of 6-kb sliding windows of simulated genomes for 

10,000 individuals have less than 200 variants. Figure 2 summarizes the simulation results 

when the sparsity index ξ = 3 / 4. The simulation results were qualitatively similar and 

showed that Q-SCAN outperformed M-SCAN and the sliding window procedure using 

SKAT with a pre-fixed window size.

In summary, our simulation study illustrates that Q-SCAN has an advantage for identifying 

signal regions over M-SCAN and the sliding window procedure using SKAT with a pre-

specified fixed window size, in the sense that Q-SCAN had a higher signal region detection 

rate and Jaccard index, regardless of signal directions and signal sparsity. We also conducted 

power simulations for different effect sizes, and the pattern was similar. These results could 

be found in the Supplementary Materials (Figure S1–Figure S2).

5 Application to the ARIC Whole Genome Sequencing Data

In this section, we analyzed the ARIC WGS study conducted at the Baylor College 

of Medicine Human Genome Sequencing Center. DNA samples were sequenced at 7.4-

fold average depth on Illumina HiSeq instruments. We were interested in detecting 

genetic regions that were associated with two quantitative traits, small, dense, low-density 

lipoprotein cholesterol (LDL) and lipoprotein(a) (Lp(a)), both of which are risk factors of 

cardiovascular disease. After sample-level quality control (Morrison et al., 2017), there were 

33 million variants observed in 1,705 European Americans (EAs). Among these variants, 

80% were low-frequency and rare variants (MAF <5%). For this analysis, since the sample 

size is not large, we analyzed these low-frequency and rare variants across the whole 

genome.

To illustrate the proposed Q-SCAN procedure, we compared the performance of the Q-

SCAN procedure with the Mean scan procedure M-SCAN and SKAT (Wu et al., 2011) 

conducted using a sliding window approach with fixed window sizes. Following Morrison 

et al. (2017), for the sliding window approach, we used the sliding window of length 4 kb 

and began at position 0 bp for each chromosome, utilizing a skip length of 2 kb, and we 

tested for the association between variants in each window and the phenotype using SKAT 

with equal weights. We adjusted for age, sex, and the first three principal components of 

ancestry in the analysis for both traits and additionally adjusted for current smoking status 

in the analysis of Lp(a), consistent with the procedure described in Morrison et al. (2017). 

Because the distribution of both LDL and Lp(a) are markedly skewed, we transformed them 

using the rank-based inverse normal-transformation following the standard GWAS practice 

(Barber et al., 2010), see Figure S3.

For both Q-SCAN and M-SCAN procedures, we set the range of searching window sizes 

by specifying the minimum and maximum numbers of variants Lmin = 40 and Lmax = 

200. We controlled the family-wise error rate (FWER) at the 0.05 level in both Q-SCAN 
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and M-SCAN analyses using the proposed empirical threshold based on 2,000 Monte 

Carlo simulations. For the sliding window procedure, following Morrison et al. (2017), 

we required a minimum number of 3 minor allele counts in a 4-kb window with a skip of 

length of 2 kb, which results in a total of 1, 337, 382 overlapping windows in EAs. As 

around 1.3 million windows were tested using the sliding window procedure, we used the 

Bonferroni method to control for the FWER at the 0.05 level in the sliding window method 

following the GWAS convention. We hence set the region-based significance threshold for 

the sliding window procedure at 3.75 × 10−8 (approximately equal to 0.05 / 1,337,000). We 

note that both Q-SCAN and M-SCAN directly control for the FWER without the need of 

further multiple testing adjustment.

Q-SCAN detected a signal region of 4, 501 basepairs (from 45, 382, 675 to 45, 387, 175 

bp on chromosome 19) consisting of 58 variants that had a significant association with 

LDL among EAs with the family-wise error rate 0.005. This region resides in NECTIN2 
and covers three uncommon variants with individual p-values less than 1 × 10−6, including 

rs4129120 with p = 8.47 × 10−9 and MAF = 0.036, rs283808 with p = 5.71 × 10−7 

and MAF=0.042, and rs283809 with p = 5.71 × 10−7 and MAF = 0.042. Although the 

variant rs4129120 had a small p-value, it was not significant after adjusting for multiple 

comparisons of 9, 367, 575 variants with MAF ≥ 0.01 across the genome, giving the family-

wise error rate estimated by Bonferroni correction as 0.079. This was marginally significant 

and much larger than the family-wise erorr rate of the region detected by Q-SCAN 0.005. 

Several common variants in NECTIN2 have been found to have significant associations with 

LDL in previous studies (Talmud et al., 2009; Postmus et al., 2014).

The M-SCAN procedure did not detect any signal segment associated with LDL to reach 

genome-wide significance when we controlled for the FWER at 0.05. Examination of the 

data showed that the variant effects had different directions and were mixed with neutral 

variants in the signal region detected by Q-SCAN (the region from 45, 382, 675 to 45, 387, 

175 bp on chromosome 19). The 4-kb sliding window approach using SKAT, which was 

used in previous study (Morrison et al., 2017), detected two significant sliding windows. 

However, both two windows did not cover all of the three variants rs4129120, rs283808 and 

rs283809, and the SKAT p-values of the two sliding windows that cover variant rs4129120 

were 1.15 × 10−8 and 1.17 × 10−8, respectively. In contrast, the SKAT p-value of the 

signal region detected by Q-SCAN was 1.87 × 10−9. This indicated that our procedure 

increased the power for detecting signal regions by estimating the locations and the sizes 

of signal regions more accurately. These results explain why our Q-SCAN procedure is 

more powerful than the M-SCAN procedure and the sliding window procedure using a fixed 

window size in the analysis of LDL in ARIC WGS data.

We next performed WGS association analysis of Lp(a) among EAs in the ARIC study 

using Q-SCAN, M-SCAN and the SKAT-based sliding window method with a fixed 

window length of 4 kb. Compared to the existing methods, Q-SCAN was able to detect 

four significant novel intergenic regions associated with lipoprotein(a) (Lp(a)). These four 

significant regions resided in a 519-kb region on chromosome 6 from 160,595,533 bp 

to 161,114,514 bp, including an intergenic region between SLC22A1 and SLC22A2, an 

intergenic region between SLC22A2 and SLC22A3, an intergenic region between LPAL2 
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and LPA, and an intergenic region between LPA and PLG. Among these four associations, 

one was not found using the sliding window procedure, and three were not found using the 

M-SCAN procedure. No additional association in intergenic regions was detected using the 

SKAT-based sliding window with fixed window sizes and the M-SCAN procedure (Figure 

3). In summary, compared to the existing methods, the Q-SCAN procedure not only enables 

obtaining more significant findings, but also is less likely to miss important signal regions.

6 Discussions

In this paper, we propose a quadratic scan procedure to detect the existence and the 

locations of signal regions in whole genome array and sequencing studies. We show that 

the proposed quadratic scan procedure could control for the family-wise error rate using a 

proper data-driven threshold. Under regularity conditions, we also show that our procedure 

can consistently select the true signal segments and estimate their locations. Our simulation 

studies demonstrate that the proposed procedure has a better performance than the mean-

based scan method in the presence of variants effects that are in different directions, or 

mixed signal variants and neutral variants in signal regions. An analysis of WGS and 

heart-and blood-related traits from the ARIC study illustrates the advantages of the proposed 

Q-SCAN procedure for rare-variant WGS analysis, and demonstrates that Q-SCAN detects 

the locations and the sizes of signal regions associated with LDL and Lp(a) more powerfully 

and precisely.

The computation time of Q-SCAN is linear in the number of variants in WGS and the range 

of the number of variants in searching windows, and hence is computationally efficient. To 

analyze a 10 Mb region sequenced on 2,500, 5,000 or 10,000 individuals, when we selected 

the number of variants in searching windows between 40 and 200, the proposed Q-SCAN 

procedure took 15, 19 and 25 minutes, respectively, on a 2.90GHz computing cores with 3 

Gb memory. Using the same computation core, Q-SCAN took 20 hours to analyze the whole 

genome sequencing data of EA individuals in the ARIC study. The Q-SCAN procedure 

also works for parallel computing. For example, analysis of the whole genome for 10,000 

individuals only requires 75 minutes if using 100 computation cores.

Specification of the minimum and maximum searching window lengths Lmin and Lmax is an 

important issue in the Q-SCAN procedure. Specifically, the range of the searching window 

lengths determines computation complexity. In the meantime, the range of the searching 

window length should be wide enough to cover different true signal regions across the 

genome, including the important functional masks of non-coding regions, such as promoters 

and enhancers. Based on our simulation results, we recommend to set Lmin = 40 and Lmax = 

200 when the sample size is less than 20,000.

We derived an empirical threshold based on Monte Carlo simulations to control for the 

family-wise error rate at an exact α – level and gave the asymptotic bound of the proposed 

threshold. This step costs additional computational time in applying our procedure. Future 

research is needed to develop an analytic approximation to the significance level for the 

proposed Q-SCAN statistics. We allow in this paper individual variant test statistics to 

be correlated, and assume Mp – dependence. This is a reasonable assumption in WGS 
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association studies, because two marginal test statistic are independent when two variants 

are far apart in the genome. It is of future research interest to extend our procedure to 

more general correlation structures. Moreover, the proposed Q-SCAN procedure worked 

well when signals were dense in signal regions. An interesting problem for future research is 

to develop a scan procedure for very sparse signal regions (Donoho and Jin, 2004).

We assume in this paper all the variants have the same weight in constructing the quadratic 

scan statistic. In WGS studies, upweighting rare variants and functional variants could 

boost power when causal variants are likely to be more rare and functional. It is of 

great interest to extend our proposed scan procedure by weighting individual test statistics 

using external bioinformatic and evolutionary biology knowledge, such as variant functional 

information when applying to WGS studies. We assume individual variant test statistics 

are asymptotically jointly normal. However, when most of variants are rare variants in 

the sequence, this normal assumption might not hold in finite samples for binary traits. 

An interesting problem of future research is to extend the results to the situation where 

individual variant test statistics are not normal and use the exact or approximate distributions 

of individual test statistics to construct scan statistics.

7 Software

The Q-SCAN procedure was implemented in the R package QSCAN, which is freely 

available at (https://github.com/zilinli1988/QSCAN). A numerical example of the Q-SCAN 

procedure is available at https://github.com/zilinli1988/QSCAN.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Power and accuracy of estimated signal region comparisons using Q-SCAN, M-SCAN 

and sliding window procedure using SKAT for the setting with the sparsity index ξ = 

2 / 3. We evaluated power via the signal region detection rate and the Jaccard index 

defined in the simulation section. Both criteria were calculated at the family-wise error 

rate at 0.05 level. The number of variants in signal region p0 was randomly selected 

between 50 and 80 and s = p0
ξ causal variants were selected randomly within each signal 

region. Each causal variant has an effect size that is set as a decreasing function of MAF, 

β = −clog10 (MAF) and c = 0.185. From left to right, the plots consider settings in 
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which the coefficients for the causal rare variants are 100% positive (0% negative), 80% 

positive (20% negative), and 50% positive (50% negative). We repeated the simulation for 

1,000 times. Q-SCAN and M-SCAN refer to the scan procedures using the scan statistics 

∑i ∈ I Ui
2 − E ∑i ∈ I Ui

2 /var ∑i ∈ I Ui
2  and ∑i ∈ I Ui

2/var ∑i ∈ I Ui , respectively. In both 

two scan procedures, “−1” and “−2” represents the range of the numbers of variants in 

searching windows (Lmin, Lmax) = (40,200) and (Lmin, Lmax) = (50,80), respectively. The 

sliding window length was set as 3 kb, 4 kb and 5 kb.
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Fig. 2. 
Power and accuracy of estimated signal region comparisons using Q-SCAN, M-SCAN and 

sliding window procedure using SKAT assuming the sparsity index ξ = 3 / 4. We evaluated 

power via the signal region detection rate and the Jaccard index defined in the simulation 

section. Both criteria were calculated at the family-wise error rate at 0.05 level. The number 

of variants in signal region p0 was randomly selected between 50 and 80. The s = p0
ξ causal 

variants were selected randomly within each signal region. Each causal variant has an 

effect size that is set as a decreasing function of MAF, β = −clog10 (MAF) and c = 0.14. 

From left to right, the plots consider settings in which the coefficients for the causal rare 
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variants are 100% positive (0% negative), 80% positive (20% negative), and 50% positive 

(50% negative). We repeated the simulation for 1,000 times. Q-SCAN and M-SCAN 

refer to the scan procedures using the scan statistics ∑i ∈ I Ui
2 − E ∑i ∈ I Ui

2 /var ∑i ∈ I Ui
2

and ∑i ∈ I Ui
2/var ∑i ∈ I Ui , respectively. In both two scan procedures, “−1” and “−2” 

represents the range of the numbers of variants in searching windows (Lmin, Lmax) = 

(40,200) and (Lmin, Lmax) = (50,80), respectively. The sliding window length was set as 3 

kb, 4 kb and 5 kb.
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Fig. 3. 
Genetic landscape of the windows that were significantly associated with lipoprotein(a) on 

chromosome 6 among European Americans in the ARIC Whole Genome Sequencing Study. 

Three methods were compared: Q-SCAN, M-SCAN and 4 kb sliding window procedures 

using SKAT with equal weights. A dot means that the sliding window at this location 

is significant using the method the color of the dot represents. The physical positions of 

windows are based on build hg19.
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Table 1

Simulation Studies of Family-Wise Error Rates. The family-wise error rate of the Q-SCAN procedure 

is estimated with 10, 000 simulated data sets. In each data set, we considered three sample sizes n = 

2, 500, n = 5, 000 or n = 10, 000, and the corresponding numbers of variants in the sequence are 

189,597, 242,285 and 302,737. The minimum and maximum searching window lengths are set to be 

Lmin = 40 and Lmax = 200, respectively. Q-SCAN refers to the scan procedures using the scan statistics 

Q(I) = ∑i ∈ I Ui
2 − E ∑i ∈ I Ui

2 /var ∑i ∈ I Ui
2  for region I, where Ui is the score statistic of ith variant. 

M-SCAN refers to the scan procedures using the scan statistics M(I) = ∑i ∈ I Ui
2/var ∑i ∈ I Ui  for region I. 

The 95% confidence interval of 10, 000 Bernoulli trials with probability 0.05 and 0.01 are [0.0457,0.0543] and 

[0.0080,0.0120].

Continuous Phenotypes Dichotomous Phenotypes

Total Sample Size Size n = 2500 n = 5000 n = 10000 n = 2500 n = 5000 n = 10000

Q-SCAN 0.05 0.0485 0.0475 0.0514 0.0414 0.0481 0.0488

0.01 0.0098 0.0100 0.0101 0.0077 0.0104 0.0092

M-SCAN 0.05 0.0453 0.0525 0.0494 0.0485 0.0501 0.0492

0.01 0.0097 0.0123 0.0083 0.0094 0.0085 0.0100
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