
1.  Introduction
Phytoplankton are microscopic, single-celled algae that live in the sunlit region of the ocean, the epipelagic zone, 
and perform photosynthesis. They are at the base of the marine food-web, channeling energy from the sun into 

Abstract  We describe an approach to partition a vertical profile of chlorophyll-a concentration into 
contributions from two communities of phytoplankton: one (community 1) that resides principally in the 
turbulent mixed-layer of the upper ocean and is observable through satellite visible radiometry; the other 
(community 2) residing below the mixed-layer, in a stably stratified environment, hidden from the eyes of 
the satellite. The approach is tuned to a time-series of profiles from a Biogeochemical-Argo float in the 
northern Red Sea, selected as its location transitions from a deep mixed layer in winter (characteristic of 
vertically well-mixed systems) to a shallow mixed layer in the summer with a deep chlorophyll-a maximum 
(characteristic of vertically stratified systems). The approach is extended to reproduce profiles of particle 
backscattering, by deriving the chlorophyll-specific backscattering coefficients of the two communities and 
a background coefficient assumed to be dominated by non-algal particles in the region. Analysis of the float 
data reveals contrasting phenology of the two communities, with community 1 blooming in winter and 2 in 
summer, community 1 negatively correlated with epipelagic stratification, and 2 positively correlated. We 
observe a dynamic chlorophyll-specific backscattering coefficient for community 1 (stable for community 2), 
positively correlated with light in the mixed-layer, suggesting seasonal changes in photoacclimation and/or 
taxonomic composition within community 1. The approach has the potential for monitoring vertical changes in 
epipelagic biogeography and for combining satellite and ocean robotic data to yield a three-dimensional view of 
phytoplankton distribution.

Plain Language Summary  Phytoplankton are microscopic, photosynthetic organisms that live in 
the sunlit layer of our ocean. They contribute to around half of planetary net primary production and supply 
energy to the marine ecosystem. They also help maintain the stability of the Earth's climate and are considered 
an essential climate variable. Monitoring phytoplankton is consequently important for understanding how our 
planet is changing. To do that, scientists use satellites and ocean robotic platforms. Satellites can see the surface 
ocean daily at global scales, but cannot see the subsurface. Ocean robotic platforms do not have the coverage 
of satellites but can see the subsurface. Mathematical approaches can be used to combine information from 
both platforms to produce synoptic, depth-resolved fields of phytoplankton abundance. Here, we present one 
such approach that considers two communities of phytoplankton, one at the surface which can be seen from a 
satellite and an ocean robotic platform, the other below the surface layer, hidden from the satellite but seen by 
a robotic platform. We apply the approach to data from a Biogeochemical-Argo float to reveal the dynamics 
of these two communities of phytoplankton in the northern Red Sea. The approach is useful for understanding 
vertical changes in phytoplankton community structure.
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•	 �The approach reveals contrasting 
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the marine ecosystem, where it propagates to higher trophic levels and to humans through seafood consump-
tion. Phytoplankton, together with physical processes, modulate the CO2 concentration in the ocean, impacting 
air-sea CO2 gas exchange, helping control the climate of our planet. Phytoplankton are considered an essential 
climate variable (GCOS, 2011), and monitoring their abundance at global scales is required for understanding 
and predicting the impact of climate change on marine ecosystems.

With an unparalleled capability to view the entire surface layer of the ocean within a few days and at synoptic 
scales, satellite remote sensing of ocean color is recognized as the main source of data for assessing changes in 
global phytoplankton abundance (Sathyendranath et al., 2017; Siegel & Franz, 2010). However, the ocean color 
signal retrieved passively by satellites is only representative of the surface layer (at most, and in the clearest 
waters, 50 m depth). In the seasonally and permanently stratified oceans (>70% of oceanic waters), there exists 
a community of phytoplankton below the surface layer (50–200 m depth) hidden from the eyes of the satellite 
(Cornec et al., 2021; Cullen, 1982, 2015). Monitoring full water column phytoplankton abundance synoptically 
requires integrating satellite data with measurements from deeper parts of the epipelagic. In the past, this has 
been done using ship-based observations, collected from CTD rosette sampling. However, recent years have seen 
a proliferation in ocean robotic platforms that can sample the entire epipelagic with unprecedented coverage 
(Chai et al., 2020). Combining satellite and ocean robotic monitoring offers huge potential for understanding and 
predicting changes in total water column phytoplankton abundance (Claustre et al., 2020).

Combining satellite and in situ observations involves bridging the contrasting spatial and temporal scales of the 
measurements from the two systems: the in situ measurements, discretely distributed in space, and the synoptic 
data from satellites. Historically, empirical equations have been proposed to capture the vertical distribution of 
chlorophyll-a concentration (a measure of phytoplankton biomass). The parameters of these equations, derived 
from fits to in situ profiles, are then related to some property of the surface ocean (e.g., trophic levels derived from 
chlorophyll-a observations), or to time and space (e.g., biogeochemical provinces, seasons), such that parameters 
can be mapped over large scales, and functions used to extrapolate the surface fields seen from a satellite down 
through the entire epipelagic zone. These methods include Gaussian functions (e.g., Morel & Berthon, 1989; Platt 
& Sathyendranath, 1988; Uitz et al., 2006), sigmoid functions (e.g., Mignot et al., 2011), a combination of both 
functions (e.g., Carranza et al., 2018), and statistical methods (e.g., Sauzède et al., 2015). These approaches have 
proven useful for satellite models of ocean primary production (e.g., Antoine & Morel, 1996; Brewin et al., 2017; 
Longhurst et al., 1995; Platt & Sathyendranath, 1988; Sathyendranath et al., 1995; Uitz et al., 2010) and have 
been extended to other remotely-sensed proxies of phytoplankton biomass, such as the particle backscattering 
coefficient (Sauzède et al., 2016).

Although the chlorophyll-a concentration is used commonly as a measure of phytoplankton biomass, it can 
change independently in response to changing growth conditions (e.g., photoacclimation; Geider et al., 1996; 
Jackson et al., 2017). The particle backscattering coefficient is sensitive to both algal and non-algal particles, 
though the extent of which is still an active area of research (Dall’Olmo et  al.,  2009; Koestner et  al.,  2020; 
Organelli et al., 2018, 2020; Stramski et al., 2004). The algal contribution to particle backscattering is thought to 
correlate with the biomass of phytoplankton in carbon units (Behrenfeld et al., 2005; Graff et al., 2015; Martín-
ez-Vicente et al., 2013). Variations in the vertical distribution of these two proxies of phytoplankton biomass 
(chlorophyll-a and carbon) are thought to relate to photoacclimation processes or to shifts in phytoplankton 
composition (Cullen, 2015; Fennel & Boss, 2003).

Most empirical approaches describing vertical changes in phytoplankton deal with total phytoplankton. 
However, some methods have been extended further to partition a profile of total phytoplankton biomass into 
the contributions from different phytoplankton groups, partitioned according to size and/or taxa (e.g., Brewin 
et al., 2010, 2017; Rembauville et al., 2017; Sauzède et al., 2015; Uitz et al., 2006), a useful approach consid-
ering the differing roles phytoplankton groups have in ocean biogeochemical cycles (IOCCG, 2014; Le Quéré 
et al., 2005). One such approach, proposed by Lange et al. (2018), focused solely on the numerical abundance 
of cells of the phytoplankton species Prochlorococcus, partitions the vertical distribution of Prochlorococcus 
abundance into two populations, one that dominates the surface layer (high-light adapted) and one the subsurface 
(low-light adapted). This interesting approach considers, explicitly, vertical differences in growth environment 
and Prochlorococcus habitat within the epipelagic. The approach can be used for deriving the contribution from 
the surface population, seen directly by a satellite, to a vertical profile of Prochlorococcus cell abundance.
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Here, we extend the concepts of Lange et  al.  (2018) to partition a vertical profile of chlorophyll-a into two 
communities of phytoplankton, one that resides principally in the turbulent mixed-layer and seen from space, the 
other below the mixed-layer, not seen from space. The approach, which builds on earlier functions for describing 
the vertical distribution of chlorophyll-a (sigmoid and Gaussian), is applied to a time-series of profiles from a 
Biogeochemical-Argo float in the northern Red Sea and is extended to reproduce profiles of particle backscatter-
ing, by considering the chlorophyll-specific backscattering coefficients of the two communities and a background 
coefficient of non-algal particles. The seasonal dynamics of the two communities are analyzed alongside envi-
ronmental data and the approach is discussed in the context of vertical changes in epipelagic biogeography and 
of combining satellite and ocean robotic data.

2.  Materials and Methods
A list of all symbols and definitions used in the paper is provided in Supplementary Table S1.

2.1.  Study Site

The chosen study site was the northern Red Sea (Figure  1). The Red Sea is a narrow, semi-enclosed basin, 
connected to the Mediterranean Sea in the north through the Suez Canal, and to the Gulf of Aden and the Arabian 
Sea in the south, through the strait of Bab-el-Mandeb (Raitsos et al., 2013). It is the world's northernmost tropical 
sea and among the warmest and most saline (Belkin, 2009). It hosts one of the longest coral reef systems on Earth 
(Raitsos et al., 2017). The seasonal cycle of phytoplankton in the northern Red Sea is thought to be driven primar-
ily by nutrient availability (Gittings et al., 2018; Papagiannopoulos et al., 2021). Higher phytoplankton abundance 
in winter is linked to increased convective mixing, driven by sea-air heat exchange, that transports nutrients from 
deeper water into the surface layer (Acker et  al., 2008; Papadopoulos et  al., 2015; Triantafyllou et al., 2014; 
Yao et al., 2014). In summer, surface heating promotes stratification, reducing vertical mixing, lowering surface 
nutrients, and reducing surface phytoplankton abundance (Gittings, Raitsos, et al., 2019). During stratification, 
the presence of a deep chlorophyll-a maximum at around 100 m has been observed (Gittings, Raitsos, et al., 2019; 
Kheireddine et al., 2017), a feature characteristic of many stratified regions (Cullen, 2015).

Figure 1.  Map showing the locations of Biogeochemical Argo float profiles of over the life of the float (September 2015 to 
February 2017) in the northern Red Sea.
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2.2.  Data

Data collected from a Biogeochemical Argo (BGC-Argo) float (Argo, 2020), in the northern Red Sea (WMO 
number 6901573) were acquired freely from the Ifremer Argo data assembly center (ftp://ftp.ifremer.fr/ifremer/
argo/dac/coriolis/). This float was studied previously in Gittings, Raitsos, et  al.  (2019), and Kheireddine 
et al. (2020), includes profiles with a deep mixed layer (typical of vertically well-mixed systems) and profiles 
with a deep chlorophyll-a maximum (typical of stratified systems). Delayed mode profiles of pressure (dBar), 
temperature (°C), salinity (PSU), dissolved oxygen (μmol kg −3), chlorophyll-a (mg m −3), backscattering by parti-
cles (bbp at the wavelength of 700 nm, m −1), and photosynthetically available radiation (PAR, μmol quanta m −2 
s −1), were used. For chlorophyll-a, dissolved oxygen and bbp, adjusted profiles were used, which include addi-
tional processing steps as described in Schmechtig et al. (2014, 2019), to maximize the quality of the data and 
to correct for effects like non-photochemical quenching for chlorophyll-a (Bittig et  al.,  2019). A map of the 
geographical locations of the profiles from the BGC-Argo float is provided in Figure 1, and additional details on 
the float are provided in Gittings, Raitsos, et al. (2019), and Kheireddine et al. (2020).

PAR data were converted from instantaneous measurements to daily integrals, by computing the day length as a 
function of time of year and latitude, scaling the profile given knowledge of the time of acquisition, and assuming 
a sinusoidal light cycle (Brewin et al., 2020). For profiles collected after sunset and before sunrise, data were 
disregarded. The diffuse attenuation coefficient for PAR (Kd) was computed by fitting a Beer-Lambert function 
to PAR data in the top 100 m of the water column. For the eight profiles where PAR was unavailable, Kd was 
estimated empirically from a linear fit (see Supplementary Figure S1a) between Kd and the average chlorophyll-a 
concentration in the top 10 m of the water column (Bs10), where Kd = 0.036Bs10 + 0.049 (r = 0.79, p =<0.001). A 
linear, as opposed to a traditional non-linear fit, was selected as the distribution of residuals (see Supplementary 
Figure S1b) was normal at a 2.5% significance level (Anderson-Darling-Test; Stephens [1974]).

The euphotic depth (Zp) was taken to be 4.6/Kd, and the average PAR in the mixed-layer, and between the mixed-
layer and euphotic depth, were computed. Pressure data were converted to depth, density was computed from 
temperature and salinity, and the Brunt–Väisälä buoyancy frequency was computed for each profile, using the 
Python seawater package (version-3.3; Fofonoff & Millard, 1983; Gill, 1982; Jackett & Mcdougall, 1995; Mill-
ero & Poisson, 1981). The average Brunt–Väisälä buoyancy frequency above 6.9 optical depths (1.5 times the 
euphotic depth) was computed for each profile as an index of stratification within the epipelagic zone. The mixed 
layer depth (Zm) for each profile was computed using the method of Holte and Talley (2009), using their temper-
ature algorithm (Python package https://github.com/garrettdreyfus/python-holteandtalley), and depth-integration 
of variables was carried out using the trapezoid method (Ossendrijver, 2016).

2.3.  Model Development

2.3.1.  Chlorophyll-a Theoretical Framework

Building on the earlier works of Morel and Berthon (1989) and Uitz et al. (2006), we conduct model develop-
ment in dimensionless space, albeit with slight differences in the manner in which we dimensionalize the chlo-
rophyll-a profile. We start by computing the dimensionless optical depth (τ) by multiplying the geometric depth 
(m) by Kd (m −1). The chlorophyll-a concentration (B) at depth (z) is then normalized by the surface chlorophyll-a 
concentration (Bs), taken to be the median chlorophyll-a in the first optical depth (having removed any cases of 
unrealistically low values <0.01 mg m −3). The choice to normalize the chlorophyll-a profile to its surface concen-
tration as in Brewin et al. (2017), rather than by its depth-integrated concentration (Morel & Berthon, 1989; Uitz 
et al., 2006), means the profile is scaled directly to surface values also observable through satellites, and the set 
of equations used can be expressed in their simplest form (minimum amount of parameters), acknowledging that 
for in vivo fluorescence measurements, surface chlorophyll-a concentrations can be subject to additional uncer-
tainties related to non-photochemical quenching.

Next, we consider the normalized chlorophyll-a concentration (𝐴𝐴 𝐴𝐴
∗ ) at a given optical depth (τ) as a combination 

of two communities of phytoplankton. Our definition of the term community follows that described by Begon 
et al. (1990), but focused solely on phytoplankton, as a group of species that occur together in space and time. 
This broad definition is flexible enough to encompass shifts in the taxonomic composition within a community, 
for example, due to seasonal variations in physical and chemical forcing. 𝐴𝐴 𝐴𝐴

∗ is expressed as

ftp://ftp.ifremer.fr/ifremer/argo/dac/coriolis/
ftp://ftp.ifremer.fr/ifremer/argo/dac/coriolis/
https://github.com/garrettdreyfus/python-holteandtalley


Journal of Geophysical Research: Oceans

BREWIN ET AL.

10.1029/2021JC018195

5 of 20

𝐵𝐵
∗

(𝜏𝜏) = 𝐵𝐵
∗
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(𝜏𝜏) + 𝐵𝐵

∗

2
(𝜏𝜏).� (1)

Community 1 𝐴𝐴
(

𝐵𝐵
∗

1

)

 represents a group of phytoplankton species that resides principally in the turbulent mixed-
layer of the surface ocean, at the interface between the ocean and atmosphere, is adapted to variations in light in 
the mixed-layer, and represents the assemblage most influential in spectral variations of reflected light observed 
through satellite remote-sensing of ocean color. We begin by modeling community 1 as a function of τ using a 
two-parameter sigmoid function, such that

𝐵𝐵
∗

1
(𝜏𝜏) = 1 −

1

1 + exp [−𝑆𝑆1 (𝜏𝜏 − 𝜏𝜏1)]
,� (2)

where S1 represents the rate of change in 𝐴𝐴 𝐴𝐴
∗

1
 with τ, and τ1 represents the mid-point of the slope. As τ tends toward 

zero, Equation 2 can be expressed as

𝐵𝐵
∗

1
(𝜏𝜏 → 0) = 1 −

1

1 + exp (𝑆𝑆1𝜏𝜏1)
.� (3)

The product S1τ1 is hereafter denoted P1, such that Equation 2 can be arranged as follows:
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Next, we make the assumption that 𝐴𝐴 𝐴𝐴
∗

1
 tends to one as τ tends to zero, resulting in total dominance of community 

1 at the very surface ocean. To do that, we introduce the constraint that P1 > 4.6 (i.e., community 1 is >99% of 
the total community as τ tends to zero, see Equation 3).

Community 2 𝐴𝐴
(

𝐵𝐵
∗

2

)

 represents a group of phytoplankton species that resides principally in a stable environ-
ment below the mixed layer, is adapted to low-light conditions, is not observable through passive, satellite, 
remote-sensing of ocean color (but for a few extreme cases, see Stramska & Stramski [2003]), and is character-
istic of a phytoplankton community at the deep chlorophyll-a maximum. We model 𝐴𝐴 𝐴𝐴

∗

2
 as a function of τ using a 

Gaussian function, such that
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peak. As τ tends toward zero, Equation 5 reduces to
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Considering our earlier assumption, that as τ tends to zero 𝐴𝐴 𝐴𝐴
∗

1
 tends to one, it follows that for the same condition 

𝐴𝐴 𝐴𝐴
∗

2
 should tend to zero. For cases where 𝐴𝐴 𝐴𝐴

∗

2,𝑚𝑚
< 80 , when τ tends to zero 𝐴𝐴 𝐴𝐴
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 will be <1% if τ2 is higher than three 

σ (Equation 6). Combining Equations 4 and 5 we arrive at
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The total chlorophyll-a concentration (B) at depth (z) can be reconstructed by scaling Equation 7 by Bs and Kd. 
The scaled profile becomes equivalent to the Gaussian profile with a constant background introduced by Platt 
and Sathyendranath (1988) if the first term (community 1) is on the right-hand side (the sigmoid function) is set 
as a constant. Here, the first term allows the chlorophyll-a profile to approach zero at depth in the water column, 
which is not possible with a constant background. Our model requires two inputs (Bs and Kd) and has five param-
eters (P1, τ1, 𝐴𝐴 𝐴𝐴

∗

2,𝑚𝑚
 , τ2, and σ), the same number as that of other dimensionless models (e.g., Uitz et al., 2006). We 

note that this is not the first time a combined sigmoid and Gaussian function has been used to model the vertical 
distribution of chlorophyll-a (see Carranza et al., 2018), but it is the first time, to our knowledge, that the two 
components are considered to represent two different communities.
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We note that, for conditions where only community 1 is present, we drop the second term (community 2) on the 
right-hand side of Equation 7 (the Gaussian function), such that

𝐵𝐵
∗

(𝜏𝜏) = 1 −
1

1 + exp

[

−
𝑃𝑃
1

𝜏𝜏
1

(𝜏𝜏 − 𝜏𝜏1)

] .� (8)

2.3.2.  Chlorophyll-a Model Tuning

To fit the model to a dimensionless profile of chlorophyll-a (with N > 6) we only selected data for <9.2 optical 
depths (twice the euphotic depth), for profiles where ZmKd < 9.2, otherwise full profiles were used. The tuning of 
the model followed a two-step process.

2.3.2.1.  Step 1

In the first step, Equation 8 is fitted to the profile (Python function minimize, using Levenberg-Marquardt method), 
with an initial guess of model parameters (τ1 = ZmKd, and P1 = 9) and a lower and upper bound of 4.6 and 100 
for P1 respectively, and a lower bound of zero for τ1. The fitting method used a bootstrap (1,000 iterations) and 
median parameters (with 2.5% and 97.5% confidence intervals) were extracted from each profile bootstrap. If 
Equation 8 explained >90% of the variance in the profile (squared Pearson correlation coefficient, r 2 > 0.9) then 
we assume community 1 dominates the profile (no community 2 present) and the profile can be described using 
Equation 8 and the parameters (P1 and τ1) retained from the fit. In other words, community 2 is assumed to be 
absent, unless they contribute at least 10% to the variability in the chlorophyll-a profile.

2.3.2.2.  Step 2

For cases where Equation 8 explains <90% of the variance (r 2 < 0.9) in step 1, then we move to the second step of 
the tuning, which involves fitting Equation 7. In this step, P1 and τ1 are estimated empirically from the mixed-layer 
depth (Zm). Using profiles from mixed waters (where Zp < Zm) that passed step 1 (r 2 > 0.9), we found a significant 
relationship between τ1 and ZmKd (τ1 = 0.62ZmKd + 2.29, r = 0.78, p < 0.001, Supplementary Figure S2a), and a 
significant, albeit weaker, relationship between P1 and τ1 (𝐴𝐴 𝐴𝐴1 = 100.08𝜏𝜏1+0.66 , r = 0.42, p = 0.016, Supplementary 
Figure S2b). In this second step, P1 and τ1 were first derived using these relationships and then fixed when fitting 
Equation 7, to derive the parameters 𝐴𝐴 𝐴𝐴

∗

2,𝑚𝑚
 , τ2 and σ.

To ensure community 2 tended close to zero at the surface (where τ tends to 0), in the fitting of Equation 7, τ2 was 
forced to be three σ or higher. 𝐴𝐴 𝐴𝐴

∗

2,𝑚𝑚
 was constrained to vary between 0 and 100 and σ to be greater than zero. The 

fitting of Equation 7 used the same Python packages, and used a bootstrap (1,000 iterations) method, with median 
parameters (with 2.5% and 97.5% confidence intervals) for 𝐴𝐴 𝐴𝐴

∗

2,𝑚𝑚
 , τ2 and σ extracted from each profile bootstrap. 

The second step was only retained if the Akaike information criterion (AIC) of the step 2 fit (Equation 7) was 
lower than in step 1 (i.e., the fit using Equation 8). If it was not lower, we assume community 1 dominates the 
profile and community two is absent, such that 𝐴𝐴 𝐴𝐴

∗ follows Equation 8. We acknowledge that this method of model 
tuning may need to be adapted for different BGC-Argo floats and datasets, and different regions. A flow diagram 
of the chlorophyll-a model tuning is provided in Supplementary Figure S3.

2.3.3.  Particle Backscattering Theoretical Framework

As with the chlorophyll-a profiles, we start by normalizing each particle backscattering profile at 700 nm (bbp) by 
the surface particle backscattering (bbp,s), taken to be the median bbp in the first optical depth. We then consider 
the normalised particle backscattering 𝐴𝐴 (𝑏𝑏

∗

𝑏𝑏𝑏𝑏
) at any optical depth (τ) as a combination of the two assemblages of 

phytoplankton, and a background component, such that

𝑏𝑏
∗

𝑏𝑏𝑏𝑏
(𝜏𝜏) = 𝑏𝑏

∗

𝑏𝑏𝑏𝑏𝑏1
(𝜏𝜏) + 𝑏𝑏

∗

𝑏𝑏𝑏𝑏𝑏2
(𝜏𝜏) + 𝑏𝑏

∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
,� (9)

where 𝐴𝐴 𝐴𝐴
∗

𝑏𝑏𝑏𝑏𝑏1
 and 𝐴𝐴 𝐴𝐴

∗

𝑏𝑏𝑏𝑏𝑏2
 are the surface normalised backscattering coefficients for community 1 and 2 respectively, 

and 𝐴𝐴 𝐴𝐴
∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 is a surface normalized constant background. Next, we assume 𝐴𝐴 𝐴𝐴

∗

𝑏𝑏𝑏𝑏𝑏1
 and 𝐴𝐴 𝐴𝐴

∗

𝑏𝑏𝑏𝑏𝑏2
 can be tied to the dimension-

less profile of chlorophyll-a for each community, such that
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𝑏𝑏
∗

𝑏𝑏𝑏𝑏
(𝜏𝜏) = 𝜔𝜔1𝐵𝐵

∗

1
(𝜏𝜏) + 𝜔𝜔2𝐵𝐵

∗

2
(𝜏𝜏) + 𝑏𝑏

∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
,� (10)

where ω1 and ω2 are scaling factors linking the two communities of phytoplankton (𝐴𝐴 𝐴𝐴
∗

1
 and 𝐴𝐴 𝐴𝐴

∗

2
 ) to the surface, 

normalised backscattering coefficients of community 1 and 2 respectively (i.e., 𝐴𝐴 𝐴𝐴
∗

𝑏𝑏𝑏𝑏𝑏1
= 𝜔𝜔1𝐵𝐵

∗

1
 and 𝐴𝐴 𝐴𝐴

∗

𝑏𝑏𝑏𝑏𝑏2
= 𝜔𝜔2𝐵𝐵

∗

2
 ). 

For cases where only community 1 is present, Equation 10 reduces to

𝑏𝑏
∗

𝑏𝑏𝑏𝑏
(𝜏𝜏) = 𝜔𝜔1𝐵𝐵

∗

1
(𝜏𝜏) + 𝑏𝑏

∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
.� (11)

Considering that as τ tends to zero, 𝐴𝐴 𝐴𝐴
∗

2
 tends to zero (𝐴𝐴 𝐴𝐴2𝐵𝐵

∗

2
= 0 , such that 𝐴𝐴 𝐴𝐴2 = 0∕𝐵𝐵

∗

2
= 0 ), 𝐴𝐴 𝐴𝐴

∗

1
 tends one (ω1 × 

1 = ω1) and 𝐴𝐴 𝐴𝐴
∗

𝑏𝑏𝑏𝑏
 tends one, and if we make the assumption 𝐴𝐴 𝐴𝐴

∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
< 1 (i.e., constant background backscattering is not 

higher than surface bbp), both Equations 10 and 11 reduce to

𝑏𝑏
∗

𝑏𝑏𝑏𝑏
(𝜏𝜏 → 0) = 𝜔𝜔1 + 𝑏𝑏

∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
= 1.� (12)

Accordingly, ω1 can be expressed as 𝐴𝐴 1 − 𝑏𝑏
∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 . Equations 10 and 11 can therefore be re-written as

𝑏𝑏
∗

𝑏𝑏𝑏𝑏
(𝜏𝜏) =

(

1 − 𝑏𝑏
∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏

)

𝐵𝐵
∗

1
(𝜏𝜏) + 𝜔𝜔2𝐵𝐵

∗

2
(𝜏𝜏) + 𝑏𝑏

∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
,� (13)

and

𝑏𝑏
∗

𝑏𝑏𝑏𝑏
(𝜏𝜏) =

(

1 − 𝑏𝑏
∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏

)

𝐵𝐵
∗

1
(𝜏𝜏) + 𝑏𝑏

∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
,� (14)

respectively.

Once ω2 and 𝐴𝐴 𝐴𝐴
∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 are known, the chlorophyll-specific backscattering coefficients of each community (𝐴𝐴 𝐴𝐴

𝐵𝐵

𝑏𝑏𝑏𝑏𝑏1
 and 

𝐴𝐴 𝐴𝐴
𝐵𝐵

𝑏𝑏𝑏𝑏𝑏2
 ) can be derived as

𝑏𝑏
𝐵𝐵

𝑏𝑏𝑏𝑏𝑏1
=

(

1 − 𝑏𝑏
∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏

)

∕ (𝐵𝐵𝑠𝑠∕𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ,� (15)

and

𝑏𝑏
𝐵𝐵

𝑏𝑏𝑏𝑏𝑏2
= 𝜔𝜔2∕ (𝐵𝐵𝑠𝑠∕𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ,� (16)

where Bs/bbp,s is the ratio of surface chlorophyll-a to surface particulate backscattering. These backscattering coef-
ficients may be sensitive to the size and taxonomic composition of phytoplankton in each community (Brewin 
et al., 2012; Cetinić et al., 2015), and to their ratio of carbon to chlorophyll-a, reflecting their photoacclimation 
status (Behrenfeld et al., 2005).

Finally, 𝐴𝐴 𝐴𝐴
𝑘𝑘

𝑏𝑏𝑏𝑏
 , a constant background particle backscattering coefficient, thought to be dominated by non-algal 

particles in the region (Brewin et al., 2015; Kheireddine et al., 2021), can be computed as

𝑏𝑏
𝑘𝑘

𝑏𝑏𝑏𝑏
= 𝑏𝑏

∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.� (17)

The total backscattering coefficient can therefore be reconstructed as

𝑏𝑏𝑏𝑏𝑏𝑏(𝑧𝑧) = 𝑏𝑏
𝐵𝐵

𝑏𝑏𝑏𝑏𝑏1
𝐵𝐵1(𝑧𝑧) + 𝑏𝑏

𝐵𝐵

𝑏𝑏𝑏𝑏𝑏2
𝐵𝐵2(𝑧𝑧) + 𝑏𝑏

𝑘𝑘

𝑏𝑏𝑏𝑏
.� (18)

2.3.4.  Particle Backscattering Model Tuning

Having derived 𝐴𝐴 𝐴𝐴
∗

1
(𝜏𝜏) and 𝐴𝐴 𝐴𝐴

∗

2
(𝜏𝜏) , the two key parameters ω2 and 𝐴𝐴 𝐴𝐴

∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 required to solve Equations 9–18 were 

derived by fitting Equation 13 (for conditions when both communities exist) or Equation 14 (for conditions when 
community 1 dominates) to profiles of 𝐴𝐴 𝐴𝐴

∗

𝑏𝑏𝑏𝑏
 and τ (Python function minimize, using Levenberg-Marquardt method). 

For the backscattering profiles (with N > 6) we only selected data <500 m depth. The initial guesses for 𝐴𝐴 𝐴𝐴
∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 

and ω2 were set to 0.2 and 0.3 respectively, and both were constrained to a lower limit of 0.01 and for 𝐴𝐴 𝐴𝐴
∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 an 

upper limit of 0.95 (i.e., 𝐴𝐴 𝐴𝐴
∗

𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 was constrained to not contribute more than 95% of bbp,s). As with previous fits, we 

used a bootstrap (1,000 iterations) method, with median parameters (with 2.5% and 97.5% confidence intervals) 
extracted from each profile bootstrap.



Journal of Geophysical Research: Oceans

BREWIN ET AL.

10.1029/2021JC018195

8 of 20

Three examples of model fits to chlorophyll-a and particle backscattering profiles from the BGC-Argo float, 
one for a well-mixed condition (where Zm > Zp) and two for stratified conditions (where Zm < Zp), are provided 
in Figure 2, and a sensitivity analysis of these model fits (varying model parameters and input) on the same 
three profiles is provided in Supplementary Figure S4. As in the chlorophyll-a model, we acknowledge that this 
method of model tuning may need to be adapted for different BGC-Argo floats and datasets, and for different 

Figure 2.  Examples of model fits to chlorophyll-a (B) and particle backscattering (bbp) profiles from the biogeochemical 
Argo float; (a)–(d) are from a profile collected on the 4th of January 2017, where the water column is well mixed (Zm > Zp); 
(e)–(f) are from a profile collected on the 14th January 2016, in stratified conditions (Zm < Zp); (i)–(j) are from a profile 
collected on the 13th July 2016 in stratified conditions (Zm < Zp). The dimensionless quantity τ represents the optical depth 
(geometric depth multiplied by diffuse attenuation coefficient), the line colors represent the community (red = community 1, 
blue = community 2, white = sum of components) and the background shading represents either the part of the water column 
seen by a passive ocean-color satellite (light blue shading), or that below the eye of the satellite (darker blue shading).
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regions of interest. An example of Jupyter Notebook Python Script, processing this BGC-Argo float and tuning 
the models (without bootstrapping) is provided on this GitHub page (https://github.com/rjbrewin/Two-commu-
nity-phyto-model) and details of how to run it without having to install software are provided as Supplementary 
Information to this manuscript.

2.4.  Phenology Algorithm

Consistent with studies on phytoplankton phenology in the Red Sea using satellite remote-sensing of ocean color 
and BGC-Argo floats (Gittings, Raitsos, et al., 2019; Racault et al., 2015), we used a threshold method, based on 
cumulative sums of anomalies, to estimate the following phytoplankton phenology metrics of an annual time-se-
ries: bloom initiation, termination, and duration. Firstly, a time-series of column integrated chlorophyll-a from 
the BGC-Argo float (either from community 1 or 2) was linearly interpolated to a daily time step. The time-series 
was then smoothed with a 15-day filter (Savitzky-Golay filter, using Python function scipy.signal.savgol_filter 
with the nearest mode). Next, and following Gittings, Raitsos, et al. (2019), we defined the threshold criterion as 
the median of the time series plus 5%, which was subtracted from the time-series to derive a time-series of anom-
alies. The cumulative sums of anomalies were then calculated, followed by the gradient in the cumulative sums, 
used to identify the timing of the transition between increasing and decreasing trends. The initiation of the bloom 
was identified as the period when the gradient of the time series first changed the sign to positive and remained 
positive for more than 15 days. Similarly, the termination of the bloom was identified when the gradient of the 
time series changed the sign to negative, following the initiation of the bloom, and remained negative for more 
than 15 days. Duration of the bloom was calculated as the time between initiation and termination. The annual 
period selected for the analysis varied between community 1 (October 2015 to October 2016) and community 
2 (January 2016 to January 2017), to account for the fact that the peak timing of the communities (maximum 
chlorophyll-a of each time series) was around 5 months apart, and to ensure the time-series started during the 
lowest chlorophyll-a period.

3.  Results and Discussion
3.1.  Seasonality in Physical and Biological Variables in the Northern Red Sea

Contour plots of all variables in the upper 200  m over the duration of the BGC-Argo float (Supplementary 
Figure  S5) illustrate a distinct seasonality in the northern Red Sea, consistent with previous studies (Acker 
et al., 2008; Gittings et al., 2018; Kheireddine et al., 2020; Papadopoulos et al., 2015; Raitsos et al., 2013; Sofi-
anos & Johns, 2003; Yao et al., 2014). The winter period (November-March) is characterized by deep vertical 
mixing, with lower average temperatures and higher salinity, and with chlorophyll-a and bbp more uniformly 
distributed. In the summer (May-September), the water column becomes more stratified (higher Brunt–Väisälä 
buoyancy frequency index), light is more intense and penetrates further into the water column, and the chloro-
phyll-a profile is characterized by the presence of a deep-chlorophyll-a maximum at around 100 m depth.

3.2.  Chlorophyll-a Model Results

In general, the model captures the patterns and dynamics in the data, with higher and more uniformly distributed 
chlorophyll-a in winter, and a deep-chlorophyll-a maximum in summer (Figures 3a and 3b). The model has a 
slight tendency to underestimate chlorophyll-a in deeper parts of the water column (Figure 3c, mean difference 
at 6.9 optical depths = −0.02 mg m −3), and slightly overestimates above and below the peak of the deep-chloro-
phyll-a maximum during summer months (Figure 3c, mean difference at the deep-chlorophyll-a maximum from 
June to August = 0.015 mg m −3). The model is not designed to capture rarer and more complex profiles (e.g., 
double deep-chlorophyll-a maximum, see Figure 3c February 2017). It is worth noting that during that period the 
float was close to the Ras Banas peninsula and coral reefs of Egypt (Figure 1), which may explain the complexity 
of some of the chlorophyll-a profiles. Model parameters vary over the time-series (see Supplementary Figure S6), 
reflecting seasonal changes in the shape of the chlorophyll-a profile.

Figures 3d and 3e show the model output from the two communities of phytoplankton. Community 1 is seen 
to dominate during the winter period (November to April), whereas community 2 is more prominent during 
the summer, and with the exception of a few sporadic cases, is absent in the winter months. Figure 4 shows the 

https://github.com/rjbrewin/Two-community-phyto-model
https://github.com/rjbrewin/Two-community-phyto-model
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column-integrated chlorophyll-a concentrations (down to an optical depth of 6.9, which is 1.5 times the euphotic 
depth, a boundary used in other studies (e.g., Brewin et al., 2017; Uitz et al., 2006)). Overall, the model is in good 
agreement with the data for total chlorophyll-a (Figure 4a). The integrated chlorophyll-a concentrations for the 
two communities reveal a contrasting pattern, with community 1 blooming in the winter (initiating in November, 
terminating in April, with a duration of around 5 months) and community 2 dominating in the summer (initiat-
ing in April, terminating in October, with a duration of around 6 months). Figures 4c and 4d show the average 
Brunt–Väisälä buoyancy frequency index in the top 6.9 optical depths (used as an index of stratification), and the 

Figure 3.  Contour plots of the chlorophyll-a concentration over the duration of the Biogeochemical Argo (BGC-Argo) float in the top 200 m of the water column. (a) 
Total chlorophyll-a data from the BGC-Argo float. (b) Model output of total chlorophyll-a from tuning model to the data. (c) Differences in total chlorophyll-a between 
model output and data. (d) Model output of chlorophyll-a for community 1. (e) Model output of chlorophyll-a for community 2.
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Figure 4.  (a) Column integrated total chlorophyll-a concentrations (down to an optical depth of 6.9) from the data and model over the duration of the Biogeochemical 
Argo (BGC-Argo) float. (b) Column integrated chlorophyll-a concentrations for the two communities of phytoplankton over the duration of the BGC-Argo float 
(smoothed data were computed using Python function scipy.signal.medfilt, with a kernel size of 11 and nearest mode). Light red (blue) shaded background represents 
the phenology metrics for community 1 (community 2), representing initiation, duration and termination. (c) The average Brunt–Väisälä buoyancy frequency index in 
the top 6.9 optical depths over the duration of the BGC-Argo float. (d) Mixed-layer depth (Zm) over the duration of the BGC-Argo float.
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mixed-layer depth respectively. The integrated chlorophyll-a concentration in community 1 is inversely correlated 
with the average Brunt–Väisälä buoyancy frequency index (r = −0.82, p < 0.001), and community 2 is weakly 
positively correlated (r = 0.46, p < 0.001).

The differences in the seasonal progression of the two communities can be explained conceptually from a 
bottom-up (resource allocation) perspective. Community 1, present in the surface ocean, is likely not limited by 
light (the northern Red Sea is a tropical ocean with relatively high surface light all year round) but is limited by 
nutrients (characteristic of surface waters in many tropical regions). Community 2, on the other hand, is present 
in waters with higher nutrient concentrations (nearer the nutricline), but being far deeper in the water column, 
is likely limited by light availability. During winter, enhanced convective mixing (as illustrated by a deepening 
of the mixed layer, Figure 4d) pumps nutrients from depth into the surface mixed-layer and ignites a bloom in 
community 1. This bloom reduces light availability below the mixed-layer, limiting the growth of community 2. 
Alternatively, in summer, enhanced stratification promotes a shallow mixed-layer, which reduces the availability 
of nutrients for community 1, limiting their growth. Higher surface light in summer, coupled with less shading of 
light by community 1 (owing to low concentrations) enhances light availability at depth and promotes the growth 
of community 2. This explanation provides a simple, conceptual, explanation for the patterns observed in the 
data. However, it neglects effects of top-down control on the two communities (e.g., zooplankton grazing and/or 
viral lysis), changes in photoacclimation, aeolian nutrient input, nitrogen fixation, and does not consider shifts in 
taxonomic composition within the communities.

3.3.  Particle Backscattering Model Results

The model was found to capture seasonal variations in bbp (Figures 5a–5c). The model fields are slightly smoother 
than the data (Figures 5a–5c), and not surprisingly considering the design of the model, it fails to capture occa-
sional pulses of bbp at depth during the winter months and spikes (which were removed from data in Figure 5a 
using a median filter). A deep-particle maximum seems less of a prominent feature in the bbp data fields during 
the summer months, in contrast to the deep chlorophyll-a maximum (comparison between Figures  3 and 5), 
though perhaps a reflection of a higher presence of community 1 in the surface bbp fields. The patterns in the 
two communities of phytoplankton (Figures  5d and  5e) are broadly consistent with the chlorophyll-a model 
(Figures 3d and 3e), but the contribution to bbp of community 1 is higher, and community 2 lower, as reflected 
by differences in the chl-specific backscattering coefficients 𝐴𝐴 (𝑏𝑏

𝐵𝐵

𝑏𝑏𝑏𝑏
) of the two communities (see Supplementary 

Figure S6). This is broadly consistent with depth-dependent variations in the carbon-to-chlorophyll-a ratio of 
phytoplankton (Jackson et al., 2017; Sathyendranath et al., 2020). The backscattering coefficient has been used 
as a linear proxy for phytoplankton carbon (Behrenfeld et al., 2005; Bellacicco et al., 2018; Graff et al., 2015; 
Martínez-Vicente et al., 2013) and 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝑏𝑏𝑏𝑏
 was found to be lower for community 2 (mean of 0.001 ± 0.0002) than 

community 1 (mean of 0.007 ± 0.001), most notably during summer months (see Supplementary Figure S6). 
This would suggest a lower carbon-to-chlorophyll-a ratio for community 2, which is consistent with a theoretical 
understanding of low-light adapted phytoplankton (Geider et al., 1998). If 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝑏𝑏𝑏𝑏
 reflects the photoacclimation status 

of the phytoplankton, we would expect a positive relationship with light availability, and in fact, 𝐴𝐴 𝐴𝐴
𝐵𝐵

𝑏𝑏𝑏𝑏𝑏1
 was found 

to be positively correlated with the average light in the mixed-layer (Figure S7, r = 0.66, p < 0.001, statistics 
performed following log10-transformation). On the other hand, 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝑏𝑏𝑏𝑏𝑏2
 did not vary with light below the mixed layer 

and above the euphotic depth (Figure S7, r = 0.10, p = 0.270, statistics performed following log10-transforma-
tion). These results suggest the model maybe useful for capturing variations in the photoacclimation status of the 
phytoplankton within community 1. This may even offer a route to deriving further information on the physiol-
ogy of the phytoplankton in community 1, such as their photosynthetic rates, through models that link primary 
production and photoacclimation (e.g., Sathyendranath et al., 2020; Westberry et al., 2008). However, changes in 

𝐴𝐴 𝐴𝐴
𝐵𝐵

𝑏𝑏𝑏𝑏
 may also reflect shifts in the size or taxonomic composition of phytoplankton. For example, larger cells (e.g., 

diatoms) have been observed in waters with lower chl-specific backscattering than those dominated by smaller 
phytoplankton (Brewin et al., 2012; Cetinić et al., 2015). In fact, seasonal shifts in the chl-specific backscattering 
coefficient for community 1 (see Supplementary Figure S6) are consistent with satellite and in situ observations 
that show the presence of larger cells (likely prevalent in waters with low 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝑏𝑏𝑏𝑏
 ) during the winter bloom period and 

the presence of smaller phytoplankton (likely prevalent in waters with higher 𝐴𝐴 𝐴𝐴
𝐵𝐵

𝑏𝑏𝑏𝑏
 ) during the summer in the north-

ern Red Sea (Brewin et al., 2015; Gittings, Brewin, et al., 2019; Kheireddine et al., 2017; Mackey et al., 2007). 
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Figure 5.  Contour plots of the bbp over the duration of the Biogeochemical Argo (BGC-Argo) float in the top 200 m of the water column. (a) Total bbp from the 
BGC-Argo float. Each profile was smoothed with a median filter (Python function scipy.signal.medfilt, with a kernel size of 11) to remove spikes in the data. (b) Model 
output of total bbp from tuning model to the data. (c) Differences in total bbp between model output and data (i.e., (b) − (a)). (d) Model output of bbp for community 1. 
(e) Model output of bbp for community 2. (f) The background backscattering coefficient 𝐴𝐴 (𝑏𝑏

𝑘𝑘

𝑏𝑏𝑏𝑏
) assumed to be associated with non-algal particles in the region.
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Differences in the chl-specific backscattering coefficient for community 1 and community 2 (Supplementary 
Figure S7) may also reflect depth variations in the size or taxonomic composition of phytoplankton.

Using a large dataset of scattering and absorption measurements collected in the Red Sea, Kheireddine 
et al. (2021) recently demonstrated that the background backscattering coefficient 𝐴𝐴 (𝑏𝑏

𝑘𝑘

𝑏𝑏𝑏𝑏
) is likely dominated by 

non-algal particles. Our values of 𝐴𝐴 𝐴𝐴
𝑘𝑘

𝑏𝑏𝑏𝑏
 were found to vary over the season, with a median value of 0.00035 m −1 

(see Supplementary Figure S6), consistent with the ranges reported in Kheireddine et al. (2021) and globally by 
Bellacicco et al. (2019) at 700 nm. Higher 𝐴𝐴 𝐴𝐴

𝑘𝑘

𝑏𝑏𝑏𝑏
 values were found during the winter period (Figure 5 and Supple-

mentary Figure S6), possibly reflecting seasonal variation in the concentrations of non-algal particles (Bellacicco 
et al., 2019, 2020). Nonetheless, the contribution of 𝐴𝐴 𝐴𝐴

𝑘𝑘

𝑏𝑏𝑏𝑏
 to total bbp was higher in the oligotrophic summer months, 

consistent with an increasing contribution of 𝐴𝐴 𝐴𝐴
𝑘𝑘

𝑏𝑏𝑏𝑏
 to bbp in oligotrophic conditions, as observed in other regions 

(Brewin et al., 2012; Zhang et al., 2020).

3.4.  Limitations and Applications

The two-step process used to tune the model to the BGC-Argo float in the northern Red Sea worked well 
(Figures 3–5), but may need refining for other ocean regions. Other methods for tuning model parameters could 
be explored in the future, for example, using different minimizations schemes; refining the conditions set for the 
two step tuning; exploring single fit solutions without explicate thresholds; exploring different chi-square func-
tions (e.g., relative minimization rather than absolute); weighing the minimization with knowledge of data uncer-
tainties; and exploring the use of other information on the BGC-Argo float (e.g., floats with nutrient sensors) to 
aid model tuning.

Additional care and attention will need to be placed when fitting these models in regions with complex three-di-
mensional dynamics, for example, in the presence of processes like eddy-driven subduction (Llort et al., 2018). 
The BGC-Argo float used here is considered to represent the broad region of interest (northern Red Sea). Whereas 
the float clearly captures the seasonal convective mixing characteristic of the region (Gittings et al., 2018; Papa-
dopoulos et al., 2015), spatial variability within the region is known to exist, for example, through the transporta-
tion of water masses via eddies and surface currents (Gittings, Raitsos, et al., 2019). Such variability may explain 
some of the subtle changes seen over the duration of the float (Figures 1 and 3).

Despite the potential for data collection using autonomous platforms like BGC-Argo, there are challenges to 
ensuring the data is of good quality. Chlorophyll-a on BGC-Argo floats is currently measured through in vivo 
fluorescence and converted using BGC-Argo protocols that among other adjustments, correct for non-photo-
chemical quenching (Roesler et al., 2017; Schmechtig et al., 2014; Xing et al., 2012). Yet, this correction is noto-
riously challenging, and other issues can result in errors in the in vivo fluorescence estimates of chlorophyll-a, 
considering the fluorescence yield can vary considerably between phytoplankton species and within a single 
species under contrasting environmental conditions (Cullen & Lewis, 1995; Kiefer, 1973a, 1973b; Slovacek & 
Bannister, 1973; Strickland, 1968). Whereas some confidence can be gained on the quality of the chlorophyll-a 
from the BGC-Argo float used here, considering values correspond well to high performance liquid chromatogra-
phy (HPLC) pigment observations collected in the region (Kheireddine et al., 2017), and at the surface, to satellite 
estimates of chlorophyll-a (Brewin et al., 2013, 2015; Gittings et al., 2019), one should be cautious of these issues 
when dealing with in vivo fluorescence data. The bbp data from the BGC-Argo float used here are in broad agree-
ment with independent measurements collected in the region (Kheireddine et al., 2020, 2021), but challenges also 
exist in ensuring the quality of bbp data on BGC-Argo floats. For all BGC-Argo data, it is important that rigorous, 
community-assessed protocols are established and routinely updated (Claustre et al., 2020), and that efforts are 
placed on quantifying data uncertainties (Williams et al., 2017).

The model combines two existing empirical functions (sigmoid and Gaussian) commonly used for describing the 
vertical distribution of chlorophyll-a (Mignot et al., 2011; Morel & Berthon, 1989; Platt & Sathyendranath, 1988; 
Uitz et al., 2006). This is not the first time these empirical functions have been combined for this purpose (see 
Carranza et al., 2018). However, rather than letting these functions fit the data freely, additional constraints were 
included to let the two functions represent two different communities of phytoplankton. A limitation to intro-
ducing these constraints is that the model has less freedom to fit the data. The method presented here was not 
developed with the objective of improving the fitting quality, but rather to build on existing functions (sigmoid 
and Gaussian) to track the surface and sub-surface populations of phytoplankton independently of each other. 



Journal of Geophysical Research: Oceans

BREWIN ET AL.

10.1029/2021JC018195

15 of 20

The advantage of introducing these constraints is that we introduce a conceptual element to the fitting. It brings 
to the table an additional level of interpretation, of what phytoplankton the satellite can see (i.e., community 1 
rather than community 2), and of vertical variations in phytoplankton community structure (Lange et al., 2018).

This conceptual approach can be used to investigate in greater detail, how surface phytoplankton phenology 
metrics derived from satellite observations are representative of column-integrated phytoplankton phenology, 
building on the work of Gittings, Raitsos, et al. (2019). Separating the communities of phytoplankton within and 
below the mixed layer has the potential for improving our understanding of biogeochemical cycles in the ocean. 
For example, let us take the case of a permanently stratified region. Community 1 resides principally in the 
mixed-layer, at the interface between the ocean and the atmosphere. Consequently, the fluxes of carbon, driven 
by the productivity of community 1, will be important in controlling exchanges of inorganic carbon between the 
ocean and the atmosphere. Community 2, situated below the mixed-layer, likely supported by new nutrients, may 
contribute significantly to new production (Bouman et al., 2020). Trophic pathways within the marine ecosystem 
may vary between the two communities of phytoplankton, with implications for secondary production, trophic 
energy transfer, and even fisheries (Gittings et  al.,  2021). How these two communities of phytoplankton are 
changing has relevance to both ocean carbon and ocean health.

Another potential application of the model would be for extrapolating ship-based observations (e.g., photosyn-
thetic rates), collected at discrete depths (e.g., within the mixed layer and at the deep-chlorophyll-a maximum) 
to the full water column. For example, Tilstone et al. (2017) conducted photosynthesis-irradiance experiments 
throughout the tropical Atlantic at two discrete depths (surface and at the deep-chlorophyll-a maximum). Marry-
ing these observations with the model, and profiles of bbp and chlorophyll-a, could lead to the development of new 
models of primary production, that explicitly separate the contribution of the two communities of phytoplankton. 
The conceptual model presented here also suggests that an excellent strategy for sampling the water column for 
hard-to-measure properties, such as physiological rate parameters, would indeed be to sample the mixed layer and 
the deep chlorophyll-a maximum, as a minimum requirement.

An inherent difficulty in studying oceanic biogeography, as compared with terrestrial biogeography, is the prob-
lem of observing 3D distributions that vary in both space and time (IOCCG, 2009). Although efforts have focused 
on mapping biogeography in deeper parts of the water column, such as the mesopelagic (Proud et al., 2017; 
Reygondeau et al., 2018; Sutton et al., 2017), the mapping of oceanic biogeography in the epipelagic zone has 
been driven primarily (though not exclusively) by surface measurements collected by satellite data (IOCCG, 2009; 
Longhurst, 2007; Reygondeau et al., 2013). Depth variations in biogeography within the epipelagic zone have not 
been studied in great detail. But now, with the advent of ocean robotic platforms such as BGC-Argo floats, we are 
in a better position to do this and simple conceptual models like that presented here could be useful for mapping 
the habitats of the two communities of phytoplankton in space (3D) and time.

An additional benefit of the approach taken here is that it becomes feasible to reconcile vertical variations in 
two independent proxies of phytoplankton biomass, chlorophyll-a and bbp. Recently, Cornec et al. (2021) used 
a global database of chlorophyll-a and bbp profiles, collected using BGC-Argo floats, to describe spatial and 
temporal patterns in two types of deep chlorophyll-a maximum profiles in the world's ocean, a carbon biomass 
maximum (deep biomass maximum), and a chlorophyll-a maximum developed as a consequence of photoac-
climation processes (deep photoacclimation maximum). The conceptual approach used here may offer further 
insight into the processes that control these types of profiles. For example, 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝑏𝑏𝑏𝑏𝑏2
 was found to be relatively stable 

over the time-series of the BGC-Argo float studied here (Supplementary Figure S6) and did not vary with light 
availability (Supplementary Figure S7). However, 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝑏𝑏𝑏𝑏𝑏1
 was highly variable (Supplementary Figure S6) and posi-

tively correlated with light availability (Supplementary Figure S7). It maybe that shifts between the two types 
of profiles are primarily a consequence of photoacclimation (and/or shifts in taxonomic structure) occurring in 
community 1, rather than any change in acclimation (and/or shifts in taxonomic structure) in community 2 at the 
deep chlorophyll-a maximum.

A major driver for developing an approach like that presented here, that describes the vertical distribution of chlo-
rophyll-a and bbp, has been to bridge the contrasting temporal and spatial scales of surface satellite observations 
(high temporal frequency and spatial coverage) and subsurface in situ observations (low temporal frequency and 
spatial coverage), to produce four-dimensional fields of chlorophyll-a and bbp. The approach presented here is 
well suited for such extrapolations, with model functions scaled to three ocean-color products routinely provided 
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by space agencies (bbp,s, Bs (ratio of the two being 𝐴𝐴 𝐴𝐴
𝐵𝐵

𝑏𝑏𝑏𝑏𝑏1
 ), and Kd). Other inputs, such as the mixed-layer depth maps 

(Zm), can be acquired from models or observations. The parameters not directly available (𝐴𝐴 𝐴𝐴
∗

2,𝑚𝑚
 , τ2, σ, and 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝑏𝑏𝑏𝑏𝑏2
 ) 

can be mapped by fitting our functions to in situ observations, then relating these parameters to some property of 
the surface ocean (e.g., trophic levels), or physical observations (e.g., the larger Argo array), or to time and space 
(e.g., biogeochemical provinces, seasons), such that they can be mapped over large scales, and used with the other 
inputs and parameters to extrapolate the surface fields seen from a satellite down through the epipelagic zone. 
As we move into an era of ocean robotic platforms, with an expanding number of in situ observations, model 
parameters can be mapped with a higher degree of confidence, and we can continue to improve our capability to 
monitor ocean biogeochemical cycles (Brewin et al., 2021; Claustre et al., 2021).

3.5.  On the Two Communities of Phytoplankton

The concept of partitioning a profile of phytoplankton biomass into two communities stemmed from the consid-
eration of vertical variability in environmental growth conditions. At the surface ocean, there exists a turbulent 
mixed layer, exposed to a fluctuating light and nutrient environment. Below this surface layer, and under condi-
tions of high stratification, there exists a stable (low turbulence), low-light environment, replete in nutrients and 
suitable for phytoplankton growth. The assumption we make is that these contrasting growth environments will 
promote different communities of phytoplankton. In the Red Sea, this assumption is supported by HPLC pigment 
data, showing vertical gradients in pigment composition (Kheireddine et al., 2017), flow cytometry, which has 
revealed vertical changes in picophytoplankton composition and abundance (Al-Otaibi et al., 2020; Veldhuis & 
Kraay, 1993), and molecular methods, that have revealed vertical variations in both the eukaryotic and prokary-
otic plankton communities and ecotypes (Fuller et al., 2005; Pearman et al., 2016, 2017; Shibl et al., 2014, 2016). 
Yet, despite increasing scientific interest in the Red Sea (Hoteit et al., 2021), it still remains a relatively under-ex-
plored ecosystem, and more research is required to determine the exact composition of these phytoplankton 
communities identified and their seasonality.

We acknowledge our partitioning of phytoplankton into two communities is a simplification of their diversity. 
There will be environmental variations within each of these habitats that will promote shifts in the size and 
taxonomic structure of phytoplankton. Furthermore, as one transition from a stratified profile with the presence 
of both communities, to a situation where only one community exists, for example, due to the sudden deepening 
of the mixed layer (e.g., from sporadic events like the passage of a storm), phytoplankton from community 2 
will inevitably be mixed into community 1. In other words, there will inevitably be exchanges between the two 
communities of phytoplankton. The time-scales of competitive exclusion will dictate the point at which the natu-
ral phytoplankton composition will resume.

The application of our model to data in the northern Red Sea has provided some interesting insights into how a 
tropical ocean may change. Studies have suggested that climate change will enhance ocean stratification in tropi-
cal seas, reducing phytoplankton biomass (Doney, 2006). Our results in the northern Red Sea suggest community 
1 is inversely correlated with stratification and community 2 is positively correlated (Figure 4). This finding 
raises the possibility that we might instead see a restructuring of phytoplankton biomass within the water column, 
favoring community 2. If that is the case, what impact might there be on the marine ecosystem? The model is 
designed to help address such questions.

4.  Summary
Using two established empirical functions (sigmoid and Gaussian) for describing the vertical distribution of 
phytoplankton biomass, we developed an approach to partition a vertical chlorophyll-a profile into two commu-
nities of phytoplankton: one present in the surface mixed-layer of the ocean (community 1), and the other, below 
the mixed-layer, in a stable, low-light environment (community 2). The approach is tuned to a time-series of chlo-
rophyll-a profiles collected by a BGC-Argo float in the northern Red Sea and extended to reproduce profiles of 
particle backscattering, by deriving the chlorophyll-specific backscattering coefficients of the two communities 
and a background coefficient related to non-algal particles. Analysis of the time-series reveals contrasting phenol-
ogy metrics of the two communities, with community 1 dominating in winter and 2 in summer. We observed 
an inverse relationship between community 1 and stratification and a positive relationship for community 2. 
The chlorophyll-specific backscattering coefficient for community 2 was found to be relatively stable over the 
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time-series, but that of community 1, highly variable, suggesting seasonal changes in photoacclimation and/or 
taxonomic composition within community 1. The approach would be useful for combining satellite and ocean 
robotic data, mapping vertical epipelagic biogeography, and for understanding the impact of climate change on 
phytoplankton biomass, with consequences for ocean biogeochemical cycles.

Data Availability Statement
These data were collected and made freely available by the International Argo Program and the national programs 
that contribute to it (https://argo.ucsd.edu, https://www.ocean-ops.org). The Argo Program is part of the Global 
Ocean Observing System. All data and code used in the paper are provided openly on a GitHub page (https://
github.com/rjbrewin/Two-community-phyto-model). This includes an example Jupyter Notebook Python Script, 
processing this BGC-Argo float and tuning the models. Details of how to run it without having to install software 
are provided as Supplementary Material to this manuscript.
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