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1   |   INTRODUCTION

Brain oscillations are produced by coordinated electro-
physiological activity of large groups of neurons and 
can be studied with electroencephalography (EEG) and 

magnetoencephalography (MEG) (Buzsáki & Draguhn, 
2004). The German neurologist Berger, when first record-
ing the electroencephalogram on the human scalp, found 
rhythmic voltage fluctuations at about 10 Hz on a person’s 
posterior scalp when the eyes were closed, which changed 

Received: 6 May 2021  |  Revised: 19 October 2021  |  Accepted: 6 December 2021

DOI: 10.1111/psyp.13999  

O R I G I N A L  A R T I C L E

Are alpha and beta oscillations spatially dissociated over 
the cortex in context-driven spoken-word production?

Yang Cao1   |   Robert Oostenveld2,3   |   Phillip M. Alday4   |   Vitória Piai1,5

1Donders Centre for Cognition, 
Radboud University, Nijmegen, The 
Netherlands
2Donders Centre for Cognitive 
Neuroimaging, Radboud University, 
Nijmegen, The Netherlands
3NatMEG, Karolinska Institutet, 
Stockholm, Sweden
4Max-Planck-Institute for 
Psycholinguistics, Nijmegen, The 
Netherlands
5Donders Centre for Medical 
Neuroscience, Department of Medical 
Psychology, Radboud University 
Medical Center, Nijmegen, The 
Netherlands

Correspondence
Yang Cao, Donders Institute for Brain, 
Cognition, and Behaviour, Donders 
Centre for Cognition, Radboud 
University, Montessorilaan 3, 6525 HR 
Nijmegen, The Netherlands.
Email: yang.cao@donders.ru.nl

Funding information
This research was supported by China 
Scholarship Council (CSC) scholarship 
(No.202007720076 to Y.C.) and grants 
from the Netherlands Organization for 
Scientific Research (446-13-009 to V.P. 
and 400-09-138 to Ardi Roelofs)

Abstract
Decreases in oscillatory alpha- and beta-band power have been consistently 
found in spoken-word production. These have been linked to both motor prepa-
ration and conceptual-lexical retrieval processes. However, the observed power 
decreases have a broad frequency range that spans two “classic” (sensorimotor) 
bands: alpha and beta. It remains unclear whether alpha- and beta-band power 
decreases contribute independently when a spoken word is planned. Using a re-
analysis of existing magnetoencephalography data, we probed whether the ef-
fects in alpha and beta bands are spatially distinct. Participants read a sentence 
that was either constraining or non-constraining toward the final word, which 
was presented as a picture. In separate blocks participants had to name the pic-
ture or score its predictability via button press. Irregular-resampling auto-spectral 
analysis (IRASA) was used to isolate the oscillatory activity in the alpha and beta 
bands from the background 1-over-f spectrum. The sources of alpha- and beta-
band oscillations were localized based on the participants’ individualized peak 
frequencies. For both tasks, alpha- and beta-power decreases overlapped in left 
posterior temporal and inferior parietal cortex, regions that have previously been 
associated with conceptual and lexical processes. The spatial distributions of the 
alpha and beta power effects were spatially similar in these regions to the extent 
we could assess it. By contrast, for left frontal regions, the spatial distributions 
differed between alpha and beta effects. Our results suggest that for conceptual-
lexical retrieval, alpha and beta oscillations do not dissociate spatially and, thus, 
are distinct from the classical sensorimotor alpha and beta oscillations.
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into fluctuations of higher frequency when the eyes were 
open. In 1929, he reported these findings using the terms 
“alpha” and “beta” waves (Karakaş & Barry, 2017). Later, 
two other components were found to fluctuate in the same 
frequency range of 7–13  Hz: the mu rhythm in motor 
areas (Pfurtscheller et al., 1997) and the tau rhythm in the 
auditory temporal lobe (Lehtelä et al., 1997; Niedermeyer, 
1993). Today, the term “alpha” is typically used to indicate 
the electrophysiological activity in the 8–12 Hz range, and 
“beta” in the 13–30 Hz range.

Neural oscillations have been argued to provide an av-
enue to understand how general neuronal computational 
principles support language (Friederici & Singer, 2015; 
Piai & Zheng, 2019). In other cognitive domains, differ-
ent frequency bands have been associated with specific 
functions, such as power increases in the theta (4–7 Hz) 
and decreases in the alpha and beta bands with successful 
memory encoding and retrieval (Hanslmayr et al., 2012; 
Nyhus & Curran, 2010), and alpha and beta power de-
creases with motor preparation and execution (Cheyne, 
2013). However, it remains unclear how the different fre-
quency bands relate to specific processes employed in lan-
guage processing.

When producing words, speakers go from having a 
concept they want to convey, to translating it into a ver-
bal message, and finally into motor commands (Dell 
et al., 1997; Levelt et al., 1999). These steps are achieved 
through both memory (i.e., retrieval of conceptual, lexi-
cal, and phonological information from long-term mem-
ory) and motor processes (i.e., preparation and execution 
of an articulatory program). Studies have suggested a 
functional relationship between neural oscillations in the 
alpha and beta bands and language production. Alpha- 
and beta-band power decreases were initially linked to 
the motor cortex (Crone & Hao, 2002; Salmelin & Sams, 
2002; Salmelin et al., 2000), but later studies indicated 
they could also index word-retrieval processes (Piai et al., 
2014, 2015, 2020). However, these past findings comprise 
two “classical bands” of (sensorimotor) rhythms, alpha 
and beta, with possibly distinct roles in human cognition.

The alpha and beta rhythms are adjacent in the fre-
quency spectrum and have often been found hand in 
hand in the motor domain over sensorimotor regions 
(e.g., Jurkiewicz et al., 2006; De Lange et al., 2008), in the 
memory domain (for a review, see Hanslmayr et al., 2012), 
and in the language domain (Piai et al., 2014, 2015, 2017, 
2018; Wang et al., 2012, 2017). In the motor domain, the 
two bands may show partial overlap in spatial distribu-
tion (Szurhaj et al., 2003; Yuan et al., 2010), and tempo-
rally correlated power envelopes (De Lange et al., 2008; 
Tiihonen et al., 1989, see also Sederberg et al., 2003 for 
a high degree of overlap between sites in the memory 
domain). However, other studies in the motor domain 

have demonstrated that alpha and beta have different fea-
tures. For example, beta oscillations, and to a lesser extent 
alpha, are coherent with the electromyogram of muscles 
(Brown, 2000; Mima & Hallett, 1999) and somatotopically 
organized in an effector-specific way (Crone et al., 1998; 
Salmelin et al., 1995). Recent studies have further sug-
gested that sensorimotor alpha and beta oscillations have 
both anatomical and functional specificities. For instance, 
a recent study using intracranial EEG recordings indicated 
that alpha and beta have different anatomical distributions 
and travel along opposite directions across the sensorimo-
tor cortex (Stolk et al., 2019). Here, alpha was proposed to 
support the disengagement of the task-irrelevant somato-
sensory cortical regions ipsilateral to the selected arm. By 
contrast, beta was argued to mediate the disinhibition of 
neuronal populations involved in the computations of 
movement parameters of the motor cortex contralateral to 
the selected arm (Brinkman et al., 2014; Stolk et al., 2019). 
Thus, alpha and beta power decreases support movement 
with different functional mechanisms (Brinkman et al., 
2014; Stolk et al., 2019), and this notion has been sup-
ported by causal evidence using transcranial alternating 
current stimulation (Brinkman et al., 2016; Wach et al., 
2013). Importantly, however, none of the previous studies 
on oscillations related to retrieval in language production 
have addressed the question whether the power decreases 
within the broad frequency range of the classical alpha 
and beta bands are brought about by a unitary or two dis-
tinct mechanisms.

Piai and colleagues (Klaus et al., 2020; Piai et al., 2015, 
2017, 2020, 2014, 2018; Roos & Piai, 2020) employed a 
picture-naming task in which the pictures that were to be 
named (e.g., “key”) are preceded by either a constraining 
(e.g., “He locked the door with the …”) or non-constraining 
(e.g., “She walked in here with the …”) lead-in sentence 
context. The pictures are named faster following the con-
straining contexts relative to non-constraining ones. Prior 
to picture onset, EEG and MEG alpha- and beta-band 
power decreases have been repeatedly observed for con-
straining relative to non-constraining contexts, accompa-
nying the behavioral facilitation. These power decreases 
localize to the left angular and supramarginal gyri, left 
anterior and posterior temporal cortex (associated with re-
trieval of linguistic information), and to areas associated 
with motor preparation in language production (Piai et al., 
2015; Roos & Piai, 2020). Word planning at the conceptual, 
the lexical, and even the phonological level can already 
start before the picture onset with a constraining context, 
whereas when preceded by a non-constraining context, 
the conceptual, lexical, and phonological information 
can only be retrieved from memory after the presentation 
of the picture. The differences in alpha- and beta-band 
power between the context conditions pre-picture onset 
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were, thus, reasoned to reflect the differential engagement 
of the language production system, and in particular, re-
trieval of information from memory and motor prepara-
tion of a spoken word (Piai et al., 2015).

Despite the robust evidence for alpha- and beta-band 
power decreases supporting word production, it remains 
an open question whether they support a single unitary 
operation or contribute independently when a spoken 
word is produced. To address this question, we reanalysed 
existing MEG data (Piai et al., 2015) to assess the spatial 
specificity of the alpha- and beta-band power decreases 
in context-driven spoken word production. Participants 
overtly named a picture (Naming task) or pressed a but-
ton to score its predictability (Judgment task) after read-
ing the sentences. The two tasks were split over separate 
experimental blocks. The Judgment task, in which par-
ticipants pressed the button with their left hand to indi-
cate whether the picture was expected, served as a control 
task to index attentional effects, conceptual preparation, 
which were similar to the Naming task, and general motor 
preparation. For both tasks, we examined the spatial dis-
tribution of the context effects, that is, the contrasts be-
tween the constraining vs non-constraining conditions, 
in both oscillatory bands separately. According to a re-
cent proposal, certain methodological considerations are 
needed for the analysis of neural oscillations (Donoghue 
et al., 2021). In particular, the presence of oscillations 
should be verified, the oscillatory bands should be vali-
dated, and concurrent non-oscillatory activity should be 
accounted for. To take these considerations into account, 
and better isolate the alpha and beta bands and identify 
the peak frequencies for each individual participant, 
we used an irregular-resampling autospectral analysis 
(IRASA, Wen & Liu, 2016). IRASA allows distinguishing 
rhythmic activity from the concurrent power-spectral 1/f 
modulation. Broadband arrhythmic activity, which has a 

1/f like spectrum, co-occurs with rhythmic activity in the 
brain. Traditional narrowband analyses on pre-specified 
frequency bands (e.g., alpha as 8–12 Hz) do not account 
for this co-occurrence (e.g., Donoghue et al., 2020). As the 
exact slope of the 1/f component differs between individ-
uals, the contribution of 1/f over alpha and beta power 
will also differ, thus confounding alpha- and beta-band re-
sults. The IRASA procedure, which improves the spectral 
precision of oscillatory peak frequencies by controlling 
for effects of task-related modulations in the 1/f spectral 
component (He, 2014), serves to reduce/remove this con-
found, thus providing an estimate of alpha- and beta-band 
power decoupled from interindividual differences in ar-
rhythmic activity. We assessed whether the previously ob-
served power decreases associated with the context effect 
based on narrowband approaches reflect oscillatory activ-
ity. We then source localized the context effects in both 
the Naming and Judgment tasks using individualized 
peaks for alpha and beta, instead of using canonical alpha 
and beta bands. To compare the spatial distribution of 
the source-reconstructed alpha and beta effects in frontal 
and temporo-parietal cortices, we used both correlation 
analyses and the earth mover’s distance (EMD) measure 
(Rubner et al., 2000), which provides a measure of the dis-
tance between two distributions.

2   |   METHOD

Here we reanalyzed the published data of Piai et al. (2015) 
to examine the spatial dissociation of alpha and beta oscil-
lations. In Piai et al., participants read the constraining or 
non-constraining sentence context with the last word of 
the sentence presented as a picture (example, see Figure 1). 
Participants were instructed to perform two tasks in different 
experimental blocks: Picture Naming (i.e., overtly produce the 

F I G U R E  1   An example of trials for the target picture “cow” in the constraining (upper) and non-constraining (lower) conditions. 
Presentation duration of each event in the trial is given below the boxes. The 800 ms black screen before the picture onset marked in red was 
the time window of interest for analysis
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picture’s name) and Picture Judgment (i.e., a left-hand button 
press to indicate whether the picture was expected). The order 
of Naming and Judgment tasks was counterbalanced across 
participants. For each task, each context condition (constrain-
ing/non-constraining) consisted of 84 trials (see Piai et al., 
2015, for details on materials and design). From the 19 partici-
pants of the Piai et al. study, two were rejected due to exces-
sive blinking. Further, for all source-level analyses, data from 
three additional participants were excluded from further anal-
ysis because we did not have structural magnetic resonance 
imaging (MRI) data for those participants, and one additional 
participant was excluded because of having two peaks in the 
alpha range (see Sensor-level analysis below). This left us with 
data from 13 participants for all source-level analyses. Data 
and analysis scripts are available via the Donders Repository.

2.1  |  MEG data analysis

The analyses were performed using FieldTrip version 
20190922 (Oostenveld et al., 2011) in MATLAB R2017a. 
Figure 2 provides an overview of the MEG analysis pipe-
line. The original sampling rate was 1200  Hz and the 
data were down sampled to 600 Hz for computational ef-
ficiency, and then segmented into epochs from 1.4 s pre 
stimulus (i.e., the onset of the second-to-last blank screen) 
to 0.3 s post stimulus. In most cases, a function word (a de-
terminer or a possessive pronoun) preceded the last blank 
screen. As in Piai et al. (2015), we analyzed the 800-ms 
interval (the last black screen) preceding the picture onset 

(Figure 1), during which response planning was reasoned 
to start following the constraining condition. This time 
window of interest is further motivated by prior results of 
time-resolved spectral power estimates in this paradigm 
(see Piai et al., 2014, 2015, 2020; Roos & Piai, 2020).

2.1.1  |  MEG preprocessing

All MEG epochs were visually inspected for artefacts and 
in total 8.4% of the trials were excluded due to artefacts. 
Excessively noisy sensors were also removed. Artefacts- 
and error-free data comprised on average of 75.6 and 
73.2 trials for the naming task and 79.4 and 79.6 for the 
judgment task, respectively, for the constraining and non-
constraining contexts.

2.1.2  |  Sensor-level analysis

The sensor-level analysis pipeline is shown on the left-
hand side of Figure 2.

Spectral feature extraction on sensors
Rather than using predefined, canonical frequency bands 
that may not accurately capture the neural phenomenon 
of interest in each individual (Bazanova & Vernon, 2014; 
Haegens et al., 2014), an adaptive three-step approach was 
employed to define the frequencies of the alpha and beta 
peaks for each individual participant.

F I G U R E  2   Data processing flowchart. The left-hand side indicates the sensor-level analyses and the right-hand side the source-level 
analyses. The level of processing (i.e., participant or group level) is indicated in the top left corner of the boxes, with the group-level analysis 
marked in brown. The connection between different analysis steps in the figure and in the text is indicated by A1–A8. Con, constraining; 
CSD, cross-spectral density; freq, frequency; pow, power; ROI, region of interest; Uncon, non-constraining
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First, we selected the representative sensors that yielded 
a large context effect on the group level. For that, first, for 
the two tasks separately, power spectra were estimated in 
the 800-ms time window between 1 and 50 Hz for each sen-
sor, condition, and participant, by applying the Fast Fourier 
Transform (FFT) on data tapered with a Hanning window 
(FieldTrip parameters “mtmfft” and “hanning”). Then, the 
significance of the differences in power between constrain-
ing and non-constraining context conditions was tested on 
the sensor level using non-parametric cluster-based permu-
tation tests (Maris & Oostenveld, 2007). A single t value and 
its corresponding p value were calculated for each sensor-
frequency bin pair between context conditions with a paired 
t-test. The sensors and frequency bins with paired t-test con-
text effects exceeding a threshold (p < .05, two-tailed) were 
identified for the subsequent cluster test. The cluster-level 
statistic was defined as the sum of t values from the neigh-
boring above-threshold sensors and frequency bins. Then, 
on the basis of 1000 random permutations of the two con-
text conditions followed by the same clustering procedure, 
a distribution was created of the 1000  largest cluster-level 
statistics to test the null hypothesis that power in the two 
context conditions came from the same probability distribu-
tion. Given an alpha-level of 5% for the two-sided test, the 
null hypothesis was rejected if the empirical cluster-level 

statistic fell in the highest or lowest corresponding percentile 
of the permutation distribution (i.e., 2.5th percentile). The 
outcome of these (up to and including) steps are indicated 
as A1 in orange in Figure 2. To foreshadow the results, the 
cluster-based permutation tests revealed a significant dif-
ference between the two context conditions for each task, 
and the differences were most pronounced over the left 
temporo-parietal sensors. Subsequently, for the Naming 
and Judgment tasks separately, we selected the sensors that 
yielded a large context effect as the representative sensors 
in the following manner. We selected the sensors associated 
with the largest observed cluster whose averaged t-values be-
tween 15–25 Hz were more extreme than ±2 (see Figure 3a). 
These representative sensors were only used to help identify 
individual participants’ alpha and beta frequency peaks, on 
which subsequent analyses were performed.

For each participant, and for each task separately, we 
used IRASA (Wen & Liu, 2016) for the signal collapsed 
across the two context conditions in the time window of 
interest, that is, the 800-ms interval between the last pre-
sented word and the onset of the picture, as indicated by 
“A2” in orange in Figure 2. IRASA allows distinguishing 
rhythmic activity from the concurrent arrhythmic 1/f mod-
ulation in the power spectrum of the neurophysiological 
signal. Subtracting the resulting 1/f spectrum from the 

F I G U R E  3   (a) The 10 representative sensors for the Naming task (left), and the seven representative sensors for the Judgment task 
(right) masked in grey shown in the scalp topographies. The topographies show averaged t values for the context effect (constraining vs. 
non-constraining) across the 15–25 Hz over the 800 ms time window of interest. (b) The power spectra averaged across the representative 
sensors for original power (grey line), 1/f component power (black line), and 1/f free oscillatory component power (red line) obtained from 
IRASA of Subject 17 in the Naming task (left) and Judgment task (right) as an example. (c) The two regions of interest (ROIs) in frontal and 
posterior temporo-parietal cortex selected to compare the power distribution similarity between alpha and beta



6 of 16  |      CAO et al.

original power spectrum offers a clearer estimation of the 
power spectrum of the rhythmic components. With this, we 
could address Consideration #1 (Donoghue et al., 2021) that 
the presence of an oscillation in the signal should be veri-
fied. Following the IRASA procedure, the peaks for alpha 
and beta were defined for each subject individually using 
the 1/f modulation-free power spectrum (see Stolk et al., 
2019 for a similar approach). For that, we averaged the 1/f 
modulation-free power spectrum over the representative 
sensors defined above. We then inspected these power spec-
tra to identify the spectrum shapes of alpha and beta (i.e., 
the presence of an inverse U-shaped power spectra for the 
alpha band, and no bump present for the beta band; see 
Figure 3b for an example). The mean and the full width at 
half maximum (FWHM) of the alpha spectral peak were 
defined for each participant by fitting a one-term Gaussian 
model. The peak frequency for beta was defined as the 
highest peak in the beta range, that is, not overlapping with 
alpha, at least 2 Hz higher than the individual participant’s 
upper boundary of the alpha band and below 40 Hz. The 
outcome of these steps is indicated by “A3” in Figure 2. 
With this, Consideration #2 was addressed, namely, the fact 
that oscillations have variable peak frequencies calls for an 
individualized approach (Donoghue et al., 2021). On aver-
age, alpha and beta peaks were 10.5 (SD = 2.0) Hz and 18.8 
(SD = 3.7) Hz for Naming and 10.6 (SD = 1.6) Hz and 18.3 
(SD = 4.2) Hz for the Judgment task, respectively. Table 1 
presents individual frequency peaks for alpha and beta for 
each task, both based on the 1/f modulation-free power 
spectra and on the original power spectra. It is clear that 

some peak frequencies are different between the two power 
spectra, especially in the beta range.

Context effect from oscillatory power spectra and trial-
based spectral relations
To assure that the previously observed power decreases 
from the narrowband approach associated with the con-
text effect reflect oscillatory activity (Consideration #3, 
Donoghue et al., 2021), we performed a cluster-based per-
mutation test (as described above) on the 1/f free power 
spectra for constraining versus non-constraining condi-
tions for each task separately (indicated as “A4” in Figure 
2).

To assess whether the separation of alpha and beta bands 
with the IRASA approach was successful, a within-subject 
trial-by-trial correlation analysis was performed on the 
power at the peak frequencies for the alpha and beta bands 
based on the original power spectra and based on the 1/f 
free oscillatory power spectra defined in the former steps. 
If power at the peak alpha and beta frequencies correlates 
across trials, this could be attributed to either arrhythmic 
or rhythmic activity, especially because correlated patterns 
of change across frequency bands may be more parsimo-
niously explained as a change in broadband arrhythmic 
activity (Donoghue et al., 2021). The alpha-beta power de-
creases in the pre-picture interval were considered to re-
flect conceptual preparation and word-planning processes 
(Piai et al., 2015, 2020; Piai & Zheng, 2019), which can take 
place before picture onset only in the constraining condi-
tion, but not in the non-constraining condition. Thus, we 

Naming task Judgment task

Alpha Beta Alpha Beta

Participant osci orig osci orig osci orig osci orig

Sub1 10.5 10.5 14.0 15.2 10.5 10.5 14.0 15.2

Sub2 8.2 8.2 17.5 16.4 9.3 9.3 17.5 16.4

Sub5 10.5 9.3 17.5 14.0 10.5 10.5 21.0 16.4

Sub6 10.5 10.5 21.0 14.0 10.5 10.5 21.0 14.0

Sub7 10.5 10.5 21.0 14.0 10.5 10.5 19.9 14.0

Sub8 10.5 10.5 21.0 14.0 10.5 10.5 19.9 14.0

Sub11 9.3 9.3 18.7 17.5 9.3 9.3 11.7 12.8

Sub13 9.3 9.3 12.8 14.0 10.5 10.5 12.8 14.0

Sub14 11.7 11.7 23.4 16.4 11.7 11.7 23.4 15.2

Sub16 8.2 8.2 11.7 12.8 8.2 8.2 11.7 12.8

Sub17 9.3 9.3 21.0 14.0 9.3 9.3 22.2 14.0

Sub18 16.4 12.8 19.9 18.7 15.2 15.2 18.7 19.9

Sub19 11.7 11.7 23.4 15.2 11.7 11.7 23.4 15.2

Note: Note that, for four participants (i.e., Sub11, Sub13 and Sub16 for beta; Sub18 for alpha), the peak 
frequency fell outside the canonical frequency band for alpha (i.e., 8–12 Hz) and beta (i.e., 13–30 Hz).

T A B L E  1   Individual frequency peaks 
in Hz for each task and each frequency 
band defined on the 1/f free power spectra 
(osci) and on the original power spectra 
(orig) obtained from the procedures 
described for sensor-level analysis
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focused on the constraining condition for this analysis (see 
Roos & Piai, 2020). For each of the 13 participants indi-
vidually, first, the correlation was computed in the follow-
ing way: For each trial, the power at the peak frequencies 
was averaged across the representative sensors. Then, a 
Spearman correlation analysis was performed across trials 
between the participant’s alpha and beta band power. This 
was done both for the original power spectra and for the 
1/f free power spectra separately (i.e., power at alpha peak 
based on original power spectra correlated with power at 
beta peak based on original power spectra; power at alpha 
peak based on 1/f free power spectra correlated with power 
at beta peak based on 1/f free power spectra). This resulted 
in one array of 13 correlation coefficients for the original 
power spectra and one array for the 1/f free power spectra. 
These arrays were used for group-level analysis to assess 
the consistency of the correlation coefficients over partic-
ipants. A one-sample t-test was employed to compare the 
mean correlation coefficient to zero (as indicated by “A5” 
in Figure 2).

2.1.3  |  Source-level analysis

The source-level analysis pipeline is shown on the right-
hand side of Figure 2.

Source reconstruction
We used beamforming to localize the sources of the alpha 
and beta band oscillations, respectively, over the 800-ms 
pre-picture interval. A frequency-domain beam-forming 
method (Dynamic Imaging of Coherent Sources, DICS) 
was used to identify sources of the alpha and beta oscil-
latory activity. The DICS technique uses adaptive spatial 
filters to localize power in the entire brain (Gross et al., 
2001). Each filter has the property that it passes activity 
from the location of interest with unit gain, but maximally 
suppresses activities from other sources contributing to the 
data. To construct the spatial filters, we first constructed 
the forward model (lead-field matrix). For each subject, the 
anatomical MRI was segmented into brain, scalp, and skull 
using SPM8. From the segmented MRI, a realistic single-
shell model of the inside of the skull was constructed 
which served as the individual volume conduction model 
(Nolte, 2003). Next, each individual’s MRI was warped to 
a template MRI (Montreal Neurological Institute, MNI, 
Montreal, QC, Canada) and the source locations of grid 
points with a regular 10 mm spacing in the template model 
were mapped back from the MNI template to the individu-
al’s coordinates with an inverse warp. For each participant, 
this procedure resulted in individual grid points that were 
also matched to the MNI template coordinate system. The 
volume conduction model was then used to compute the 

lead-field matrix for each grid point. Next, we constructed 
the cross-spectral density matrix. For each participant, 
task, and frequency band (i.e., Naming alpha, Naming 
beta, Judgment alpha, Judgment beta), the sensor-level 
cross-spectral density matrices were computed by combing 
the data of the two context conditions (i.e., constraining 
and non-constraining) at the individuals’ peak frequencies 
with a frequency smoothing of 2 Hz around the peak fre-
quency. Using the cross-spectral density matrices and the 
lead-field matrices, a common spatial filter over constrain-
ing and non-constraining conditions was constructed for 
each task and for each frequency (i.e., Naming alpha, 
Naming beta, Judgment alpha, Judgment beta). The spa-
tial filters were then applied to the Fourier transformed 
data from each context condition separately, allowing us 
to estimate the single trial source-level power for each grid 
point in each condition and each subject (indicated by 
“A6” in Figure 2). For each subject, the power estimates 
were then averaged over trials in each of the two context 
conditions. The relative power change was calculated as 
the difference between the power in the two conditions, 
divided by their average. To identify the cortical locations 
that were significantly modulated by the context effect, 
we performed non-parametric cluster-based permutation 
tests for constraining versus non-constraining conditions 
(Maris & Oostenveld, 2007), as explained above, resulting 
in a cluster of adjacent grid points exhibiting a similar con-
text effect (indicated by “A7” in Figure 2).

For the analysis of spatial differences between alpha 
and beta with the earth mover’s distance (see below), the 
data were divided into the following ROIs. Given previous 
findings on the context effect in word production (Piai 
et al., 2015, 2018; Roos & Piai, 2020) and existing models of 
language, which highlight the relevance of and distinction 
between frontal and temporal-parietal regions (Hickok & 
Poeppel, 2007; Indefrey & Levelt, 2004), we selected two 
regions of interest (ROIs) (see Figure 3c): left frontal cor-
tex (152 grid points, labels in MNI template according to 
AAL atlas, Tzourio-Mazoyer et al., 2002): “Precentral_L”, 
“Frontal_Sup_L”, “Frontal_Mid_L”, “Frontal_Inf_Oper_L”, 
“Frontal_Inf_Tri_L”, “Frontal_Inf_Orb_L”, “Rolandic_
Oper_L”) and left posterior temporal and inferior parietal 
cortex (79 grid points, labels in MNI template according to 
AAL atlas): “Temporal_Sup_L”, “Temporal_Pole_Sup_L”, 
“Temporal_Mid_L”, “Temporal_Pole_Mid_L”, “Temporal_
Inf_L”, “Parietal_Inf_L”, “SupraMarginal_L”, “Angular_L”, 
with the MNI coordinate Y < 2 cm for the border between 
posterior and anterior temporal lobe.

Source-level power distribution similarities between 
alpha and beta
To compare the spatial distribution of alpha and beta 
power, we used both a correlation-analysis approach and 
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the earth mover’s distance (EMD), as indicated by “A8” in 
Figure 2. The EMD quantifies the minimal cost that is re-
quired to transform one distribution into another distribu-
tion (Rubner et al., 2000). The EMD was first introduced 
into the field of EEG/MEG as an inverse solution evalua-
tion to measure spatial similarity between simulated and 
estimated source densities (Haufe et al., 2008).

In the EMD metaphor, the distributions can be seen 
as two different distributions of sand in two equally sized 
sandboxes. The EMD quantifies the least amount of work 
needed to turn one distribution into another one, where 
a unit of work corresponds to transporting a unit of sand 
by a unit of distance. The EMD can be computed by solv-
ing an instance of the transportation problem, using any 
algorithm for the minimum cost flow problem. For each 
task, and in each of the ROIs, we computed the EMD 
between the spatial distribution of alpha power and the 
spatial distribution of beta power, using the implementa-
tion of  Rubner et al. (Yilmaz, 2021) with the Euclidean 
distance in 3D source space as the “ground distance” and 
the paired-sample t-statistic of the context effect on source 
power as the “amount of sand” at each grid point. The 
amount of positive and negative t values was highly com-
parable between alpha and beta for each task and ROI. 
The use of t values, rather than (raw) power, ensured that 
the values were standardized and weighted across partici-
pants, and comparable across tasks and frequency bands. 
The “amount of sand” in the EMD cannot be negative, but 
the t values are both positive and negative. We addressed 
the non-negative constraint for the EMD in the following 
way: Firstly, we “raised the bumps” for the two power 
distributions by adding a constant to the original t val-
ues. The minimum t value was −1.451 and −0.534 for the 
Naming task in Frontal and Temporal ROIs respectively, 
and −2.610 and −0.437 for the Judgment task in Frontal 
and Temporal ROIs, respectively. We lifted all the t values 
such that the minimum t value became 0.01. Secondly, to 
make the overall “mass” of the distributions equal, we di-
vided the t values obtained from the last step by the sum of 
t values in the same distribution. Thus, for every distribu-
tion (i.e., both alpha and beta for each task and each ROI), 
the overall “mass” was made equal to 1.

In addition to the EMD computation, Pearson’s correla-
tion coefficients were computed to the same nonnegative 
“amount of sand” data to compare the similarity in spa-
tial distribution between alpha and beta for each ROI and 
each task, with the units of observation corresponding to 
the grid points within the ROI. Note that this linearization 
analysis is only meant to provide converging evidence for 
the EMD findings. Both correlation coefficients and EMD 
are effect-size measures that serve as a quantitative reflec-
tion of the magnitude of the association. No inferential 
statistics is applied here, for statistical significance tests 

are traditionally used to provide evidence (attained p val-
ues) that a null hypothesis is false. However, there is no 
known distribution for EMD under the null hypothesis. 
Moreover, given the dependence in the data, a correlation 
coefficient does not match the null hypothesis, and there-
fore a probability calculated from these coefficients is 
likely inaccurate. Effect size and null hypothesis tests are 
conceptually independent and represent different ways of 
using data to make inferences (Kelley & Preacher, 2012). 
Under the hypothesis that the spatial distributions of 
alpha and beta bands are similar, one would expect a small 
EMD value and a large correlation coefficient. By contrast, 
if the spatial distributions are different, one would expect 
a large EMD value and a small correlation coefficient.

3   |   RESULTS

3.1  |  Context effects in the 1/f free 
oscillatory power

We assessed the presence of a context effect based on 
the 1/f free power spectra obtained after IRASA. Non-
parametric cluster-based permutation tests rejected the 
hull hypothesis that power in the two conditions came 
from the same probability distribution (Naming: p = .032; 
Judgment: p = .046). Thus, we conclude that the context 
effect is present in the 1/f free oscillatory activity for both 
tasks.

We assessed the separation of alpha and beta oscilla-
tions using IRASA to remove the 1/f component in the 
power spectra. We found that, when the power at the peak 
frequency was defined on the original power spectra with 
the 1/f signal included, alpha and beta power were signifi-
cantly positively correlated (one-sample t-test; p < .001). 
By contrast, when the power at the peak frequency was 
defined on the basis of the power spectra with the 1/f mod-
ulation removed, alpha and beta power showed no signif-
icant correlation (p = .859). Thus, the shared variance in 
the two frequency bands from the 1/f modulation was suc-
cessfully accounted for by the application of IRASA.

3.2  |  Source-Level analysis

Figure 4 shows the source localization of the context ef-
fect in the alpha and beta bands (based on individualized 
alpha and beta peaks estimated from the 1/f free oscilla-
tory component) at the group-level, masked by the cluster 
associated with grid points below the cluster alpha-level 
threshold. Alpha power decreases for constrained relative 
to non-constrained context conditions were statistically 
significant for the Naming (p = .002) and Judgment tasks 



      |  9 of 16CAO et al.

(p = .002). Beta power decreases for constrained relative 
to non-constrained context conditions were statistically 
significant for the Naming (resulting in three clusters,   
p = .044; p = .044; p = .050) and Judgment tasks (p =  .002). 
For each task, in Figure 4, the prominent clusters are de-
picted only for alpha, only for beta, and for their overlap.

Descriptively, for both the Naming and Judgment 
tasks, the alpha and beta power decreases overlapped in 
the left posterior temporal lobe extending into the left in-
ferior parietal cortex. Compared with the Judgment task, 
both alpha and beta power decreases were also observed 
in a left frontal region in the Naming task. In the right 
hemisphere, the beta power decrease was observed more 
extensively than the alpha power decrease for the Naming 
task. Beta power decreases were observed around the 
right post-central gyrus and right temporal pole. For the 
Judgment task, both alpha and beta power decreases were 
observed around the right post-central and pre-central 
gyri (around the hand area in the sensorimotor cortex).

3.3  |  Alpha and beta effects overlap in 
posterior left temporal-parietal regions

The qualitative assessment of the power distribution simi-
larities between alpha and beta, shown above, was sup-
ported by converging results from the EMD analyses and 

correlation coefficients. The distances between alpha and 
beta power distributions for each task in each ROI, and 
the correlation coefficients between the nonnegative t val-
ues of alpha and beta on each grid point in the ROIs are 
presented in Table 2. A smaller EMD indicates a stronger 
resemblance of the distributions. A positive correlation 
indicates that the modulation of power decreases between 
the alpha and beta bands follows the same direction, with 
larger numbers indicating stronger relationships.

For the Judgment task, for both ROIs, the distributions 
of alpha and beta do not seem to vastly differ as evidenced 
by comparatively small EMDs and relatively comparable 
correlation coefficients of small to medium effect sizes 
(i.e., between 0.2 and 0.47). By contrast, for the Naming 
task, in left posterior temporo-parietal ROI, the alpha and 
beta have more similar distributions than the left fron-
tal ROI, as indicated by a relatively smaller EMD value 
and a larger correlation coefficient of medium effect size. 
Interestingly, the magnitude of the EMDs and correlation 
coefficients was similar between the frontal ROI for the 
Judgment task, encompassing primary motor cortex, and 
the posterior ROI for the Naming task. Of note, the group-
level results on the context-effect power modulations in 
the alpha and beta bands did not yield prominent clusters 
in the frontal ROI for the Judgment task, whereas for the 
Naming task, there were prominent group-level clusters 
for both alpha and beta in the posterior ROI (see Figure 4). 

F I G U R E  4   Group-level source 
localization of the power differences 
between peak frequencies ±2 Hz as a 
function of sentential constraint for 
the Naming task (left), Judgment task 
(right), for the alpha band (top rows) and 
beta band (middle rows). The color bar 
indicates the statistic t values. Overlap 
maps of group-level source localization 
are given in the bottom rows, showing 
areas of power changes common to both 
alpha and beta (brown), only for alpha 
(purple), and only for beta (green)

Naming task Judgment task

EMD Correlation EMD Correlation

Left frontal 0.7745 0.1398 0.3496 0.4762

Left temporal-parietal 0.3662 0.4571 0.5423 0.2195

Note: Smaller EMD indicates stronger distribution similarity.

T A B L E  2   Earth mover’s distance 
(EMD) and Pearson correlation 
coefficients for each task in each of the 
two regions of interest, comparing alpha 
and beta power modulations
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Both the EMD and correlation analyses were based on the 
t-values for each grid point in the ROIs, which reflect not 
only the magnitude of power modulation but also the con-
sistency across participants. Thus, in the frontal ROI for 
the Judgment task, similar noise may drive the t-values for 
both alpha and beta, yielding a comparatively small EMD 
value and a large correlation coefficient in the absence of 
prominent clusters for the context effect in either alpha 
or beta bands. This issue limits a more direct comparison 
between these two sets of findings. Finally, the relatively 
smaller number of grid points in the posterior ROI than 
in the frontal ROI may represent a potential confound 
for the comparison of EMD and correlation coefficient 
values between the two ROIs. However, if that were the 
case, one would expect the frontal ROI to consistently 
yield more extreme values across the two tasks. This is 
not what we found, as the results go in opposite directions 
for the Judgment task and Naming tasks across the two 
ROIs. Thus, the number of grid points does not present a 
substantial confound for the interpretation of distribution 
similarity based on the EMD and coefficient values of the 
two ROIs. Still, making strong statements about the EMDs 
across ROIs is challenging.

4   |   DISCUSSION

Alpha and beta power decreases have been consistently 
found in context-driven word production, thought to re-
flect conceptual and lexical retrieval processes (Gastaldon 
et al., 2020; Klaus et al., 2020; Piai et al., 2014, 2015, 2018, 
2020; Roos & Piai, 2020). However, it remains unknown 
whether the robust power decreases over two “classical” 
(sensorimotor) frequency bands, namely alpha and beta, 
serve distinct roles in language production. In the motor 
domain, alpha and beta power decreases have been found 
to support motor preparation with spatiotemporal (Stolk 
et al., 2019) and functional (Brinkman et al., 2016; Wach 
et al., 2013) dissociations. These observations motivated 
the present study, in which we investigated the spatial 
distribution of the alpha and beta power decreases in lan-
guage production. We reanalyzed MEG data of Piai et al. 
(2015) with the aim to assess the anatomical specificity 
of alpha- and beta-band rhythms in context-driven word 
production. We used the IRASA procedure to separate 
and measure aperiodic and periodic power and better 
isolate the alpha and beta bands (Wen & Liu, 2016). It is 
acknowledged that MEEG brain signals contain aperiodic 
activity, which shows as a decrease in power with increas-
ing frequency in the power spectrum, characterized by a 
1/f function. Aperiodic parameters (e.g., offset, exponent) 
differ across individuals (Donoghue et al., 2021). Standard 
narrow-band approaches can conflate aperiodic and 

periodic components (Donoghue et al., 2020). We found 
that the context effect is present in the periodic, 1/f free 
power spectra as defined by IRASA. Furthermore, we de-
fined frequency peaks for alpha and beta based on the pe-
riodic component without the contribution of power from 
the aperiodic component, and source localized the con-
text effects based on these alpha and beta bands. Lastly, 
EMD and correlation analyses were employed to quantify 
the spatial distribution similarity between alpha and beta 
sources. Power in the alpha and beta bands was corre-
lated based on the original signal. By contrast, following 
the IRASA procedure with the 1/f modulation removed, 
alpha-band and beta-band power were no longer corre-
lated (see also Stolk et al., 2019). This finding is interest-
ing in itself and suggests that previous studies focusing 
on similarities between alpha- and beta-band power may 
have been confounded by their shared variance through 
the 1/f component.

We found that for both the Naming and Judgment tasks, 
the alpha and beta power decreases overlapped in the left 
posterior temporal lobe extending into the left inferior pa-
rietal cortex. The EMD and correlation analyses further 
suggested that the spatial distributions of alpha and beta 
power at the source level in left temporal and inferior pari-
etal cortex were similar to the extent that we could assess it. 
By contrast, for the left frontal region, spanning the inferior, 
middle, and superior frontal gyri and the primary motor 
cortex, the power distributions differed between alpha 
and beta for the Naming task, but not for the Judgment 
task. The present results should be interpreted in light of 
our previous findings of well-established, robust, and rep-
licable power decreases in the alpha and beta bands for 
the naming task (e.g., Klaus et al., 2020; Piai et al., 2015, 
2018; Roos & Piai, 2020), providing more confidence that 
the EMD and correlation findings are not driven (solely) 
by noise. For example, the present results are consistent 
with previous findings that alpha-beta oscillations in left 
frontal cortex for context-driven word production are less 
critical (Piai et al., 2018) and less consistent (Roos & Piai, 
2020) than in left temporal and inferior parietal cortex. Piai 
et al. (2018) provided lesion evidence for a critical role of 
left posterior but not left frontal areas in alpha-beta power 
decreases in context-driven word production. Using the 
same naming task as in the present study, the absence of 
a context-induced behavioral facilitation effect co-occurred 
with an absent alpha-beta context effect in stroke patients 
with extensive left-hemisphere posterior lesions. By con-
trast, both effects were present in the stroke patients with 
left-hemisphere frontal lesions. With healthy young adults, 
Roos and Piai (2020) used the same naming task in two 
test-retest sessions that only differed in the stimulus mate-
rials. The same participants performed the naming task at 
two time points around 14 to 28 days apart. The alpha-beta 
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power decreases in left temporal and inferior parietal cor-
tices were found consistently across both sessions, whereas 
the involvement of left middle frontal gyrus was only found 
in session 2, but not in session 1.

For both Naming and Judgment tasks, the pre-picture 
intervals were reasoned to involve conceptual activation 
following constraining contexts. The context effect on left 
posterior temporal and inferior parietal cortex observed in 
both tasks is consistent with the proposed roles of these 
regions from multiple studies using different neuroimag-
ing modalities, such as angular gyrus and portions of su-
pramarginal gyrus in conceptual processing (for a review, 
see Binder et al., 2009) and left mid-posterior middle tem-
poral gyrus and left posterior inferior temporal gyrus in 
lexical-semantic retrieval during picture naming (Baldo 
et al., 2013; Liljeström et al., 2008; for a general review, 
see Price, 2012). By contrasting the two tasks in this pos-
terior ROI, it is noticeable that the Judgment task had a 
bigger EMD and a smaller correlation coefficient than 
the Naming task. Accordingly, it could be argued that this 
finding supports the conclusion that for conceptual-lexical 
retrieval, alpha and beta oscillations do dissociate. In our 
paradigm, spreading activation in the lexical-semantic 
network in constraining sentence contexts supports the 
retrieval of the pictured concept, which is present for both 
tasks. By contrast, compared with the Naming task, lexi-
cal information may have been less prominent in the pre-
picture interval for the Judgment task, as the latter task 
can in principle be performed without lexical access. Our 
EMD and correlation analyses were based on the t values 
of the context effect, which reflect both the magnitude of 
the effect and consistency across trials and participants. 
The posterior ROI included both inferior parietal regions 
associated with conceptual processing and posterior tem-
poral regions associated with lexical retrieval. Thus, the 
posterior ROI may have a combination of areas whose 
functions are not equally represented in both tasks, yield-
ing a smaller EMD and a bigger correlation coefficient for 
the Naming than for the Judgment task.

Previous electrophysiological studies have suggested a 
role for alpha–beta power decreases in lexical retrieval (e.g., 
Brennan et al., 2014; Mellem et al., 2012; Piai et al., 2015, 
2020). The present study further shows that the alpha- and 
beta-band oscillations have similar power distributions in 
the brain regions associated with conceptual preparation, 
and also possibly with lexical retrieval. Thus, the replica-
ble alpha-beta power decreases in context-driven word 
production may index an oscillatory signature underlying 
one sole process, conceptual-lexical activation or retrieval. 
This hypothesis would also be in line with a theoretical 
view in the field of episodic memory that provides a mech-
anistic explanation for the alpha-beta power decreases 
in the encoding and retrieval of episodic information. 

According to this view, information is encoded by neu-
ronal desynchronization in the neocortex (Hanslmayr 
et al., 2012). This information-based mechanistic account 
of alpha/beta power decreases may also hold for concep-
tually driven lexical-semantic retrieval (see also Fellner 
et al., 2013; Piai et al., 2020; Piai & Zheng, 2019).

Compared with the Judgment task, the Naming task 
elicited more left frontal power decreases. The left inferior 
frontal gyrus (LIFG) has been recognized as an import-
ant region not only for language but also for other cogni-
tive functions. Our observation of LIFG and, adjacently, 
left premotor cortex involvement in the Naming but not 
in the Judgment task would be compatible with the pho-
nological and phonetic (Indefrey & Levelt, 2004; Smith 
& Jonides, 1999) accounts of LIFG, because phonologi-
cal and phonetic information are needed in the Naming 
task, but not in the Judgment task. However, the extent to 
which participants already prepare a phonological or pho-
netic code during the pre-picture interval is unclear. LIFG 
involvement only in the Naming but not in the Judgment 
task would also be compatible with a recent claim that 
the involvement of LIFG in language comprehension 
and production is asymmetric (Matchin & Hickok, 2020). 
According to the reviewed neurological literature that 
lesion-deficit mapping studies reveal a more robust asso-
ciation between brain lesions in LIFG with agrammatic 
production than comprehension, these authors proposed 
that the role of the LIFG in language is to transform the 
information from posterior middle temporal gyrus into a 
linear sequence of morphemes, and is thus primarily tied 
to production. However, we acknowledge that the sepa-
ration of comprehension and production as modules is a 
complex issue.

Alpha and beta frontal effects have been reported in 
language production studies with various paradigms (e.g., 
auditory description naming and picture naming with 
MEG, Youssofzadeh et al., 2020) in addition to context-
driven word production (from EEG, Gastaldon et al., 
2020). As indicated by the EMD and correlation coeffi-
cient analyses, the alpha- and beta-band oscillations have 
different power distributions for the Naming task in our 
frontal ROI, which encompasses LIFG and motor cortex. 
As can be seen in Figure 4, more pronounced alpha than 
beta oscillations were present around LIFG, while more 
pronounced beta than alpha oscillations were present 
around superior and middle frontal gyri. Naming involves 
a cascade from phonological retrieval to phonetic encod-
ing operating on an abstract phonological representation. 
Our frontal ROI covering the left phonological-phonetic 
network may be argued to show a dissociation between 
alpha and beta bands from inferior (alpha) to superior 
(beta) frontal regions. Previous studies in the motor do-
main have indicated a more direct relationship for beta 
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than for alpha with motor processes. For instance, so-
matotopic organization (Salmelin et al., 1995) and coher-
ence with the electromyogram (Brown, 2000; Mima & 
Hallett, 1999) were usually found for the beta, rather than 
for the alpha, band. For language production, studies have 
also found somatotopic arrangement in the motor cortex 
of the speech articulators (i.e., lips, jaw and tongue; for a 
review, see Conant et al., 2014), and beta-band power de-
creases around the bilateral face area in the motor cortex 
for a verbal task (Salmelin & Sams, 2002). Future studies 
could address the extent to which alpha, but not beta, in 
the LIFG could support more abstract (phonological) pro-
cesses, whereas beta in motor areas could support motor 
programming for articulation.

For the right hemisphere, both alpha and beta power 
decreases for the Judgment task were observed around 
the precentral and postcentral gyri. Power decreases in the 
alpha and beta frequency bands over sensorimotor areas 
have been well characterized during preparation and ex-
ecution of movement (for a review, see Cheyne, 2013). 
Because the participants were instructed to press a but-
ton with their left hands to respond after picture onset in 
the Judgment task, the observed alpha and beta decreases 
around the right motor area likely reflect the left-hand 
preparatory motor activity. By contrast, for the Naming 
task, both alpha and beta power decreases were observed 
around the right posterior superior temporal gyrus (pSTG) 
and supramarginal gurus (SMG), whose left hemisphere 
homologous regions are well documented as language-
related areas. The pSTG has also been found to be bilat-
erally associated with lexical semantic processing (Senaha 
et al., 2005; Wright et al., 2012), and the SMG bilaterally 
with phonological processing (Hartwigsen et al., 2010) 
and verbal working memory (Deschamps et al., 2014) in 
healthy right-handed adults. Because the involvement in 
the right hemisphere was weaker than in the left in our 
study, it could explain why we got weaker overlap between 
alpha and beta in the right hemisphere. No EMD analysis 
was performed on the right-hemisphere counterpart of the 
posterior ROI for a quantitative measure of the distribution 
similarity. An EMD analysis serves to provide a quantita-
tive measure of the distribution similarity in regions where 
both alpha and beta were present, and in the right hemi-
sphere this overlap is very limited (see Figure 4).

When comparing the alpha and beta bands, in the 
Naming task, beta seems to be more present in the right 
hemisphere than alpha. In addition to the strip around the 
right premotor area mentioned above, power decreases 
were observed in the right anterior temporal lobe (ATL) 
for beta, but not for alpha. By contrast, alpha power de-
creases were observed in the left ATL. Our finding that 
beta oscillations are found in the right ATL during naming 
is consistent with an intracranial EEG study that found 

some ATL recording sites showing beta power decrease 
during name retrieval, and a relatively higher proportion 
of beta decreases from the right ATL than from left ATL 
(Abel et al., 2016). Bilateral ATLs have been suggested 
to underpin conceptual knowledge (Lambon Ralph & 
Patterson, 2008; Lambon Ralph et al., 2009), although it is 
unclear whether the two ATLs function in the same way. 
Patient studies have shown differences in performance be-
tween left and right ATL lesions: both left and right tem-
poral lobe patients showed degraded comprehension, but 
left ATL patients showed weaker performance on tasks 
requiring naming (Lambon Ralph et al., 2001; Rice et al., 
2018). Thus, to explain the asymmetry deficits of bilateral 
ATL lesions, an ATL-connection view has been put for-
ward according to which the left ATL has stronger connec-
tivity with the left-lateralized speech-production system. 
Previous fMRI studies have shown that resting-state func-
tional connectivity (Hurley et al., 2014) and white matter 
connectivity (Leng et al., 2016) between ATL and IFG are 
higher in the left than in the right hemisphere. In our 
Naming task, alpha power decreases were found in the 
left ATL and in left IFG. Our findings using MEG provide 
tentative evidence that left ATL and left IFG are linked in 
word production through a common oscillation frequency 
band.

4.1  |  Limitations

We acknowledge that there are limitations in our inter-
pretation of the overlap or dissociation between alpha 
and beta oscillations in language production. The first 
limitation comes from the spatial resolution of MEG and 
the source localization procedure. MEG may not distin-
guish well two sources that have similar current flow ori-
entations within 20 mm distance (Liljeström et al., 2005). 
Thus, our findings would ideally be confirmed using a 
method with higher spatial resolution, like intracranial 
EEG. Second, as shown in Figure 3, the power spectra 
of alpha and beta in our data have different shapes: a 
reverse-“U”-shaped power spectrum for the alpha band, 
but no evident peak in the thus-defined beta band. Given 
the lack of a dominant frequency in the beta range, one 
could question whether this component is truly oscilla-
tory. Brain oscillations typically appear as bumps on top 
of the 1/f slope in a power spectrum, but there is a chance 
that the bump is difficult to detect when the oscillation 
amplitude is smaller than the 1/f slope in the correspond-
ing frequency range (He, 2014). An additional limitation 
is that the source localization was not based on the 1/f 
free oscillatory signal, but on raw power instead. Care 
was taken, however, that alpha and beta bands were sepa-
rated as much as possible for each individual participant. 
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Finally, in the present study, we could not address the 
(lack of) overlap in function between alpha and beta 
bands, but focused instead on the overlap in spatial dis-
tribution between these two bands. One could argue that 
the very fact that these are two different frequency bands 
already implies that they serve two different functions. 
However, this claim hinges strongly on how one defines a 
cognitive function, which is a question that deserves a re-
search program in its own right and cannot be answered 
within one study.

5   |   CONCLUSIONS

Our results show that for the robustly observed alpha- 
and beta-band power decreases in context-driven word 
production, the power for the peak frequencies of alpha 
and beta bands were not correlated when accounted for 
the 1/f modulation. For both the Naming and Judgment 
tasks, the power decreases in individualized alpha and 
beta bands overlapped in the left posterior temporal lobe 
extending into the left inferior parietal cortex. These 
areas have been associated with conceptual and lexical 
processing, and participants likely engaged in these pro-
cesses given the information provided by the constrain-
ing sentences. The similar spatial distributions between 
alpha and beta bands for this posterior region, even 
when controlling for the arrhythmic 1/f component as 
much as possible in the estimation of alpha and beta 
peak frequencies, suggest that for conceptual and lexical 
processing, alpha and beta oscillations do not spatially 
dissociate.
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