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Abstract

This article presents an effort toward building an artificial intelligence

(AI) assisted framework, coined ReconGAN, for creating a realistic digital twin

of the human vertebra and predicting the risk of vertebral fracture (VF).

ReconGAN consists of a deep convolutional generative adversarial network

(DCGAN), image-processing steps, and finite element (FE) based shape opti-

mization to reconstruct the vertebra model. This DCGAN model is trained

using a set of quantitative micro-computed tomography (micro-QCT) images

of the trabecular bone obtained from cadaveric samples. The quality of syn-

thetic trabecular models generated using DCGAN are verified by comparing a

set of its statistical microstructural descriptors with those of the imaging data.

The synthesized trabecular microstructure is then infused into the vertebra

cortical shell extracted from the patient's diagnostic CT scans using an

FE-based shape optimization approach to achieve a smooth transition between

trabecular to cortical regions. The final geometrical model of the vertebra is

converted into a high-fidelity FE model to simulate the VF response using a

continuum damage model under compression and flexion loading conditions.

A feasibility study is presented to demonstrate the applicability of digital twins

generated using this AI-assisted framework to predict the risk of VF in a can-

cer patient with spinal metastasis.
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1 | INTRODUCTION

More than 1.6 million cases of cancer are diagnosed in the United States every year.1 Symptomatic spinal metastases
are estimated to occur in up to 10% of all cancer patients.2 Majority of the spinal metastasis cases occur in the extradural
compartment, most frequently presenting within the vertebral bodies.3 Most of the metastatic burden (70%) is within
the thoracic spine, followed by the lumbar spine (20%), cervical spine, and sacrum.4 Vertebral fracture (VF) is a major
clinical concern during the treatment of cancer patients with spinal metastasis (SM). These fractures are directly related
to the effect of tumor metastasis on the anatomical integrity and internal structure of the bone tissue.5,6 Stereotactic
radiotherapy (SRT) is an effective treatment modality that has shown significant improvement in local tumor control
and pain in SM patients. However, loss of stability due to the treatment of tumor cells and possible weakening of the
bone tissue due to SRT may further increase the risk of VF, which may cause severe pain and spinal instability.7,8 This
often necessitates additional surgical interventions such as vertebroplasty to treat post-fracture complications. As
patients continue to live longer with improved systemic therapies for metastatic cancer, the utilization of SRT will con-
tinue to grow given its association with longer local control. This will likely lead to more VFs, which can severely
impact the quality of life for patients. Therefore, predicting the risk of VF in metastatic spine cancer patients is crucial
for informed decision-making and design of better treatment strategies to benefit these patients.

While biomechanical loads are believed to play a major role in the initiation of VF, the correlation between spinal
loads and morphological changes to the vertebral body (due to tumor lesion or radiation) that lead to bone fracture is
not well understood. Note that, in addition to its macroscopic shape, the fracture response of vertebra is highly depen-
dent on microstructural features of the trabecular region. In-vitro studies can provide fundamental knowledge on the
mechanical behavior of vertebral structure but they cannot accurately measure relevant biomechanical parameters such
as in-vivo internal stresses that play a crucial role in damage initiation and failure. Computational modeling is a viable
alternative for studying such parameters, which has gained more attention due to recent advances in numerical tech-
niques, computing power, and 3D imaging technology.9

In the current manuscript, we introduce a new computational framework capable of creating realistic digital twins
of vertebral bodies to assess the risk of VF in patients with SM. The concept of digital twin is borrowed from engineer-
ing principles, where the in silico representation of a complex system (here, vertebra) serves as a virtual model to ana-
lyze the current condition and predict its future performance based on real-time data characterizing the system
condition.10 Digital twins utilization in orthopedics is revolutionizing surgical procedures by helping surgeons study
new therapies and medical implants.11–13 For example, in a recent study, the digital twin of a patient's fractured tibia
was used to simulate different stabilization scenarios and provide post-operative information on the risk of fracture.13

Majority of numerical studies presented in the literature on the mechanical behavior of vertebra do not incorporate
the intricate microstructure of the trabecular bone and instead use a computational homogenization approach relying
on effective properties of this region.14–16 However, an accurate prediction of the initiation and evolution of damage
during the VF process requires taking into account he trabecular microstructure and the variation of material properties
within that in the FE model. This requires the ability to generate a highly realistic geometrical models of vertebral body
that captures such microstructural details. However, incorporating the trabecular bone microstructure in the FE model
of a patient's vertebra could be a grand challenge, as diagnostic CT scans lack the resolution needed to characterize
these features. Micro-CT devices can provide a high resolution visualization of the 3D bone microstructure, with a voxel
size that could even reach sub-micron scale.17,18 On the other hand, obtaining high-resolution micro-CT scans would
practically be impossible in-vivo due to sample preparation requirements. Thus, micro-CT imaging is only feasible for
cadaveric samples (often a small portion of the trabecular bone) and cannot be used to create a patient-specific model
of the whole vertebra. Consequently, only a few FE studies are presented that investigate the biomechanics of human
vertebra from the microstructural perspective.19,20

The challenges outlined above have motivated the development of an AI-enhanced framework in this work, coined
ReconGAN, to create realistic vertebra geometric models by virtually reconstructing the trabecular bone microstructure and
integrating that with the macroscopic shape of vertebra obtained from a patient's CT scans. Note that several algorithms have
been introduced for virtual reconstruction of porous materials, among which we can mention the Gaussian random fields,21

optimization-based methods,22 multi-point statistics (MPS),23 direct sampling (DS)24 and cross-correlation simulation
(CCSIM).25 However, microstructural models reconstructed using such algorithms are often too simplistic to replicate the com-
plex architecture of the trabecular bone, which in addition to a tortuous porous microstructure has a significant variation of
material properties within each trabecula. Note that it is crucial to realistically capture such variations in a synthesized micro-
structure used for FE damage analysis, as they can have a notable impact on the damage response of bone tissue.
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Deep learning (DL) algorithms such as convolutional neural networks (CNN) and generative models can be used as
an alternative to conventional reconstruction algorithms to synthesize realistic virtual microstructures from imaging
data.26,27 For example, a CNN-based transfer learning approach equipped with encoding and decoding layers is
employed to generate statistically equivalent two-dimensional (2D) microstructures based on an arbitrary target image
of the sample.26 A variational auto-encoder (VAE) generative model,28 combined with style transfer,29 is utilized in27 to
synthesize sandstone samples. However, one of the main challenges toward using these algorithms for medical applica-
tions is the lack of a sufficiently large and diverse set of training data.30 While a number of medical image repositories
such as SpineWeb are publicly available,31,32 majority of these data sets correspond to the organ-level (macroscale). Cre-
ating similar repositories of micro-CT images for biological tissues (e.g., for the trabecular bone microstructure) is a
complex and expensive process that requires a collaborative effort between multiple research organizations.33

A class of DL algorithms that can overcome the challenges associated with scarcity of training data is generative
adversarial networks (GANs).34 Inspired by game theory, GANs consist of two adversarial networks working simulta-
neously, where a generator network is tasked to create synthetic images while a second network, the discriminator,
serves as a binary classifier to distinguish between actual and synthetic images. The two networks practically play a
minimax game to reach Nash equilibrium,35 where the goal of the generator is to maximize the probability of fooling
the discriminator while the discriminator is trained to minimize the cross-entropy loss between real and fake images.
GANs have extensively been used in the computer vision community for image synthesis, image segmentation, and
cross-modality translations.36–38 For example, Deep Convolutional GANs (DCGANs)39 are employed to generate syn-
thetic 2D images of liver lesions to assist training other DL models for lesion classification.40 A patch-based GAN learn-
ing algorithm is trained to provide a cross-modality framework for translation between CT and MRI images of brain.37

Also, 3D GANs have been employed to synthesize volumetric object models,41 although their application compared to
2D GANs is limited.

The ReconGAN framework introduced in this work relies on a 3D DCGAN to generate gray-scale microstructural
models of the trabecular bone after being trained with quantitative micro-CT (micro-QCT) images obtained from cadav-
eric samples. We utilize a data augmentation approach to enable training this model using a limited set of imaging data
extracted from a single cadaveric vertebra. The ability of DCGANs to generate realistic virtual bone microstructures is
validated by comparing a number of statistical microstructural descriptors with those of micro-QCT data. Note that the
main reason for using DCGANs to synthesize the trabecular bone microstructure rather than directly reconstructing
this microstructure from micro-QCT data is the scalability of the former, that is, the ability of the generator network to
virtually enlarge the model. Given the small size of cadaveric samples used for preparing these imaging data, this capa-
bility is essential for creating a sufficiently large model of the trabecular bone microstructure that can subsequently be
incorporated in a whole vertebra geometrical model. A set of image processing steps is employed to engrave the trabec-
ular microstructure generated using DCGAN and embed that within the cortical shell extracted from the patient's CT
scans to build this whole vertebra model. An FE-based shape optimization simulation aimed at minimizing stress con-
centrations is then carried out to obtain a realistic (smooth) transition between trabecular and cortical regions. This step
is inspired by the Wolff's law,42 which considers a direct correlation between bone formation and mechanical stresses
during the remodeling process.

Next, the whole vertebra model generated using ReconGAN is converted to a high-fidelity FE model to simulate its
damage response and predict the risk of VF. The damage initiation in the bone tissue is associated with the nucleation
of voids, for example, debonding of the collagen-hydroxyapatite interfaces at the ultrastructural level43 or slipping of
lamellae along cement lines at the microscale.44 The next stage involves the growth and coalescence of these voids,
which results in strain localization bands at the tissue level.45,46 In continuum mechanics, this damage mechanism is
mainly driven by stress-triaxiality, that is, the ratio of hydrostatic stress to the von-Mises stress.47 It is well-known that
incorporating the stress-triaxility in a damage model accounts for tension-compression asymmetry, as well as the
loading-mode dependency of the bone strength.48 Several studies have suggested that tissue damage in the trabecular
bone is strongly correlated with the applied strain.48,49 In this work, we implement the phenomenological strain-based
ductile damage model presented in Reference 50 to capture these phenomena in the vertebral body during VF
simulations.

The remainder of this article is structured as follows: The constitutive models used for simulating the damage
response of the bone are presented in Section 2. In Section 3, after describing the process used for preparing micro-QCT
images of the trabecular bone, we introduce the ReconGAN framework and different steps of this algorithm for synthe-
sizing realistic geometrical models of vertebra. Section 4 presents a feasibility study relying on ReconGAN on the effect
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of microstructural and morphological changes in the vertebra tissue due to metastatic tumors on its VF response. Final
concluding remarks are summarized in Section 5.

2 | CONSTITUTIVE MODELS AND MATERIAL PROPERTIES

Several correlation functions between the elastic modulus (E) and the bone density are presented in the literature.51,52

Defining the apparent bone density as

ρapp ¼
BV
TV

ρ, ð1Þ

where BV
TV is the bone volume fraction, many studies have suggested that the relationship between E and ρapp is best rep-

resented by

E¼Kρnapp: ð2Þ

In this power law equation, scalar coefficients K and n depend on various parameters such as the tissue type (corti-
cal vs. trabecular), anatomical location of the bone, age group, and external loading conditions. In this work, we adopt
these coefficients from Reference 53 for the trabecular bone as K = 24.53 GPa and n = 1.3, which are calibrated for ver-
tebral trabecular specimens subjected to compression. Also, the elastic modulus and the Poisson's ratio of the vertebra
cortical bone is set to Ecor = 10 GPa and νcor = 0.3, respectively.54,55

A phenomenological ductile damage model is implemented to track the initiation and progression of damage in the
bone tissue.50,56 In this model, the von-Mises yield criterion, together with an isotropic hardening law, is employed to
characterize the bone elastoplastic response as

Y¼ σvm�σY εpleq

� �
¼ 0, ð3Þ

where σvm is the von-Mises stress, εeq
pl is the equivalent plastic strain, and σY(εeq

pl) is the yield stress function calibrated
based on experimentally measured stress–strain response of the bone. To simulate progression of damage in the bone
tissue, we first define the effective stress tensor σeff as

σeff ¼ σ
1�D

ð4Þ

where σ is the FE stress tensor and D is a scalar parameter representing damage, which ranges from 0 to 1 during pro-
gressive failure. Damage initiation is triggered based on a strain-driven criterion given by

YD ¼ εpleq� εpl0 ηð Þ¼ 0, ð5Þ

where εpl0 ηð Þ is a threshold function for stress triaxiality η = �p/σvM (p is the hydro-static stress) determined based on
micromechanical tests on trabecular bone.46 Note that incorporating η in the damage models allows for capturing the
loading-mode dependent damage response of the bone. After detecting the micro-damage initiation, progressive failure
is governed by an exponentially evolving damage parameter D¼D upl

� �
, which is a function of the effective plastic dis-

placement. The rate of damage evolution is given by

_u
pl ¼ L _εpleq ð6Þ

where L is a scalar parameter estimated based on the mesh size and _εpleq is the rate of equivalent plastic strain.
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The yield function used in this work is estimated based on a well-established linear hardening law with 0.05E tan-
gent modulus and a yield strain of 0.9%.48 The load-dependent damage threshold values for equivalent plastic strains
under tension, compression, and torsion are set to εpl0 ηð Þ= 0.6%, 0.7%, and 1.4%, respectively.46 More details regarding
the implementation of this model and the process of calibrating parameters used in this damage model are presented
in.50,57

3 | RECONGAN: AI-ENHANCED MICROSTRUCTURE RECONSTRUCTION

In this section, we introduce the ReconGAN framework for the virtual reconstruction of a realistic geometrical models
of vertebra. This algorithm consists of three main phases: (i) synthesizing the trabecular bone microstructure using a
3D DCGANs trained with micro-QCT images obtained from cadaveric samples; (ii) extracting the cortical shell of the
vertebra from diagnostic CT scans of the patient's spine; (ii) infusing the virtually reconstructing trabecular microstruc-
ture into the cortical shell, which requires image processing tasks and performing an FE-based shape optimization to
obtain a realistic transition between the two regions. These phases are described in more detail next.

3.1 | Micro-QCT imaging and characterization

In order to prepare micro-QCT scans of the trabecular bone tissue, a cadaveric specimen (cf. Figure 1A) was collected
in collaboration with the cooperative human tissue network at the Ohio State University (OSU). All procedures were
reviewed and given an exemption approval by the OSU's investigation review board. The autopsy subject was a 57-year
old female with no history of infectious disease. Five cuboid trabecular bone specimens with dimensions
6 mm � 6 mm � 10 mm were extracted in the principal direction from the cadaveric vertebra using a precision saw
machine. The specimens were collected from the T1 to T2 vertebrae, both from the core and peripheral regions, and
later fixed in 70% ethanol and stored in 4�C to eliminate the risk of infection. The whole procedure of cutting and stor-
ing the specimen until performing micro-QCT scans lasted 3 days.

The samples were scanned using a Bruker SkyScan 1276 device with spatial resolution of 20 μm, while setting the
voltage for X-ray to 40 KV (cf. Figure 1B). The samples were scanned with a camera exposure time of 350 ms, resulting
in a scan time of approximately 4 h. The primary output from micro-QCT data is a voxelated gray-scale (GS) field,
which is then converted to equivalent bone mineral density (BMD) distribution. Figure 1A shows the reconstructed GS
microstructure of the trabecular bone obtained from micro-QCT data for one of the cubic specimens.

During the scans, a pair of Bruker calibration phantoms with known concentrations of calcium hydroxyapatite
(CaHA) were also scanned with the specimens. The known mass concentrations of these two phantoms (0.25 and
0.75 g/cm3) were calibrated with their measured GS values from micro-QCT images. Using these two data points, a lin-
ear relationship was established between the BMD and the scanned GS as

FIGURE 1 (A) Cadaveric vertebral sample and the micro-quantitative computed tomography (QCT) images associated with one of the

cuboid specimens extracted from its trabecular region; (B) Specimens setup and CaHA calibration phantoms within the micro-QCT

scanner tube
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ρ¼ αþβGS, ð7Þ

where α and β are calibration coefficients and the bone density, ρ, is given in [g/cm3]. In this study, α and β are evalu-
ated as �5.53 and 0.013, respectively. It must be noted that due to beam hardening effects, the size of the phantoms
slightly affects the measured density, meaning it is important to use a phantom with a similar cross-sectional area as
trabecular bone samples.

We use two statistical microstructural descriptors to characterize morphological features of the trabecular micro-
structures reconstructed from micro-QCT data. A two-point correlation function S2(r) is used to determine the probabil-
ity of finding two points at distance r, x1 = x and x2 = x + r, belonging to the same material phase pi.

58 This probability
distribution function (PDF) statistically quantifies both the local and global morphological distributions of the bone
within the trabecular microstructure, which can be expressed as

S2 rð Þ¼P x1,x2 � pið Þ: ð8Þ

It is also worth noting that at r = 0, the two-point correlation function yields the phase volume fraction.
The bone microstructures reconstructed from micro-QCT data can also be characterized based on image qual-

ity metrics such as the pixel intensity, contrast, and brightness. Note that it is highly important that the micro-
structural models created using DCGANs (Section 3.2) properly replicate these features. This is due to the fact
that, according to (7), the bone density is directly linked to the GS associated with each pixel (pixel intensity),
which in turn determines the distribution of elastic modulus of the bone using (2) in the FE mesh. In this work,
the similarity metric between actual and virtual images is determined based on the image histogram,59 h(g). This
histogram shows the GS range, i.e., the number of pixels/voxels within a given range of GS values. For instance,
in an 8-bit grayscale image, h(g) displays the distribution of 256 different possible pixel intensity values.

3.2 | Reconstruction of trabecular microstructure

The micro-QCT data obtained from cadaveric samples are used for training a 3D DCGAN to virtually reconstruct
realistic microstructural models of the trabecular bone. Original GAN models (vanilla-GAN) rely on training two inde-
pendent networks, known as generator and discriminator, in an adversarial manner. The generator G learns to map an
nd-dimensional random input latent vector z � pz(z) (usually sampled from a standard normal distribution) to realisti-
cally looking fake samples G(z) � pfake. The discriminator D simultaneously learns to distinguish between fake samples
G(z) created by the generator and samples from real data x � preal. In this adversarial game, the discriminator is tasked
to determine the probability D(G(z)) that the fake data belong to the real dataset, while the generator learns to create
more realistic samples that are not recognized as fake by the discriminator. Mathematically speaking, the two networks
play a two-player minmax game with the cost function

min
G

max
D

ℓGAN, ð9Þ

where ℓGAN is the adversarial loss function given by

ℓGAN ¼x�preal logD xð Þ½ �þz�pz log 1-D G zð Þð Þð Þ½ �: ð10Þ

In this equation, D(x) is the probability that x is from the real dataset. The generator is trained to minimize

ℓG
GAN ¼z�pz log 1-D G zð Þð Þð Þ½ �, ð11Þ

while the discriminator tries to maximize

6 of 19 AHMADIAN ET AL.



ℓD
GAN ¼x�preal logD xð Þ½ �þz�pz log 1-D G zð Þð Þð Þ½ �: ð12Þ

In a vanilla-GAN, each network is trained using a gradient-based approach while keeping parameters of the other
network fixed. In practice, the discriminator outperforms the generator and reaches a stage of vanishing gradients
for D, which leads to no more useful feedback to further train G. To stabilize the training process, several heuristic solu-
tions such as label-smoothing,60 two time-scale learning rule (TTUR),61 and addition of continuous noise to the input
of discriminator62 are proposed.

Main building blocks of vanilla-GANs are fully connected layers, which are replaced by deep convolutional
layers in DCGANs39 to specifically target imaging data. This also leads to a better training stability by utilizing
convolutions and transposed-convolutions (fractionally-strided convolution) for down-sampling and up-
sampling operations. Moreover, DCGANs utilize batch normalization (BatchNorm)63 to regulate the input to
each unit and leaky rectifier linear units (LeakyRelu)64 to prevent vanishing gradients. In the generator, the last
transposed convolution layer is followed by a hyperbolic tangent function to synthesize images in a bounded
pixel space. Further, the last convolutional layer of the discriminator is accompanied by a Sigmoid function for
the classification task.

In this study, a 3D DCGAN with the architecture shown in Figure 2 is implemented to synthesize the trabecular
bone microstructure. Note that no fully connected or pooling layer is used in this model and hyper-parameters of each
network are optimized via back-propagation. Also, convolutions are performed using strided 4 � 4 � 4 kernels. To fur-
ther stabilize the training process on the volumetric (voxel-based) imaging data obtained from micro-QCT, we used a
least square form of the loss function (LSGAN) given by Mao et al.65

ℓD
LSGAN ¼ 1

2
 D xð Þ�bð Þ2� �þ1

2
z�pz D G zð Þð Þ�að Þ2� �

,

ℓG
LSGAN ¼ 1

2
z�pz D G zð Þð Þ� cð Þ2� �

:

ð13Þ

In the equation above, a and b are labels of fake and real data, respectively, and c is the label used by the generator
to fool the discriminator. In the current DCGAN model, a = 0.9 and b = 0 are employed for labeling fake and real data.
The LSGAN is supplemented with TTUR for further stabilization and to avoid mode collapse. Both the generator and
the discriminator are then trained via mini-batch stochastic gradient-descent (SGD) based optimizer ADAM.66 To

FIGURE 2 Architecture of the 3D deep convolutional generative adversarial network model used for the virtual reconstruction of

trabecular microstructure
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stabilize the training for the volumetric images used in this study, several trial and error runs were performed to deter-
mine an optimal set of hyper-parameters.

Unlike classic stochastic microstructure reconstruction algorithms, DCGANs do not require an a priori objective
function to replicate target statistical microstructural descriptors. Instead, the objective function is encoded in the con-
volutional layers and evolves as the two adversarial networks train to outperform one another. Therefore, pre-training
this model could serve as a baseline to facilitate fine-tuning (transfer learning) for trabecular tissue synthesis in other
organs such as femur as supplementary data is introduced. Despite all these advantages, one of the main challenges for
training this model is the difficulty associated with acquiring a diverse and sufficiently large set of data, which requires
preparing multiple micro-QCT images. Note that training deep networks such as DCGANs with a limited number of
data (images) could substantially increase the risk of overfitting. Given that the only micro-QCT data available in this
work are from two cadaveric samples, a data augmentation approach67 was utilized to address this issue.

Classic data augmentation techniques for grayscale images typically involve image manipulations such as transla-
tion, rotation, scaling, flipping, random noise addition, and shearing.68 In this work, transformations causing shape
deformation such as shearing must be avoided during the augmentation process to preserve important characteristics of
micro-QCT images that affect the underlying trabecular microstructure. To achieve this, each image was transformed
to eight new images, each rotated at a random angle of θ = [0

�
, …, 180�

], followed by flipping that three times (up–
down, right–left, front–back). Inspired by the sliding window approach in object detection algorithms,69 for each aug-
mented image, the moving cuboid sampling technique was implemented to create cubic training images with lt � lt � lt
voxels and partial overlap. The size of training images was determined by comparing the average porosity of cubic sam-
ples of different sizes (323, 643, 1283) with the porosity of the original micro-QCT imaging data. This assumption was
later justified, as training the DCGAN model using smaller images created checkerboard artifacts and reflections in the
generated microstructures. Therefore, a size of 128 � 128 � 128 voxels was selected for volumetric images used for
training the model. This DCGAN algorithm was developed in the Pytorch library70 and then trained on two V100
NVIDIA GPUs with 32 GB of memory using the computing resources at the Ohio Supercomputer Center (average train-
ing time: 16 h).

As noted previously, the main motivation for using DCGANs to virtually reconstruct the trabecular microstructure
is its ability to scale-up the size of synthesized microstructures compared to the size of training data. This capability is
crucial for the reconstruction of a realistic geometrical model of vertebra, as it allows creating a sufficiently large trabec-
ular microstructure that can be embedded in the vertebra cortical shell extracted from the patient's CT scan
(cf. Section 3.3). Creating an enlarged synthetic image using DCGANs can theoretically be achieved by adding more
convolution layers to the generator network. However, altering the DCGAN architecture in this approach requires
retraining that at a much higher computational cost due to using a deeper generator network. Alternatively, one can
control the size of synthesized images without retraining the DCGAN by modifying dimensions of the input vector. In
this approach, which was employed in this work, while training is performed using images of size l0 with an input vec-
tor of size nz, an arbitrary-sized image of size li could be generated using a different input dimensionality of (a � b � c)
nz, where a, b, and c represent scaling factors in x, y, and z directions, respectively.

Figure 3 illustrates four trabecular bone microstructures with different sizes generated using the DCGAN model
described above. Note that, according to (2) and (7), the pixel intensity in these grayscale volumetric images is first used
to evaluate the density and then the elastic modulus of the bone. Figure 3 shows the distribution of the elastic modulus
evaluated using this approach in these synthesized microstructure, showing the ability of DCGAN to simulate the
increasing stiffness of the bone from external surface to central regions of trabecula. Clearly, this qualitative observation
is not sufficient to confirm the ability of this DCGAN model for reconstructing realistic trabecular microstructures. To
verify that these synthetic microstructures are statistically equivalent to those directly reconstructed from micro-QCT
data, we have compared their two-point correlation functions and voxel-based histograms in Figure 4. Both plots show
a good agreement between statistical microstructural descriptors corresponding to the synthesized (varying sized) and
actual (fixed size) microstructures. In particular, the error associated with two-point correlation functions are <2%
regardless of the size of the synthesized microstructure. The comparison of voxel-based histograms shows that,
although there is a small mismatch in the porous region (which is not incorporated in the FE model), the virtual and
actual microstructures are fairly similar within the bone tissue region.

It is worth mentioning that reconstructing a patient-specific model of the trabecular bone using the DCGAN model
introduced in this work requires access to a massive library of micro-QCT images obtained from a diverse set of cadav-
eric samples in terms of the age, sex, pre-existing disease, etc. This will allow creating an enlarged trabecular micro-
structure using micro-QCT data that best resembles a patient's morphometric data and their bone BMD determined
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from diagnostic CT scans. As described in the following section, this trabecular model is then integrated with the corti-
cal shell extracted from a CT scan to create a patient-specific geometrical model of the vertebra. Note that the trabecular
microstructures synthesized in Figure 3 and subsequently used for creating a whole vertebra model are based on a sin-
gle set of micro-QCT data (cf. Section 3.1) and a full library of these imaging data is currently under development by
the authors. Therefore, the vertebral model reconstructed next should not be regarded as an actual patient-specific
model, as the main objective of this work is to demonstrate the feasibility of this approach for creating such models.

3.3 | Creating whole vertebra models

Figure 5 illustrates the process of creating a geometrical model of the whole vertebra by engraving the cubic trabecular
microstructure generated using DCGAN to fill the cortical shell extracted from patient's CT scans. The initial thickness
of the cortical shell approximated from CT data is about 0.6 mm, which is compatible to measurements reported in the

FIGURE 3 Four trabecular bone microstructures synthesized using DCGAN with voxel sizes lA = 256, lB = 512, lC = 1024, and

lD = 2048 and corresponding distributions of the elastic modulus evaluated based on GS values. DCGAN, deep convolutional generative

adversarial network; GS, gray-scale

FIGURE 4 Comparison between (A) two-point correlation functions and (B) grayscale histograms of synthetic microstructures A–D
generated using DCGAN (cf. Figure 3) and the actual microstructure directly obtained from micro-QCT data. DCGAN, deep convolutional

generative adversarial network; QCT, quantitative computed tomography
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literature.71 Engraving and embedding the trabecular microstructure in the cortical shell was accomplished using an
open-source python library named scikit-image.72 The engraving process involves the subtraction of the cortical geome-
try from the enlarged trabecular microstructure, followed by filtering out unnecessary trabecular regions that fall out-
side the cortical shell periphery. Next, the subtracted trabecular microstructure is embedded in the cortical shell
geometry to create a realistic model of the vertebra (cf. Figure 5C). More details regarding different steps of this process
are provided in Figure 6. However, while the resulting microstructure might seem realistic (cf. Figure 5C), there is an
abrupt transition between sculpted trabecular region and the cortical shell, which could lead to sharp angles between
the two regions. This seemingly small flaw could lead to exceedingly high and unrealistic stress concentrations in this
interfacial region during a VF simulation, which in turn causes premature damage nucleation and thereby under-
prediction of the vertebra strength. The bone structure in an actual vertebral body is designed by nature such that there
is a smooth transition (tapered zone) between trabecular and cortical regions to eliminate such sites of stress
concentrations.

In order to eliminate a sharp transition between cortical and trabecular regions in the whole vertebra model, we
perform a shape optimization simulation73 inspired by the Wolff's law42 to minimize stress concentrations in these
regions. It must be noted that the assumption of the self-optimal design of the bone microstructure, that is, a remo-
deling rate dependent on mechanical stimuli, has been utilized in several studies, see for example.74,75 As a prelude to
this FE-based shape optimization, we must first generate a high-fidelity conforming mesh to create an FE model for the
virtual vertebral body. Given the low elastic modulus of the bone marrow within the trabecular region relative to that
of the bone tissue, the former is considered as pores in this model. Figure 7A illustrates a small portion of the con-
forming mesh used in this analysis, which was generated after the segmentation of voxel-based geometric model of the
vertebra using the software Simpleware76 (total number of elements: ≈7.7 million).

In the FE model of the vertebral body, we must also take into account the variation of the trabecular bone material
properties by mapping its elastic modulus calculated based on GS values in the voxelated microstructure (cf. Figure 7B)
to mesh elements. Note that these elements are not necessarily aligned with original image voxels after image segmen-
tation. Therefore, an average GS for each element was first evaluated as

FIGURE 5 Creating the geometrical model of the whole vertebra by engraving the trabecular microstructure generated using deep

convolutional generative adversarial network to fill the cortical shell extracted from the patient's CT scan

FIGURE 6 Process of engraving the trabecular microstructure generated using deep convolutional generative adversarial network to fill

the cortical shell geometry extracted from the patient's CT scan using the scikit-image library
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GSave ¼ 1
V

Z
V
GS x,y,zð ÞdV , ð14Þ

where V is the element volume and GS(x, y, z) is the grayscale corresponding to its Gauss quadrature point approxi-
mated using a trilinear interpolation between eight voxels confining (x, y, z). This average GS was then utilized to calcu-
late the bone density and subsequently the elastic modulus assigned to each element using (7) and (2).

A non-parametric shape optimization algorithm was implemented using the software TOSCA73 to evolve the bone
architecture in the vicinity of the trabecular-cortical interface into a more realistic architecture by minimizing von-
Mises stresses in this region. The zone in which the bone architecture is modified is limited to a close proximity of the
cortical shell to have a minimal impact on statistical microstructural descriptors of the trabecular bone away from this
region. In this non-parametric shape optimization, mesh nodes on the surface of bone are chosen as implicit parameters
(design nodes), which are iteratively updated (relocated) based on results of a linear elastic FE approximation to mini-
mize stress concentrations. The objective function is defined as

maximize j σvm xdesð Þ�σ0vm xdesð Þ j subject to
XNe

Ve ¼
XNe

V0
e , ð15Þ

where σvm and σvm
0 are current and initial von-Mises stresses at design nodes, xdes, respectively. Note that the optimiza-

tion is carried out subject to the constraint of no volumetric change, that is, the sum of element volumes, Ve, remains
unchanged.

During the shape optimization process, design nodes are modified using a heuristic re-design rule given by

Δxdes ¼ α σvm xdesð Þ�σ0vm xdesð Þ� �
: ð16Þ

In this equation, α is the distance in the search direction evaluated using the line-search method.77 The constrained
Laplacian smoothing algorithm78 was employed to preserve the FE mesh quality while relocating design nodes. Addi-
tional quality metrics such as element aspect ratios, dihedral angles, volume skewness, and shape factors were also
monitored to ensure the quality of the mesh is not deteriorated throughout the simulation. Figure 8 illustrates how
minimizing σvm in the cortical-trabecular interfacial zone results in a tapered transition in this region to eliminate unre-
alistic sites of stress concentrations.

4 | RESULTS AND DISCUSSION

In this section, we employ the whole vertebral model synthesized using ReconGAN to perform a feasibility study on
the impact of metastatic tumors on the VF response. Metastatic tumors are often categorized as osteolytic and osteoblas-
tic, where the former is caused by metastatic cancerous cells built up in the bone marrow. This phenomenon disrupts

FIGURE 7 (A) Small portion of the conforming finite element mesh and (B) variation of the elastic modulus in the trabecular region of

the vertebra model
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the bone remodeling process, which significantly reduces the bone stiffness/strength and makes it more vulnerable to
fracture.79 These softened regions often appear as voids or loss of mineralization in a CT scan due to significant destruc-
tion of the bone tissue. Furthermore, lytic metastases are accompanied by thinning of the trabecular network through
the entire vertebra.80 Blastic lesions, on the other hand, result from an uncontrolled formation of immature tissue with
an unorganized collagenous structure around the trabecular bone due to tumor-induced growth factors.81,82

Figure 9A illustrates a slice of co-registered CT-MRI scans, from which the tumor morphology is extracted for the
current study and incorporated in the FE model (cf. Figure 9B). The retrospective CT/MRI scans belong to a lung can-
cer patient (51 years old, female), who had been admitted to the Ohio State University James Comprehensive Cancer
Center. As shown in Figure 9C, we assumed two versions of this tumor in the FE models, that is, fully lytic and fully
blastic to better study their impact on the mechanical stability of vertebra. Note that to model a lytic tumor, the bone
tissue within the lesion area is removed due to its negligible stiffness and strength. Because blastic lesions are accompa-
nied by the deterioration of the bone stiffness in the affected area, according to Reference 83, the elastic modulus of the
trabecular bone is reduced by 19% in this region. Note that the elastic modulus reported for tumor cells in the literature
is orders of magnitude lower than that of the bone tissue, although it could have a wide range of variation between 0.1
to 200 KPa.84,85 In this work, we have assumed Etumor = 0.56 KPa and νtumor = 0.4.85

Figure 10 shows the setup and boundary conditions of the FE model of the vertebra to simulate its VF response
under combined compression and bending loads (flexion). As shown in this figure, portions of the intervertebral disc
(IVD) with effective properties EIVD = 17 MPa and νIVD = 0.4586 are also incorporated in the FE model (modeled as a
linear elastic material) to more realistically simulate the in-vivo loadings applied to the vertebra. The boundary condi-
tions consist of constraining the displacement degrees of freedom along the bottom surface of the lower IVD, while a
uniform downward displacement with the rate _uz ¼ 0:05 mm/s (in the middle) and a tilt angle with the rate _θz are
applied on the upper IVD. In this work, we study five flexion loading case scenarios denoted by C1 to C5, which in order
correspond to _θz ¼ 0:0,0:1,0:2,0:4, and 0.5

�
/s. Note that the first loading case scenario, C1: _θz ¼ 0:0, corresponds to

applying a uniform compression on the vertebra (no bending).

FIGURE 8 Performing finite element-based shape optimization to obtain a tapered transition from cortical to trabecular bone in the

virtual vertebra model, which avoid unrealistic stress concentrations in these regions during Vertebral Compression Fracture (VCF) simulations

FIGURE 9 (A) Co-registered CT-MRI scan of a vertebra with a metastatic tumor; (B) 3D reconstruction of tumor morphology added to

the virtual vertebral model generated using ReconGAN; (C) comparing lytic and blastic tumors in a small portion of the trabecular bone
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The VF simulations were conducted in Abaqus using the continuum damage model described in Section 2 for
approximating the initiation and evolution of damage in the bone tissue. The element deletion strategy was employed
to avoid convergence issues associated with fully damaged elements, which otherwise would be highly distorted due to
their zero stiffness. A self-contact model was also employed to avoid the inter-penetration of disconnected segments of
fractured bone under compression. Given the large number of elements in the FE models (healthy: 7.7 million, lytic:
6.5 million, and blastic: 9.8 million), the VF simulations were carried out in parallel using 48 processors, with run times
varying between 16 and 45 h depending on the mesh size.

Figure 11A illustrates the simulated force-displacement responses of healthy, lytic, and blastic vertebrae under the
C1 loading condition (uniform compression). Damage patterns in the healthy vertebra at different loading stages are

FIGURE 10 Model setup and applied boundary conditions for performing vertebral fracture simulations

FIGURE 11 (A) Force-displacement responses of healthy, lytic, and blastic vertebra subjected to uniform compression. (B–F) Damage

pattern at different loading stages, which initiates from the trabecular regions and propagates toward and eventually along the cortical shell.

Note that uz is the applied displacement boundary condition in the z direction, while fz refers to the resultant reaction force along the top

(or bottom) surface of the vertebra
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depicted in Figure 11B–F, showing that the damage initiates from weak regions of the trabecular bone and propagates
toward the cortical shell to form a macro-crack. We have also shown side and top views of damage patterns after failure
in all vertebral models in Figure 12. Note that the resulting fracture pattern in the healthy vertebra is compatible with
experimental observations from VF tests under a compression in Reference 87. Moreover, according to Figure 11A, the
peak load capacity (�3.9 kN) is within the physiological range for similar vertebral bodies.88,89 The figure also shows a
notable drop in the maximum load sustained by the vertebra in the presence of lytic (�28%) and blastic (�13%) tumors.
As expected, significant destruction of the bone tissue in the former case scenario leads to the most devastating impact
on strength. It is worth noting that the maximum displacement at fracture for the metastatic vertebrae remained nearly
unchanged despite their lower load bearing capacity, which is compatible with results of a recent in-vitro study on ver-
tebral bodies with lytic and blastic lesions.80

We have further studied the impact of metastatic tumor on the VF response of the lytic vertebra under flexion loads
C2 to C5. Figure 13A shows the resulting force-displacement responses of the vertebra under these loading conditions
and their comparison with the case of uniform compression, C1. Damage patterns after failure subjected to C1, C3, and
C5 loadings are illustrated in Figures 13B–D. Note the nonlinear behavior (yielding and strain hardening) observed after
the initial linear force-displacement response of the vertebra under different loading conditions corresponds to the plas-
tic behavior of the trabecular region. However, this nonlinear zone keeps shrinking by increasing the bending load,
such that a semi-brittle failure response is observed for the C5 loading condition. As shown in Figure 13A, this behavior
corresponds to damage accumulation in the anterior region of the vertebra due to magnified compressive stresses cau-
sed by the bending load. The accelerated damage accumulation in this region facilitates its propagation in the cortical
shell and causes a brittle failure response accompanied by a significant drop in the vertebra height in the anterior corti-
cal shell. Note that the damage pattern shown in Figure 13D is compatible with wedge-shaped fractures reported in
osteoporotic patients.90 This observation also highlights the importance of measuring the anterior height of the vertebra
for clinical assessment of VF.91

FIGURE 12 Fracture patterns in healthy, blastic, and lytic vertebra under uniform compression (C1)
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The reason for the brittle versus ductile failure responses of the lytic vertebra under C1 and C5 loadings, respectively,
can better be understood by analyzing corresponding elastic stress fields and cortical damage evolutions in Figure 14.
While the vertebra still yields an elastic load-displacement response, as shown in Figure 14, a uniform compressive load
(C1) causes sites of high-stress concentrations in the trabecular region, meaning the damage first nucleates in this
region when increasing the load. On the other hand, the flexion load gives rise to high-stress concentrations in the ante-
rior cortical bone, which accelerates the damage initiation in that. Comparing the damage patterns at two stages of

FIGURE 13 (A) Force-displacement responses of the lytic vertebra subject to uniform compression and flexion loads; (B–D) damage

patterns after failure under loadings C1, C3, and C5. Note that uz is the applied displacement boundary condition in the z direction, while fz
refers to the resultant reaction force along the top (or bottom) surface of the vertebra

FIGURE 14 (A) von-Mises stress distribution in the elastic zone on a cross-section of the lytic vertebra and (B) damage pattern in the

cortical shell of this vertebra under C1 (uniform compression) and C5 (high flexion) loading case scenarios
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loading for each case (C1 and C5) in Figure 14B verifies this hypothesis, as it shows C5 loading leads to damage nucle-
ation in the anterior region of the cortical shell. Note that, the amplified stress concentrations in these regions under
the C5 loading lead to damage initiation in the cortical bone at uz ¼ 0:23 mm, while for the case of C1 loading the corti-
cal shell does not experience a notable damage until uz ¼ 0:65 mm. Instead, under the C1 loading, the damage accumu-
lates in the trabecular region before propagating toward the cortical shell, which allows trabecula to absorb a
significant amount of energy before the development of a macro-crack.

5 | CONCLUSIONS

An AI-assisted framework, coined ReconGAN, was developed for synthesizing realistic digital twins of the human ver-
tebra and predicting its fracture response. ReconGAN enables integrating diagnostic imaging data (e.g., CT scans) with
virtual microstructural models of the trabecular bone, reconstructed using a 3D DCGAN model, to create realistic geo-
metrical models of the whole vertebra. The DCGAN model was trained using grayscale images of the trabecular bone
tissue obtained via micro-QCT and its accuracy was verified by comparing statistical microstructural descriptors of
actual and synthesized microstructures. An FE-based shape optimization approach was implemented to infuse the tra-
becular microstructure generated using this DCGAN model into the vertebra cortical shell extracted from patient's CT
scans by minimizing stress concentrations to provide a smooth transition between these regions. A feasibility study rely-
ing on virtual geometrical models of the whole vertebra synthesized using ReconGAN was then carried out on the
impact of metastatic tumors on the risk of VF. A phenomenological continuum damage model, together with a self-
contact model for fragmented bone pieces, were employed to predict the VF response. The main outcomes of the study
are summarized below:

• Under uniform compression, the damage initiates from weak regions of the trabecular bone and propagates toward
the cortical shell to form a macro-crack (failure). The energy absorbed by the trabecular region during this process
leads to a ductile failure response, which highlights the crucial impact of the trabecular microstructure on the
mechanical stability of vertebra under this loading condition.

• Incorporating two metastatic tumors confined within the trabecular region, both with identical shapes but modeled
as lytic and blastic lesions, led to �28% and �13% reduction in the vertebra strength, respectively.

• Under high flexion loads, amplified compressive stresses in the anterior cortical shell lead to accelerated damage
nucleation in this region, which in turn facilitates the formation of a macro-crack and a significant drop in the load
bearing capacity of vertebra. This fracture mode is also accompanied with a notable reduction in the vertebra height
in the anterior region, which is qualitatively confirmed by clinical observations.

It must be noted that the main purpose of the feasibility study presented here was to demonstrate the crucial impact
of the vertebra macroscopic shape and microstructural details, synthesized using ReconGAN, on the VF response. A
more comprehensive study aimed at linking the vertebra geometrical features to its mechanical stability, especially for
patients with SM, requires significant further developments beyond the scope of this work. For example, in addition to
experimentally calibrating and validating the FE model, mechano-biological factors must also be taken into account in
simulating the VF response in cancer patients. Moreover, considering the intricate microstructure and the nonlinear
material behavior of the intervertebral discs will provide a more realistic load transfer to the vertebra. Nevertheless, the
AI-enhanced computational framework introduced in this manuscript is a promising first step toward establishing such
patient-specific models for the assessment of the risk of VF and designing potential preventive therapeutic interventions
accordingly.
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