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Abstract. Phenology, the timing of cyclical and seasonal natural phenomena such as flower-
ing and leaf out, is an integral part of ecological systems with impacts on human activities like
environmental management, tourism, and agriculture. As a result, there are numerous potential
applications for actionable predictions of when phenological events will occur. However, despite
the availability of phenological data with large spatial, temporal, and taxonomic extents, and
numerous phenology models, there have been no automated species-level forecasts of plant phe-
nology. This is due in part to the challenges of building a system that integrates large volumes of
climate observations and forecasts, uses that data to fit models and make predictions for large
numbers of species, and consistently disseminates the results of these forecasts in interpretable
ways. Here, we describe a new near-term phenology-forecasting system that makes predictions
for the timing of budburst, flowers, ripe fruit, and fall colors for 78 species across the United
States up to 6 months in advance and is updated every four days. We use the lessons learned in
developing this system to provide guidance developing large-scale near-term ecological forecast
systems more generally, to help advance the use of automated forecasting in ecology.
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INTRODUCTION

Plant phenology, the timing of cyclical and seasonal
natural phenomena such as flowering and leaf out, influ-
ences many aspects of ecological systems (Chuine and
R�egni�ere 2017) from small-scale community interactions
(Ogilvie et al. 2017) to global-scale climate feedbacks
(Richardson et al. 2012). Because of the central impor-
tance of phenology, advanced forecasts for when pheno-
logical events will occur have numerous potential
applications including (1) research on the cascading
effects of changing plant phenology on other organisms;
(2) tourism planning related to flower blooms and
autumn colors; (3) planning for sampling and applica-
tion of management interventions by researchers and
managers; and (4) agricultural decisions on timing for
planting, harvesting, and application of pest prevention
techniques. However, due to the challenges of automati-
cally integrating, predicting, and disseminating large vol-
umes of data, there are limited examples of applied
phenology forecast systems.
Numerous phenology models have been developed to

characterize the timing of major plant events and under-
stand their drivers (Chuine et al. 2013). These models
are based on the idea that plant phenology is primarily

driven by weather, with seasonal temperatures being the
primary driver at temperate latitudes (Basler 2016,
Chuine and R�egni�ere 2017). Because phenology is driven
primarily by weather, it is possible to make predictions
for the timing of phenology events based on forecasted
weather conditions. The deployment of seasonal climate
forecasts (Weisheimer and Palmer 2014), those beyond
just a few weeks, provides the potential to forecast phe-
nology months in advance. This time horizon is long
enough to allow meaningful planning and action in
response to these forecasts. With well-established mod-
els, widely available data, and numerous use cases, plant
phenology is well suited to serve as an exemplar for
near-term ecological forecasting.
For decision-making purposes, the most informative

plant phenology forecasts will predict the response of
large numbers of species and phenophases, over large
spatial extents, and at fine spatial resolutions. The only
regularly updated phenology forecast in current opera-
tion predicts only a single aggregated “spring index” that
identifies when early-spring phenological events occur at
the level of the entire ecosystem (not individual species)
at a resolution of 1° latitude/longitude grid cells
(Schwartz et al. 2013, Carrillo et al. 2018). Forecasting
individual species and multiple phenological events at
higher resolutions is challenging due to the advanced
computational tools needed for building and maintain-
ing data-intensive automatic forecasting systems (White
et al. 2018, Welch et al. 2019). Automated forecasts
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requires building systems that acquire data, make
model-based predictions for the future, and disseminate
the forecasts to end-users, all in an automated pipeline
(Dietze et al. 2018, White et al. 2018, Welch et al. 2019).
This is challenging even for relatively small-scale single-
site projects with one to several species or response vari-
ables due to the need for advanced computational tools
to support robust automation (White et al. 2018, Welch
et al. 2019). Building an automated system to forecast
phenology for numerous species at continental scales is
even more challenging due to the large-scale data inten-
sive nature of the analyses. Specifically, because phenol-
ogy is sensitive to local climate conditions, phenology
modeling, and prediction should be done at high resolu-
tions (Cook et al. 2010). This requires repeatedly con-
ducting computationally intensive downscaling of
seasonal climate forecasts and making large numbers of
predictions. To make 4-km resolution spatially explicit
forecasts for the 78 species in our study at continental
scales requires over 90 million predictions for each
updated forecast. To make the forecasts actionable these
computational intensive steps need to be repeated in
near real-time and disseminated in a way that allows end
users to understand the forecasts and their uncertainties
(Dietze et al. 2018).
Here we describe an automated near-term phenology

forecast system we developed to make continental-scale
forecasts for 78 different plant species. Starting 1
December, and updated every 4 d, this system uses the
latest climate information to make forecasts for multiple
phenophases and presents the resulting forecasts and
their uncertainty on a dynamic website (available
online).4 Since the majority of plants complete budburst
and/or flowering by the summer solstice in mid-June,
this results in lead times of up to 6 months. We describe
the key steps in the system construction, including (1)
fitting phenology models, (2) acquiring and downscaling
climate data; (3) making predictions for phenological
events; (4) disseminating those predictions; and (5)
automating steps 2–4 to update forecasts at a sub-weekly
frequency. We follow Welch et al. (2019)’s framework
for describing operationalized dynamic management
tools (i.e., self-contained tools running automatically
and regularly) and describe the major design decisions
and lessons learned from implementing this system that
will guide improvements to automated ecological fore-
casting systems. Due to the data-intensive nature of fore-
casting phenology at fine resolutions over large scales,
this system serves as a model for large-scale forecasting
systems in ecology more broadly.

FORECASTING PIPELINE

Welch et al. (2019) break down the process of devel-
oping tools for automated prediction into four stages:
(1) acquisition, obtaining and processing the regularly

updated data needed for prediction; (2) prediction, com-
bining the data with models to estimate the outcome of
interest; (3) dissemination, the public presentation of the
predictions; and (4) automation, the tools and
approaches used to automatically update the predictions
using the newest data on a regular basis. We start by
describing our approach to modeling phenology and
then describe our approach to each of these stages.

Phenology modeling

Making large spatial-scale phenology forecasts for a
specific species requires species-level observation data
from as much of its respective range as possible (Taylor
et al. 2019). We used data from the USA National
Phenology Network (USA-NPN), which collects volun-
teer-based data on phenological events and has amassed
over 10 million observations representing over 1,000
species. The USA-NPN protocol uses status-based
monitoring, where observers answer “yes,” “no,” or “un-
sure” when asked if an individual plant has a specific
phenophase present (Denny et al. 2014). Phenophases
refer to specific phases in the annual cycle of a plant,
such as the presence of emerging leaves, flowers, fruit,
or senescing leaves. We used the “Individual Phenomet-
rics” data product, which provides preprocessed onset
dates of individually monitored plants for the pheno-
phases budburst, flowering, and fall colors for all spe-
cies with data between 2009 and 2017 (USA National
Phenology Network 2018). We only kept “yes” observa-
tions where the individual plant also had a “no” obser-
vation within the prior 30 d and dropped any records
where a single plant had conflicting records for pheno-
type status or more than one series of “yes” observa-
tions for a phenophase in a 12-month period. We built
models for species and phenophase combinations with
at least 30 observations (Fig. 1B) using daily mean tem-
perature data at the location and time of each observa-
tion from the PRISM 4-km data set (PRISM Climate
Group 2004). We also included contributed models of
budburst, flowering, and/or fruiting for five species that
were not well represented in the USA-NPN data set
(see Appendix S1: Table S2; Prev�ey et al. [2020]; Bieder-
man et al. [2018]).
For each species and phenophase, we fit an ensemble of

four models using daily mean temperature as the sole dri-
ver (Fig. 1C). The general model form assumes a pheno-
logical event will occur once sufficient thermal forcing
units accumulate from a specified start day (Chuine et al.
2013, Chuine and R�egni�ere 2017). The specification of
forcing units is model specific, but all are derived from
the 24-h daily mean temperature. In a basic model a forc-
ing unit is the maximum of either 0 or the mean tempera-
ture above 0°C (i.e., growing degree days). The amount of
forcing units required, and the date from which they start
accumulating are parameterized for each species and phe-
nophase (see Appendix S1: Table S1). Ensembles of multi-
ple models generally improve prediction over any single4 https://phenology.naturecast.org/
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model by reducing bias and variance, and in a phenology
context allow more accurate predictions to be made with-
out knowing the specific physiological processes for each
species (Basler 2016, Yun et al. 2017, Dormann et al.
2018). We used a weighted ensemble of four phenology
models. We derived the weights for each model within the
ensemble using stacking to minimize the root mean
squared error on held out test data (100-fold cross-valida-
tion) as described in Dormann et al. (2018) (see
Appendix S1: Sec. S1). After determining the weights, we
fit the core models a final time on the full data set. Since
individual process-based phenology models are not prob-
abilistic, they do not allow the estimation of uncertainty
in the forecasts. Therefore, we used the variance across
the five climate models to represent uncertainty (see Pre-
diction). Finally, we also fit a spatially corrected long-term
average model for use in calculating anomalies (see Dis-
semination). This uses the past observations in a linear
model with latitude as the sole predictor (see
Appendix S1: Table S1).
In our pipeline, 190 unique phenological models (one

for each species and phenophase combination, see

Appendix S1: Table S2) needed to be individually
parameterized, evaluated, and stored for future use. To
consolidate all these requirements we built a dedicated
software package written in Python, pyPhenology, to
build, save, and load models, and also apply them to
gridded climate data sets (Taylor 2018). The package
also integrates the phenological model ensemble so that
the four sub-models can be treated seamlessly as one in
the pipeline. After parameterizing each model, its speci-
fications are saved in a text-based JSON file that is
stored in a git repository along with a metadata file
describing all models (Fig. 1D). This approach allows
for the tracking and usage of hundreds of models, allow-
ing models to be easily synchronized across systems, and
tracking versions of models as they are updated (or even
deleted).

Acquisition and downscaling of climate data

Since our phenology models are based on accumu-
lated temperature forcing, making forecasts requires
information on both observed temperatures (from 30

FIG. 1. Flowchart of initial model building and automated pipeline steps. Letters indicate the associate steps discussed in the
paper.
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November of the prior year up to the date a forecast is
made) and forecast temperatures (from the forecast date
onward). For observed data, we used 4 km 24-h daily
mean temperature from PRISM, a gridded climate data
set for the continental U.S.A., which interpolates on the
ground measurements and is updated daily (PRISM Cli-
mate Group 2004). These observed data are saved in a
netCDF file, which is appended with the most recent
data every time the automated forecast is run. For cli-
mate forecasts, we used the Climate Forecast System
Version 2 (CFSv2; a coupled atmosphere–ocean–land
global circulation model) 2-m temperature data, which
has a 6-h time step and a spatial resolution of 0.25° lati-
tude/longitude (Saha et al. 2014). CFSv2 forecasts are
projected out 9 months from the issue date and are
updated every 6 h. The five most recent climate forecasts
are downloaded for each updated phenology forecast to
accommodate uncertainty (see Prediction).
Because the gridded climate forecasts are issued at

large spatial resolutions (0.25°), this data requires down-
scaling to be used at ecologically relevant scales (Cook
et al. 2010). A downscaling model relates observed val-
ues at the smaller scale to the larger scale values gener-
ated by the climate forecast during a past time period.
We regressed these past conditions from a climate
reanalysis of CFSv2 from 1995–2015 (Saha et al. 2010)
against the 4-km daily mean temperature from the
PRISM data set for the same time period (PRISM Cli-
mate Group 2004) to build a downscaling model using
asynchronous regression (Fig. 1E–G). The CFSv2 data
is first interpolated from the original 0.25° grid to a
4-km grid using distance weighted sampling, then an
asynchronous regression model is applied to each 4-km
pixel and calendar month (Stoner et al. 2013, see
Appendix S1: Section S2). The two parameters from the
regression model for each 4-km cell are saved in a
netCFD file by location and calendar month (Fig. 1H).
This downscaling model, at the scale of the continental
United States, is used to downscale the most recent
CFSv2 forecasts to a 4-km resolution during the auto-
mated steps.
We used specialized Python packages to overcome the

computational challenges inherent in the large CFSv2
climate data set (Python Software Foundation 2003).
The climate forecast data for each phenology forecast
update is 10–40 gigabytes, depending on the time of year
(time series are longer later in the year). While it is possi-
ble to obtain hardware capable of loading this data set
into memory, a more efficient approach is to perform
the downscaling and phenology model operations itera-
tively by subsetting the climate data set spatially and
performing operations on one chunk at a time. We used
the Python package xarray (Hoyer and Hamman 2017),
which allows these operations to be efficiently performed
in parallel through tight integration with the dask pack-
age (Dask Development Team 2016). The combination
of dask and xarray allows the analysis to be run on indi-
vidual workstations, stand-alone servers, and high

performance computing systems, and to easily scale to
more predictors and higher resolution data.

Prediction

The five most recent downscaled climate forecasts are
each combined with climate observations to make a five-
member ensemble of daily mean temperature across the
continental USA (Fig. 1L). These are used to make pre-
dictions using the phenology model for each species and
phenophase (Fig. 1M). Each climate ensemble member
is a three-dimensional matrix of latitude 9 longi-
tude 9 time at daily time steps extending from 1
November of the prior year to 9 months past the issue
date. The pyPhenology package uses this object to make
predictions for every 4-km grid cell in the contiguous
United States, producing a two-dimensional matrix (lati-
tude 9 longitude) where each cell represents the pre-
dicted Julian day of the phenological event. This results
in approximately one-half million predictions for each
run of each phenology model and 90 million predictions
per run of the forecasting pipeline. The output of
each model is cropped to the range of the respective
species (U.S. Geological Survey 1999) and saved as a
netCDF file (Fig. 1N) for use in dissemination and later
evaluation.
An important aspect of making actionable forecasts is

providing decision makers with information on the
uncertainty of those predictions (Dietze et al. 2018).
One major component of uncertainty that is often
ignored in near-term ecological forecasting studies is the
uncertainty in the forecasted drivers. We incorporate
information on uncertainty in temperature, the only dri-
ver in our phenology models, using the CFSv2 climate
ensemble (Fig. 1I; see Acquisition). The members of the
climate ensemble each produce a different temperature
forecast due to differences in initial conditions (Weishei-
mer and Palmer 2014). For each of the five climate mem-
bers, we make a prediction using the phenology
ensemble, and the uncertainty is estimated as the vari-
ance of these predictions (see Appendix S1: Section S1).
This allows us to present the uncertainty associated with
climate, along with a point estimate of the forecast,
resulting in a range of dates over which a phenological
event is likely to occur.

Dissemination

To disseminate the forecasts, we built a website that
displays maps of the predictions for each unique species
and phenophase (see footnote 4; Figs. 1Q, 2). We used
the Django web framework and custom JavaScript to
allow the user to select forecasts by species, phenophase,
and issue date (Fig. 2D). The main map shows the best
estimate for when the phenological event will occur for
the selected species (Fig. 2A). Actionable forecasts also
require an understanding of how much uncertainty is
present in the prediction (Dietze et al. 2018), because
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knowing the expected date of an annual event such as
flowering isn’t particularly useful if the confidence inter-
val stretches over several months. Therefore, we also dis-
play a map of uncertainty quantified as the 95%
prediction interval, the range of days within which the

phenology event is expected to fall 95% of the time
(Fig. 2C). Finally, to provide context to the current
years predictions, we also map the predicted anomaly
(Fig. 2B). The anomaly is the difference between the
predicted date and the long-term, spatially corrected,

FIG. 2. Screenshot of the forecast presentation website (http://phenology.naturecast.org) showing the forecast for the leaf out of
Acer saccharinum in Spring 2019 issued on 21c February 2019. The maps represent (A) the predicted date of leaf out, (B) the anom-
aly compared to prior years, and (C) the 95% confidence interval. In the upper right is (D) the interface for selecting different spe-
cies, phenophases, or forecast issue dates via drop down menus.
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average date of the phenological event (Fig. 1O; see
Appendix S1: Table S1).

Automation

All of the steps in this pipeline, other than phenology
and downscaling model fitting, are automatically run
every 4 d. To do this, we use a cron job running on a
local server. Cron jobs automatically rerun code on set
intervals. The cron job initiates a Python script that runs
the major steps in the pipeline. First, the latest CFSv2
climate forecasts are acquired, downscaled, and com-
bined with the latest PRISM climate observations
(Fig. 1I–L). This data is then combined with the phenol-
ogy models using the pyPhenology package to make
predictions for the timing of phenological events
(Fig. 1M–N). These forecasts are then converted into
maps and uploaded to the website (Fig. 1O–Q). To
ensure that forecasts continue to run even when unex-
pected events occur it is necessary to develop pipelines
that are robust to unexpected errors and missing data,
and are also informative when failures inevitably do
happen (Welch et al. 2019). We used status checks and
logging to identify and fix problems and separated the
website infrastructure from the rest of the pipeline. Data
are checked during acquisition to determine if there are
data problems and when possible alternate data is used
to replace data with issues. For example, members of the
CFSv2 ensemble sometimes have insufficient time series
lengths. When this is the case, that forecast is discarded
and a preceding climate forecast obtained. With this
setup, occasional errors in upstream data can be ignored,
and larger problems identified and corrected with mini-
mal downtime. To prevent larger problems from prevent-
ing access to the most recent successful forecasts the
website is only updated if all other steps run successfully.
This ensures that user of the website can always access
the latest forecasts.
Software packages used throughout the system

include, for the R language, ggplot2 (Wickham 2016),
raster (Hijmans 2017), prism (Hart and Bell 2015), sp
(Pebesma and Bivand 2005), tidyr (Wickham and Henry
2018), lubridate (Grolemund and Wickham 2011), and
ncdf4 (Pierce 2017). From the Python language, we also
utilized xarray (Hoyer and Hamman 2017), dask, (Dask
Development Team 2016), scipy (Jones et al. 2001),
numpy (Oliphant 2006), pandas (McKinney 2010), and
mpi4py (Dalcin et al. 2011). All code described is avail-
able on a GitHub repository; the code as well as 2019
forecasts and observations (see Evaluation) are also per-
manently archived on Zenodo (see Data Availability).

Evaluation

A primary advantage of near-term forecasts is the
ability to rapidly evaluate forecast proficiency, thereby
shortening the model development cycle (Dietze et al.
2018). Phenological events happen throughout the

growing season, providing a consistent stream of new
observations to assess. We evaluated our forecasts (made
from 1 December 2018 thru 1 May 2019) using observa-
tions from the USA-NPN from 1 January 2019 through
8 May 2019 and subset to species and phenophases rep-
resented in our system (Fig. 3; USA National Phenology
Network [2019]). This resulted in 1,581 phenological
events that our system had forecasts for (588 flowering
events, 991 budburst events, and two fall coloring across
65 species, see Appendix S1: Table S3). For each forecast
issue date, we calculated the root mean square error
(RMSE) and average forecast uncertainty for all events
and all prior issue dates. We also assessed the distribu-
tion of absolute errors ( dDOY �DOY) for a subset of
issue dates (approximately two a month).
Forecast RMSE and uncertainty both decreased for

forecasts with shorter lead time (i.e., closer to the date
the phenological event occurred), also known as the
forecast horizon (Fig. 4; Petchey et al. [2015]). Forecasts
issued at the start of the year (on 5 January 2019) had a
RMSE of 20.9 d, while the most recent forecasts (on 5
May 2019) had an RMSE of only 18.8 d. The average
uncertainty for the forecasts were 7.6 and 0.2 d, respec-
tively, for 5 January and 5 May. Errors were normally
distributed with a small over-prediction bias (mean abso-
lute error values of 6.8–12.1, Fig. 5). This bias also
decreased as spring progressed. These results indicate a
generally well performing model, but also one with sig-
nificant room for improvement that will be facilitated by
the iterative nature of the forecasting system.

DISCUSSION

We created an automated plant phenology-forecasting
system that makes forecasts for 78 species and four dif-
ferent phenophases across the entire contiguous United
States. Forecasts are updated every 4 d with the most
recent climate observations and forecasts, converted to
static maps, and uploaded to a website for dissemina-
tion. We used only open source software and data for-
mats, and free publicly available data. While a more
comprehensive evaluation of forecast performance is
outside the scope of this paper, we note that the majority
of forecasts provide realistic phenology estimates across
known latitudinal and elevational gradients (Fig. 2),
and forecast uncertainty and error decreases as spring
progresses (Fig. 4). While there is a bias from over-
estimating phenological events, estimates were, on-average,
within 2–3 weeks of the true dates throughout the spring
season.
Developing automated forecasting systems in ecology

is important both for providing decision makers with
near real-time predictions and for improving our under-
standing of biological systems by allowing repeated tests
of, and improvements to, ecological models (Dietze
et al. 2018, White et al. 2018, Welch et al. 2019). To
facilitate the development of ecological forecasts, we
need both active development, descriptions, and
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discussion of a variety of forecasting systems. These dis-
cussions of the tools, philosophies, and challenges
involved in forecast pipeline development will advance
our understanding of how to most effectively build the
systems, thereby lowering the entry barrier of opera-
tionalizing ecological models for decision making.
Active development and discussion will also help us
identify generalizable problems that can be solved with
standardized methods, data formats, and software pack-
ages. Tools such as this can be used to more efficiently
implement new ecological forecast systems, and facilitate

synthetic analyses and comparisons across a variety of
forecasts.
Automated forecasting systems typically involve mul-

tiple major steps in a combined pipeline. We found that
breaking the pipeline into modular chunks made main-
taining this large number of components more manage-
able (White et al. 2018, Welch et al. 2019). For
generalizable pieces of the pipeline, we found that turn-
ing them into software packages eased maintenance by
decoupling dependencies and allowing independent test-
ing. Packaging large components also makes it easier for

FIG. 3. Locations of phenological events that have occurred between 1 January 2019 and 5 May 2019 obtained from the USA
National Phenology Network (blue circles), and all sampling locations in the same data set (red points). Four individual plants are
highlighted, with numbers indicating the USA National Phenology Network database ID. The solid line indicates the predicted
event date as well as the 95% confidence interval for a specified forecast issue date, and the dashed line indicates the observed event
date. The x-axis corresponds to the date a forecast was issued, while the y-axis is the date flowering or budburst was predicted to
occur. For example, on 1 January 2019, the P. tremuloides plant was forecast to flower sometime between 29 March and 24 April
(solid lines). The actual flowering date was 18 March (dashed line).

FIG. 4. The root mean square error (RMSE) and the average uncertainty (SD) of forecasts issued between 2 December 2018
and 5 May 2019 for 1,581 phenological events representing 65 species. The y-axis scale is in days (d) for both RMSE and SD.
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others to use code developed for a forecasting system.
The phenology modeling package, pyPhenology, was
developed for the current system, but is generalized for
use in any phenological modeling study (Taylor 2018).
We also found it useful to use different languages for dif-
ferent pieces of the pipeline. Our pipeline involved tasks
ranging from automatically processing gigabytes of cli-
mate data to visualizing results to disseminating those
results through a dynamic website. In such a pipeline no
single language will fit all requirements, thus we made
use of the strengths of two languages (Python and R)
and their associate package ecosystems. Interoperability
is facilitated by common data formats (csv and netCDF
files), allowing scripts written in one language to com-
municate results to the next step in the pipeline written
in another language.
This phenology-forecasting system currently involves

190 different ensemble models, one for each species and
phenological stage, each composed of four different phe-
nology sub-models and their associated weights for a
total of 760 different models. This necessitates having a
system for storing and documenting models, and subse-
quently updating them with new data and/or methods
over time. We stored the fitted models in JSON files (an
open-standard text format). We used the version control
system git to track changes to these text-based model
specifications. While git was originally designed for
tracking changes to code, it can also be leveraged for
tracking data of many forms, including our model speci-
fications (Ram 2013, Bryan 2018, Yenni et al. 2019).
Managing many different models, including different
versions of those models and their associate provenance,
will likely be a common challenge for ecological forecast-
ing (White et al. 2018) as one of the goals is iteratively
improving the models.
The initial development of this system has highlighted

several potential areas for improvement. First, the
data-intensive nature of this forecasting system provides
challenges and opportunities for disseminating results.
Currently static maps show the forecast dates of pheno-
logical events across each species respective range. How-
ever, this only answers one set of questions and makes it

difficult for others to build on the forecasts. Additional
user interface design, including interactive maps and the
potential to view forecasts for a single location, would
make it easier to ask other types of questions such as
“Which species will be in bloom on this date in a particu-
lar location?” User interface design is vital for successful
dissemination, and tools such the Python package
Django used here, or the R packages Shiny and Rmark-
down, provide flexible frameworks for implementation
(White et al. 2018, Welch et al. 2019). In addition, it
would be useful to provide access to the raw data under-
lying each forecast. The sheer number of forecasts makes
the biweekly forecast data relatively large, presenting
some challenges for dissemination through traditional
ecological archiving services like Dryad and Zenodo. If
stored as csv files, every forecast would have generated
15 gigabytes of data. We addressed this by storing the
forecasts in compressed netCDF files, which are opti-
mized for large-scale multidimensional data and, in
our case, are 300 times smaller than the csv files
(50 megabytes per forecast).
In addition to areas for improvement in the forecast-

ing system itself, its development has highlighted areas
for potential improvement in phenology modeling.
Other well-known phenological drivers could be incor-
porated into the models, such as precipitation and day
length. Precipitation forecasts are available from the
CFSv2 data set, though their accuracy is considerably
lower than temperature forecasts (Saha et al. 2014).
Other large-scale phenological data sets, such as remo-
tely sensed spring green up could be used to constrain
the species level forecasts made here (Melaas et al.
2016). Our system does not currently integrate observa-
tions about how phenology is progressing within a year
to update the models. USA-NPN data are available in
near real time after they are submitted by volunteers,
thus there is opportunity for data assimilation of phenol-
ogy observations. Making new forecasts with the latest
information not only on the current state of the climate,
but also on the current state of the plants themselves
would likely be very informative (Luo et al. 2011, Dietze
2017). For example, if a species is leafing out sooner

FIG. 5. Distribution of absolute errors (prediction minus observed) for 1,581 phenological events for 11 selected issue dates.
Labels indicate the mean absolute error.
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than expected in one area, it is likely that it will also leaf
out sooner than expected in nearby regions. This type of
data assimilation is important for making accurate fore-
casts in other disciplines including meteorology (Bauer
et al. 2015, Carrassi et al. 2018). However, process-
based plant phenology models were not designed with
data assimilation in mind (Chuine et al. 2013). Clark
et al. (2014) built a Bayesian hierarchical phenology
model of budburst that incorporates the discrete obser-
vations of phenology data. This could serve as a starting
point for a phenology-forecasting model that incorpo-
rates data assimilation and allows species with relatively
few observations to borrow strength from species with a
large number of observations. The model from Clark
et al. (2014) also incorporates all stages of the bud devel-
opment process into a continuous latent state, thus there
is also potential for forecasting the current phenological
state of plants, instead of just the transition dates as is
currently done in this forecast system.
Using recent advances in open source software and

large-scale open data collection we have implemented an
automated high-resolution, continental-scale, species-
level, phenology-forecast system. Implementing a system
of this scale was made possible by a new phenology data
stream and new computational tools that facilitate large
scale analysis with limited computing and human
resources. Most recent research papers describing eco-
logical forecast systems focus on only the modeling
aspect (Chen et al. 2011, Carrillo et al. 2018, Van Doren
and Horton 2018), and studies outlining implementation
methods and best practices are lacking (but see White
et al. 2018, Welch et al. 2019). Making a forecast system
operational is key to producing applied tools, and
requires a significant investment in time and other
resources for data logistics and pipeline development.
Major challenges here included the automated process-
ing of large meteorological data sets, efficient applica-
tion of hundreds of phenological models, and stable,
consistently updated, and easy to understand dissemina-
tion of forecasts. By discussing how we addressed these
challenges, and making our code publicly available, we
hope to provide guidance for others developing ecologi-
cal forecasting systems.
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