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Abstract

In electrocardiography, the “classic” inverse problem is the reconstruction of

electric potentials at a surface enclosing the heart from remote recordings at

the body surface and an accurate description of the anatomy. The latter being

affected by noise and obtained with limited resolution due to clinical con-

straints, a possibly large uncertainty may be perpetuated in the inverse recon-

struction. The purpose of this work is to study the effect of shape uncertainty

on the forward and the inverse problem of electrocardiography. To this aim,

the problem is first recast into a boundary integral formulation and then

discretised with a collocation method to achieve high convergence rates and a

fast time to solution. The shape uncertainty of the domain is represented by a

random deformation field defined on a reference configuration. We propose a

periodic-in-time covariance kernel for the random field and approximate the

Karhunen–Loève expansion using low-rank techniques for fast sampling. The

space–time uncertainty in the expected potential and its variance is evaluated

with an anisotropic sparse quadrature approach and validated by a quasi-

Monte Carlo method. We present several numerical experiments on a simpli-

fied but physiologically grounded two-dimensional geometry to illustrate the

validity of the approach. The tested parametric dimension ranged from 100 up

to 600. For the forward problem, the sparse quadrature is very effective. In the

inverse problem, the sparse quadrature and the quasi-Monte Carlo method

perform as expected, except for the total variation regularisation, where con-

vergence is limited by lack of regularity. We finally investigate an H1=2

regularisation, which naturally stems from the boundary integral formulation,

and compare it to more classical approaches.
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1 | INTRODUCTION

Electrocardiographic recordings at the body surface, such as the standard 12-lead electrocardiogram (ECG), are a direct
consequence of the electric activity of the heart. The spatial resolution of such recordings depends on the number of
electrodes placed on the chest, ranging from no more than 10 of the standard ECG to hundreds of electrodes composing
high-density body surface potential maps (BSPMs). Along with an accurate description of the torso anatomy, BSPMs
are sufficiently informative to enable a non-invasive characterisation of cardiac electrophysiology, termed ECG imag-
ing.1 ECG imaging technologies have been extensively validated in experimental, animal and, more recently, clinical
settings, with promising results.2

The ECG imaging problem can mathematically be formulated as an inverse problem. The most classical formulation
of it is associated with a potential-based forward problem, which amounts to determining the BSPM on the chest from
the electric potential at a surface enclosing the heart, for example, the epicardium. The inverse problem of electrocardi-
ography consists therefore in recovering the epicardial potential from the BSPM.3 As typical for inverse problems, how-
ever, the ECG imaging problem is severely ill-posed in the sense of Hadamard, since arbitrarily small perturbations of
the BSPM, such as noise, may yield large variations in the epicardial potential. It thus requires regularisation to penalise
non-physical solutions and a strategy to optimally select the associated regularisation parameter. For the ECG inverse
problem, several kinds of regularisations have been proposed over the last three decades, see Reference 4 for a review.
The standard Tikhonov regularisations of zeroth, first or second order3,5 are easy to implement thanks to the closed-
form solution of the quadratic inverse problem. Closely related to the Tikhonov regularisation is the generalised trun-
cated singular value decomposition, in which small singular values of the forward operator are filtered out.6 The inverse
problem can also be interpreted from a Bayesian perspective.7 In this case, the maximum a posteriori estimator, which
matches the classical Tikhonov solution under the usual hypothesis of a standard Gaussian prior distribution, offers
more flexibility in embodying prior knowledge in the inverse problem, for example, from a training data set. Non-
smooth regularisations such as total variation (TV) are a valid alternative to quadratic approaches in the presence of
sharp gradients in the reconstructed data,8 but lead to a significantly more difficult solution of the inverse problem.
Approximated or smoothed versions of TV are therefore popular.4 More recently, physiology-based and spatio-temporal
regularisation approaches have also been considered.9,10

The potential-based forward problem is particularly attractive when the torso is assumed as a homogeneous electric
conductor. Then, the forward problem can be conveniently recast into an integral formulation involving only the
boundaries of the torso, that is, the epicardium and the chest, with no need of solving the problem in the full three-
dimensional (3D) domain.11,12 The numerical treatment of the boundary formulation is however less practical than a
standard finite element approach in 3D, as it requires special care in the treatment of singular boundary integrals on
piecewise smooth surfaces, like triangulated surfaces obtained from the segmentation of cardiac images. Acquired with
given clinical constraints, imaging data are typically of limited resolution and noisy. Therefore, the segmentation of
selected cavities is challenging and certainly subject to uncertainty. In the case of the heart, segmentation is made even
more difficult by the movement of the organ. As a consequence, the resulting segmentation is subject to time-dependent
shape uncertainty. This uncertainty in the anatomy propagates through the solution of the inverse problem, resulting
in a reconstruction also affected by uncertainty.

In spite of its acknowledged importance,13 uncertainty quantification in the context of cardiac modelling has
emerged only very recently, see for example References 14–17. In electrocardiography, the most relevant uncertainty to
account for is in the body surface electric recordings. Within a Bayesian framework, the inverse problem maps a prior
distribution of the pericardial potentials into a posterior distribution, which also accounts for noise in the input data
through the likelihood.7 Model uncertainty has been considered as well. The electric conductivity of the torso is highly
heterogeneous, for example, lungs, blood masses, interstitial tissue, muscles and bones significantly differ in terms of
conduction, and uncertain, which may influence the reconstruction as well.18,19 In the present context, shape uncer-
tainty has however received very limited attention thus far, despite preliminary studies showed a non-negligible impact
on the inverse reconstruction.20,21

From the mathematical perspective, sophisticated tools and theory for the treatment of shape uncertainties are
already available. Besides the fictitious domain approach considered in Reference 22, one typically distinguishes two
approaches to deal with shape uncertainties: the perturbation method, see Reference 23 and the references therein,
which is suitable to treat small perturbations of the nominal shape and the domain mapping method, see References
24–27. Here, we focus on the more flexible domain mapping approach. Then, the computation of quantities of interest,
such as expectation and variance of the potential, gives rise to high dimensional quadrature problems for the random
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parameters. Given sufficient parametric regularity, sophisticated sparse quadrature and quasi-Monte Carlo methods,
see for example References 28–32, can be applied. If such regularity is not present, one has to resort to the only slowly
converging, Monte Carlo method.

This work aims at evaluating the impact of space–time uncertainty on the forward and inverse problems of electro-
cardiography. To model the shape uncertainty, we consider a space–time reference geometry and a random deforma-
tion field, that we represent by its Karhunen–Loève expansion. The covariance of the random deformation field
depends on both space and time and accounts for the periodicity of the motion of the heart. Furthermore, we formulate
the forward problem as a boundary integral equation by assuming a constant torso conductivity. We refer to Reference
12 for all the details of this approach and in particular for the applied discretisation. The boundary integral formulation
is particularly suitable for our purpose, because both input data and observations are confined to a surface, these are
the pericardium and the chest, respectively. In order to accelerate the computation of quantities of interest, we dis-
cretise the spatial problem with a rapidly converging collocation method, achieving high accuracy already with a rela-
tively coarse mesh, while the deformation field is approximated by an efficient low-rank technique.

In order to assess the effect of the shape uncertainty, we estimate the expectation and the variance of the chest
potential (forward problem) and the pericardial potential (inverse problem) using the anisotropic sparse quadrature
method from Reference 28. This approach is validated against the quasi-Monte Carlo method based on Halton points,
see Reference 32. The inverse problem, known to be severely ill-posed, needs an adequate regularisation. We employ
classic regularisations proposed specifically for our problem of interest, such as zero order Tikhonov, the first-order
Tikhonov and TV.4 The implication of the choice of the regularisation on the convergence rate of the sparse quadrature
is also analysed. Finally, we explore an H1=2 regularisation, see References 33, a natural option stemming from the
boundary integral formulation of the problem itself.

The paper is organised as follows. In section 2, we introduce the mathematical description of the problem at hand.
Section 3 provides the corresponding boundary integral formulation and the discretisation of the involved boundary
integral operators. The different regularisation methods for the inverse problem are presented in section 4. Section 5,
dedicated to modelling shape uncertainty, is the cornerstone of the present work. Finally, section 6 is devoted to the
numerical assessment of a two-dimensional, Cine Magnetic Resonance Imaging (MRI)-derived geometry. Herein, we
validate the sparse quadrature and we quantify the effect of the shape uncertainty on the forward and inverse
problems.

2 | PROBLEM FORMULATION

2.1 | The forward problem of electrocardiography

Mathematically, we start from a smooth domain D�Rd representing the torso, whose boundaries are the chest denoted
by Γ and the pericardium denoted by Σ. In other words, we have ∂D¼Σ[Γ and Σ \ Γ¼;, see Figure 1 for a visualisa-
tion of the domain.

The pericardium depends periodically on time and is subject to uncertainty. To model the time-dependence, let
0,T½ � be the time interval of interest, where T >0 is the duration of one heartbeat. To model the uncertainty, let
Ω,ℱ,Pð Þ denote a complete and separable probability space, where Ω is a sample space, ℱ⊆ 2Ω is a σ-field and P :ℱ!
0,1½ � is a probability measure. In what follows, we write Σ t,ωð Þ with t ∈ 0,T½ Þ and ω∈Ω to indicate the dependence of
the pericardium on time and on the random parameter. Obviously, the time-dependence and the shape uncertainty of
the heart also affect the torso, which we denote by D t,ωð Þ, while we assume the chest Γ to be fixed over time and not
being subject to uncertainty.

In the forward problem, given the potential u tð Þ :Σ t,ωð Þ!R at the pericardium, we wish to compute the potential
on the chest Γ. Assuming that the torso is a homogeneous volume conductor and that no current sources are present,
the extracellular potential y t,ωð Þ :D t,ωð Þ! in the whole torso satisfies the mixed boundary value problem

Δy x, t,ωð Þ¼ 0, x ∈D t,ωð Þ,
∂y
∂nx

x, t,ωð Þ¼ 0, x ∈ Γ,

y x, t,ωð Þ¼u x, tð Þ, x ∈ Σ t,ωð Þ:

8>><>>: ð1Þ

GANDER ET AL. 3 of 23



We remark that in the model the electric conductivity is unit valued, with no loss of generality since its value, being
constant, does not influence the solution. Moreover, we assume here that the potential u x, tð Þ is given in spatial coordi-
nates. A possibility to guarantee that u x, tð Þ is well-defined for each realisation of the random parameter is to assume
that it is given with respect to the hold-all domain

D≔ [
t ∈ 0,T½ �,ω ∈Ω

D t,ωð Þ� tf g,

which contains every possible space–time tube.

2.2 | The inverse problem of electrocardiography

Given the data yd tð Þ :Γ!R on the chest, the inverse problem corresponding to (1) is to find the potential u t,ωð Þ :
Σ t,ωð Þ!R at the pericardium that satisfies

min
u t,ωð Þ∈ L2 Σ t,ωð Þð Þ

k y t,ωð Þ� yd tð ÞkL2 Γð Þ s:t: Equation 1ð Þ holds:

In the forward problem, if u � , tð Þ ∈H1=2 Σ t,ωð Þð Þ, then the solution satisfies y � , t,ωð Þ∈H1 D t,ωð Þð Þ and its trace on Γ
is in H1=2 Γð Þ. This gives rise to the solution operator

A t,ωð Þ :H1=2 Σ t,ωð Þð Þ!H1=2 Γð Þ:

It is possible to show, see Reference 3, that A t,ωð Þ is injective and continuous for t ∈ 0,T½ � and almost every ω∈Ω.
In the inverse problem, therefore, if yd � , tð Þ ∈H1=2 Γð Þ then there exists a unique minimum u � , t,ωð Þ∈H1=2 Σ t,ωð Þð Þ
such that y t,ωð Þ¼ yd tð Þ at Γ. The minimum u t,ωð Þ, however, is not stable with respect to perturbations. A common
practice is to introduce a regularisation into the problem to recover stability, as follows:

min
u t,ωð Þ∈ L2 Σ t,ωð Þð Þ

1
2
kA t,ωð Þu t,ωð Þ� yd tð Þk2L2 Γð Þ þ

λ

2
ℛ u t,ωÞÞð g:ð

�

Herein, λ>0 is the regularisation parameter and ℛ is the regularisation functional, for which several choices are
possible. The optimum can be explicitly computed according to

FIGURE 1 2D cross section of the torso reconstructed from an MRI dataset
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A t,ωð Þu t,ωð Þ� yd tð Þ,A t,ωð Þδuh iL2 Γð Þ þ λ ℛ0 u t,ωð Þð Þ,δuh i¼ 0, 8δu∈ L2 Σ t,ωð Þð Þ:

Later on we shall discuss different options for the regularisation.

3 | BOUNDARY INTEGRAL FORMULATION

3.1 | Boundary integral operators

In the following exposition, for the sake of an easier notation, we consider t and ω to be fixed. For a comprehensive
exposition of the boundary integral approach, we refer the reader of Reference 12. For a better distinction of quantities
that are defined with respect to the boundaries and those which are given on the domain, we introduce for
Φ ∈ Σ,Γ, ∂Df g the trace operators

γint0,Φ :H1 Dð Þ!H1=2 Φð Þ and γint1,Φ :H1 Dð Þ!H�1=2 Φð Þ:

Then, we may write the forward problem according to

Δy xð Þ¼ 0, x ∈D,

γint1,Γy xð Þ¼ 0, x ∈ Γ,

γint0,Σy xð Þ¼ u xð Þ, x ∈ Σ:

8><>:
For x ∈D, the potential y xð Þ is given by the representation formula

y xð Þ¼
ð
∂D
G x,x0ð Þ γint1,∂Dy

� �
x0ð Þdσx0 �

ð
∂D

∂G
∂nx0

x,x0ð Þ γint0,∂Dy
� �

x0ð Þdσx0 , ð2Þ

where

G x,x0ð Þ≔
� 1
2π

log k x�x0k2, d¼ 2,

1
4π

1
k x�x0k2 , d¼ 3,

8>><>>: ð3Þ

denotes the fundamental solution for the Laplacian. Introducing the single layer operator

V :H�1=2 ∂Dð Þ!H1=2 ∂Dð Þ, Vρð Þ xð Þ≔
ð
∂D
G x,x0ð Þρ x0ð Þdσx0 ,

the double layer operator

K :H1=2 ∂Dð Þ!H1=2 ∂Dð Þ, Kρð Þ xð Þ≔
ð
∂D

∂G
∂nx0

x,x0ð Þρ x0ð Þdσx0

and taking the Dirichlet trace, Equation (2) yields the Dirichlet-to-Neumann map

V γint1,∂Dy
� �¼ 1

2
IþK

� �
γint0,∂Dy
� �

: ð4Þ
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Next, introducing for Φ,Ψ∈ Σ,Γf g, the restricted operators

VΦΨ :H�1=2 Ψð Þ!H1=2 Φð Þ, Φ ∍ x 7! VΦΨρð Þ xð Þ≔
ð
Ψ
G x,x0ð Þρ x0ð Þdσx0

and

KΦΨ :H1=2 Ψð Þ!H1=2 Φð Þ, Φ ∍ x 7! ΦΨρð Þ xð Þ≔
ð
Ψ

∂G
∂nx0

x,x0ð Þρ x0ð Þdσx0 ,

we can split up Equation (4) into the system

VΣΣ VΣΓ

VΓΣ VΓΓ

� �
γint1,Σy

γint1,Γy

" #
¼

1
2
IþKΣΣ KΣΓ

KΓΣ
1
2
IþKΓΓ

264
375 γint0,Σy

γint0,Γy

" #
:

Rearranging this system in order to move the unknowns γint1,Σy and γint0,Γy to the left side and the data γint0,Σy¼u and
γint1,Γy¼ 0 to the right side, we arrive at the system boundary integral equations

VΣΣ �KΣΓ

�VΓΣ
1
2
IþKΓΓ

24 35 γint1,Σy

γint0,Γy

" #
¼

1
2
IþKΣΣ �VΣΓ

�KΓΣ VΓΓ

24 35 u

0

� �
: ð5Þ

As VΣΣ is an elliptic operator, considering the Schur complement

S :H1=2 Γð Þ!H1=2 Γð Þ, Sρ≔ 1
2
IþKΓΓ�VΓΣV�1

ΣΣKΣΓ

� �
ρ

yields the operator equation

Sγint0,Γy¼
1
2
VΓΣV�1

ΣΣþVΓΣV�1
ΣΣKΣΣ�KΓΣ

� �
u

for the desired potential γint0,Γy on the chest. In particular, the solution operator A :H1=2 Σð Þ!H1=2 Γð Þ is given by

Au¼S�1 1
2
VΓΣV�1

ΣΣþVΓΣV�1
ΣΣKΣΣ�KΓΣ

� �
u¼ γint0,Γy, ð6Þ

while the Poincaré–Steklov operator ℬ :H1=2 Σð Þ!H�1=2 Σð Þ is given by

ℬu¼V�1
ΣΣ

1
2
IþKΣΣþKΣΓA

� �
u¼ γint1,Σy: ð7Þ

3.2 | Numerical discretisation

Our goal is to discretise the boundary integral equations derived previously. In order to not having to deal with non-
constant coefficients, we shall solve the equations in the spatial coordinate frame, that is, for each tuple t,ωð Þ, assemble
the boundary integral operators on Σ t,ωð Þ and Γ. To simplify the notation, in the following quantities we omit the
dependency of Σ on t and ω. As the focus of this work is on uncertainty quantification, rather than on the solution of
the spatial problem, we restrict ourselves to the simplified 2D anatomy of Figure 1. Hence, from (3), we have
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G x,x0ð Þ ¼� 1
2π

log k x�x0k2

and

∂G
∂nx0

x,x0ð Þ ¼� 1
2π

rx0 log k x�x0k2 �nx0 ¼
1
2π

x�x0,nx0
	 


2

k x�x0k22
:

Given that the domain D t,ωð Þ exhibits C2-boundaries, which are described by the parameterisations γΣ : 0,1½ Þ!
Σ t,ωð Þ and γΓ : 0,1½ Þ!Γ, we can employ the collocation method from Reference 12. This method is based on the trape-
zoidal rule and an appropriate desingularisation of the kernel functions. In view of the Euler-Maclaurin formula, it con-
verges quadratically for C2-boundaries and exponentially for smooth boundaries. More precisely, given that the
solution to (5) satisfies y∈ Ck ∂Dð Þ, there holds

k y� ynkL∞ ∂Dð Þ ≤Cn�k k ykCk ∂Dð Þ

for some C>0, where yn is obtained from the collocation method with n¼ 2j points for some j∈ℕ. We refer to Refer-
ence 12 for all the details. For the sake of completeness, we briefly recall the collocation method in Appendix A.

For Φ ∈ Σ,Γf g, we consider the nΦ-points discretisations si,Φ ¼ i=nΦ for i¼ 0,…,nΦ�1. Moreover, we denote by
InΦ ∈RnΦ�nΦ the nΦ�nΦ identity matrix. The discretisation results in the block linear system

VΣΣ �KΣΓ

�VΓΣ
1
2
InΓ þKΓΓ

24 35 eρ1,Σ
ρ0,Γ

� �
¼

1
2
InΣ þKΣΣ �VΣΓ

�KΓΣ VΓΓ

24 35 u

0nΓ

� �
, ð8Þ

cp. (5). Herein

ρ0,Γ≔ y γΓ si,Γð Þð Þ½ �nΓ�1
i¼0 ∈RnΓ and eρ1,Σ≔ ∂y

∂nsi,Σ
γΣ si,Σð Þð Þ k γ0Σ si,Σð Þk2

� �nΣ�1

i¼0
∈RnΣ :

Furthermore, we set

u≔ u γΣ si,Σð Þð Þ½ �nΣ�1
i¼0 ∈RnΣ

and 0nΓ ∈RnΓ is the nΓ-dimensional vector of zeros.

4 | SOLUTION OF THE INVERSE PROBLEM

In the inverse problem, the goal is to reconstruct the potential u at the pericardium Σ t,ωð Þ given noisy data measure-
ments yd ∈H1=2 Γð Þ on the chest. In the following exposition, for the sake of an easier notation, we indicate the depen-
dency of Σ on the tuple t,ωð Þ only when specifying function spaces. In particular, we consider the solution operator
A :H1=2 Σ t,ωð Þð Þ!H1=2 Γð Þ, cp. (6), and the Poincaré–Steklov operator ℬ :H1=2 Σ t,ωð Þð Þ!H�1=2 Σ t,ωð Þð Þ, cp. (7). In the
discrete setting, we define the vectors

u≔ u γΣ si,Σð Þð Þ½ �nΣ�1
i¼0 ∈RnΣ , yd≔ yd γΓ si,Γð Þð Þ½ �nΓ�1

i¼0 ∈RnΓ

and
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ρ0,Γ≔ y γΓ si,Γð Þð Þ½ �nΓ�1
i¼0 ∈RnΓ , ρ1,Σ≔

∂y
∂nsi,Σ

γΣ si,Σð Þð Þ
� �nΣ�1

i¼0
∈RnΣ :

From (8), we deduce that there exist a matrix A∈RnΓ�nΣ and a matrix B∈RnΣ�nΣ such that

ρ0,Γ ¼Au and ρ1,Σ ¼Bu:

In this section, we consider inverse problem solutions of the form

u¼ argmin
v∈ L2 Σ t,ωð Þð Þ

1
2
kAv� ydk2L2 Γð Þ þ

λ

2
ℛ vð Þ

� �
, ð9Þ

where λ>0 is the regularisation parameter and ℛ is the regularisation functional. We discretise (9) employing, for
Φ ∈ Σ,Γf g, the trapezoidal rule

v,wh iL2 Φð Þ ≈ v > SΦw with v≔ v γΦ si,Φð Þð Þ½ �nΦ�1
i¼0 , w≔ w γΦ si,Φð Þð Þ½ �nΦ�1

i¼0 ,

where SΦ ∈RnΦ�nΦ is the diagonal mass matrix with entries

SΦð Þi,i≔
k γ 0

Φ si,Φð Þk2
nΦ

for i¼ 0,…,nΦ�1. The accuracy of this approximation is consistent with the one obtained by the collocation method, as
can easily be inferred from the Euler-Maclaurin formula.

We arrive at the discrete formulation

u¼ argmin
v ∈RnΣ

1
2
Av�ydð Þ> SΓ Av�ydð Þþ λ

2
R vð Þ

� �
, ð10Þ

where R is the discrete regularisation term. The optimisation of the objective function leads to the equation

A> SΓ Au�ydð Þþ λ

2
R0 uð Þ¼ 0 ð11Þ

for the minimum u. In the following subsections, we present four strategies to solve the inverse problem based on dif-
ferent regularisations.

4.1 | Zero order Tikhonov regularisation

The zero order Tikhonov regularisation penalises the L2-norm of the Dirichlet data at Σ t,ωð Þ, see Reference 34, and the
regularisation functional in (9) reads

ℛ vð Þ¼k vk2L2 Σ t,ωð Þð Þ:

The discrete regularisation term in (10) is thus
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R vð Þ¼ v > SΣv

and in (11) we have

R0 uð Þ¼ 2SΣu:

4.2 | First-order Tikhonov regularisation

The first-order Tikhonov regularisation penalises the L2-norm of the Neumann data at Σ t,ωð Þ, see Reference 34, and
the regularisation functional in (9) is

ℛ vð Þ¼kℬvk2L2 Σ t,ωð Þð Þ:

Then the discrete regularisation term in (10) is

R vð Þ¼ v >B> SΣBv

and in (11) we have

R0 uð Þ¼ 2B> SΣBu:

4.3 | H1=2 regularisation

When penalising the H1=2-norm of the Dirichlet data at Σ t,ωð Þ, the regularisation functional in (9) is given by

ℛ vð Þ¼k vk2H1=2 Σ t,ωð Þð Þ ¼ ℬv,vh iL2 Σ t,ωð Þð Þ:

The resulting discrete regularisation term in (10) is

R vð Þ¼ v >B> SΣv

and its Fréchet derivative in (11) is

R
0
uð Þ¼ SΣ B> þB

� �
u:

4.4 | Total variation regularisation

In the TV regularisation, we penalise the L1-norm of the Neumann data at Σ t,ωð Þ, that is, the regularisation functional
in (9) is

ℛ vð Þ¼kℬvkL1 Σ t,ωð Þð Þ:
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As the L1-norm is non-differentiable, it is common to employ the approximation

kℬvkL1 Σ t,ωð Þð Þ ¼
ð
Σ t,ωð Þ

jℬv xð Þ j dσx ≈
ð
Σ t,ωð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℬv xð Þð Þ2þβ

q
dσx,

where β>0 is a small constant (typically β¼ 10�5). This introduces a non-linearity in the optimality condition. This dif-
ficulty is handled in Reference 4 by using the zero order Tikhonov solution u0 in the non-linear term. This approach is
equivalent to set

ℛ vð Þ¼
ð
Σ t,ωð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℬu0 xð Þð Þ2þβ

q� ��1

ℬv xð Þð Þ2dσx

in (9). The discretisation requires the definition of the diagonal matrix Wβ u0ð Þ∈RnΣ�nΣ with entries

Wβ u0ð Þ� �
i,i≔ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bu0ð Þ2i þβ

q� ��1

for i¼ 0,…,nΣ�1, where u0 is the discrete zero order Tikhonov solution. The discrete regularisation term in (10) then
reads

R vð Þ¼ v >B>Wβ u0ð ÞSΣBv,

while in (11) it results in

R
0
uð Þ¼ 2B>Wβ u0ð ÞSΣBu:

5 | UNCERTAINTY QUANTIFICATION

5.1 | Modelling time-dependent shape uncertainty

In order to assess the shape uncertainty of the pericardium Σ t,ωð Þ, we assume the existence of a reference domain
Dref �Rd, with boundaries Σref and Γ, and a random deformation field

χ :Dref � 0,T½ ��Ω!Rd

such that

D t,ωð Þ¼ χ Dref , t,ωð Þ¼ χ Dref tð Þ,ωð Þ,

where

Dref tð Þ¼ χ½ � Dref , tð Þ:

Herein, the expectation is given in terms of the Bochner integral
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 χ½ � bx, tð Þ≔
ð
Ω
χ bx, t,ωð ÞdP:

Introducing the space–time cylinder Qref≔Dref � 0,Tð Þ with coordinates

bx, tð Þ≕ bz∈Qref ,

we can interpret χ as a random deformation field χ bz,ωð Þ acting on the space–time cylinder. A similar model has origi-
nally been introduced in Reference 25 for the stationary case. Assuming

χ ∈ L2 Ω;C1 Qref ;Rd
� �� �

,

it is possible to expand χ bz,ωð Þ in a Karhunen–Loève expansion, cf., Reference 35 according to

χ bz,ωð Þ¼ χ½ � bzð Þþ
X∞
k¼1

ffiffiffiffiffi
λk

p
χ k bzð ÞYk ωð Þ:

Herein, λk,χ kð Þ are the eigen-pairs of the integral operator defined by the matrix valued covariance function

Cov χ½ � :Qref �Qref !Rd�d,Cov χ½ � bz, bz0
 �
≔
ð
Ω
χ bz,ωð Þ� χ½ � bzð Þð Þ χ bz0,ω
 �

� χ½ � bz0
 �
 �>
dP,

while Ykf g is a family of uncorrelated random variables with normalised variance.
To avoid distortion of the space–time tubes χ Qref ,ωð Þ, ω∈Ω, and hence to guarantee well-posedness of the bound-

ary value problem at hand, cf. (1), we impose the uniformity condition

k χ � ,ωð ÞkC1 Qref ;Rdð Þ, k χ�1 � ,ωð ÞkC1 Q ωð Þ;Rdð Þ <Cuni

for some constant Cuni > 0 uniformly in ω∈Ω.1 As a consequence, the random variables' Ykf g ranges are bounded.
Therefore, without loss of generality we may assume Yk :Ω! �1,1½ �, k¼ 1,2,…. In particular, we obtain

Σ t,ωð Þ¼ χ Σref , t,ωð Þ and Γ¼ χ Γ, t,ωð Þ:

Replacing the random variables by their image �1,1½ �ℕ, we arrive at the parametrised Karhunen–Loève expansion

χ bz,ξð Þ¼ χ½ � bzð Þþ
X∞
k¼1

ffiffiffiffiffi
λk

p
χ k bzð Þξk, ξ∈ �1,1½ �ℕ:

For the numerical computation of the Karhunen–Loève expansion, it is sufficient to know the expectation and the
covariance at Σref � 0,T½ �, see Reference 36. In our concrete case, it is even sufficient to only compute the Karhunen–
Loève expansion in the space–time collocation points. To this end, we employ the pivoted Cholesky decomposition, see
References 25,37,38. These results in a finite rank Karhunen–Loève expansion

χ bzi,ξð Þ¼ χ½ � bzið Þþ
XK
k¼1

ffiffiffiffiffi
λk

p
χ k bzið Þξk, ξ∈ �1,1½ �K , ð12Þ

where bzi are the space–time collocation points on Σref � 0,T½ � and K is the dimension of the random parameter space.
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5.2 | Computation of quantities of interest

We make the common assumption that the random variables are even independent and uniformly distributed. Then,
the push-forward measure is given by the product density

ρ ξð Þ≔
YK
k¼1

ρk ξkð Þ with ρk �
1
2
:

Hence, we can now express quantities of interest, such as the moments of the potential on the chest, by means of an
integral with respect to �1,1½ �K . It holds for the moments that

ℳm y½ � x, tð Þ≔
ð
Ω
y x, t,ωð ÞmdP¼

ð
�1,1½ �K

y x, t,ξð Þmρ ξð Þdξ, m ∈ℕ�:

Especially, the expectation and the variance are given by

 y½ � x, tð Þ¼ℳ1 y½ � x, tð Þ and  y½ � x, tð Þ¼ℳ2 y½ � x, tð Þ� ℳ1 y½ � x, tð Þð Þ2:

In practice, the moments need to be approximated by a quadrature rule, that is,

ℳm y½ � x, tð Þ≈
XN
i¼1

wiy x, t,ξið Þm,

where ξi ∈ �1,1½ �K for i¼ 1,…,N are the quadrature points and wi ∈R are the corresponding weights. Due to the space–
time modelling, the random parameter space is very high-dimensional, and appropriate quadrature rules need to be
employed. In this article, we employ the anisotropic sparse quadrature from Reference 28, which is based on the
Gauss–Legendre quadrature rule. For the sparse quadrature to converge, the quantity of interest needs to be regular
with respect to the random parameter ξ ∈ �1,1½ �K . For the forward problem, such results are available, we refer to Ref-
erence 25. For the Dirichlet control problem with an affine random diffusion coefficient, such results have also been
derived in Reference 39.

6 | NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to assess the validity of the approach. To obtain a space–time refer-
ence torso anatomy, we have segmented cardiac magnetic resonance (CMR) imaging data previously acquired.40 The
temporal image stack was obtained from a cine ECG-triggered segmented steady-state free precession sequence in mid-
ventricular short-axis orientation. Slice thickness and voxel resolution were 8 and 1.36 mm, respectively. The 25-phase
temporal stack covered the whole heartbeat, with an RR interval on the surface ECG of T¼ 690 ms. Images were
reordered such that the first image at t¼ 0 ms corresponded to the diastole, defined by the maximal left ventricular cav-
ity volume. The systole, defined by the minimum cavity volume, occurred at t¼ 270 ms. The segmentation was per-
formed by manual contour tracing of the epicardium for each image. In order to end up with a smooth computational
domain, we performed a least-squares fit of the contours using a truncated Fourier series with a threshold of 10�3 in
the relative root-mean-square error. Finally, we interpolated the extracted shapes to get a pericardial representation at
50 time instants. The chest was also previously segmented from ultra-fast gradient-echo “VIBE” images in axial, coro-
nal, and sagittal orientations to produce a smooth three-dimensional closed surface modelled in Blender.2 As shown in
Figure 1, the contour of the chest was eventually obtained by intersecting the chest surface with the orientation plane
of the pericardium.

In Figure 2, we summarised the input data for the forward and inverse problem and the geometry of the pericar-
dium, superimposed with the CMR images. To model the uncertainty, we selected the resulting reference shape of the
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pericardium Σref tð Þ, for t ∈ 0,T½ Þ, as the space–time mean of the random deformation field χ . The covariance of χ evalu-
ated at the points bz¼ bx, tð Þ with bx ∈ Σref tð Þ and bz0 ¼ bx0, t0� �

with bx0 ∈ Σref t0ð Þ was the product of a matrix-valued kernel
in space and a scalar kernel in time. For the spatial component of the covariance, we considered the Matérn kernel

kMν dð Þ¼ σ2
21�ν

Γ νð Þ
ffiffiffiffiffi
2ν

p d
ρ

� �ν

Kν

ffiffiffiffiffi
2ν

p d
ρ

� �
,

with parameters ρ¼ 50, σ2 ¼ 4=3 and different values of the smoothness index ν. Note that in the definition of kMν , the
function Γ �ð Þ is the gamma function and Kν �ð Þ is the modified Bessel function of the second kind. Since we are inter-
ested in modelling the uncertainty due to the noise and the limited resolution of CMR, the distance d¼ d bx, bx0
 �

used in
the definition of the kernel, was measured with the Euclidean norm in R2. In contrast, for the distance in time between
t and t

0
, we take into account the periodicity of the motion of the pericardium. To do so, we first scale the interval 0,T½ Þ

to 0,2π½ Þ with the mapping

η : 0,T½ Þ! 0,2π½ Þ, t 7! 2πt
T

,

FIGURE 2 Geometry and input data. First row: cardiac magnetic resonance images with superimposed segmented chest (blue) and

time-dependent pericardium (red). The shaded region around the pericardium represents the shape confidence interval, obtained as

 Σ½ � tð Þ	1:96 �StdDev Σ½ � tð Þ. The yellow dots correspond to γΓ 0ð Þ and γΣref tð Þ 0ð Þ. Second row: forward data u γΣ sð Þ, tð Þ. Third row: inverse

data yd γΓ sð Þ, tð Þ
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and then we compute the geodesic distance

θ t, t
0


 �
¼ arccos cosðη tð Þ�ηðt0 ÞÞ


 �
:

Finally, to model an additional correlation between neighbouring time slices, we employ the sine power kernel

kSP θð Þ¼ 1� sin θ=2ð Þð Þ2 ¼ cos θ=2ð Þð Þ2 ¼ 1
2
cos θð Þþ1ð Þ,

see Reference 41. Employing a tensor product construction, we end up with the covariance function

Cov χ½ � bz, bz0
 �
¼ kSP θ t, t0ð Þð Þ

kM5=2 kbx tð Þ� bx0 t0ð Þk2

 �

0

0 kM∞ kbx tð Þ� bx0 t0ð Þk2

 �

264
375:

Note that we assume here that there is no correlation between the two spatial components of the deformation field.
By construction, the joint covariance kernel is positive-definite on the space R2�1, where 1 is the unit circle.

In the forward problem, the pericardial potential u x, tð Þ was defined analytically as a T-periodic function in the vari-
able t. For convenience, we set u x, tð Þ¼u γΣ t,ωð Þ sð Þ, t


 �
, being s∈ 0,1½ Þ the normalised curvilinear coordinate. We simu-

lated a left bundle branch block, that is the extracellular potential consisted in a propagation from free wall of the right
ventricle, at s¼ 0, towards the free wall of the left ventricle, at s¼ 0:5. The propagation took 150ms, consistent with a
long QRS complex. The specific analytical form of u x, tð Þ is given in Appendix B.

To generate the input data for the inverse problem, we computed the solution of the forward problem on the space–
time reference geometry and eventually added Gaussian noise with zero mean and variance 10�8, corresponding to a
signal-to-noise ratio of approximately 46 dB.

Concerning the space discretisation, we considered nΣ ¼nΓ ¼ 500 collocation points. This resulted in a truncated
Karhunen–Loève expansion with K ¼ 648 terms, obtained with a tolerance of 10�4. That is, the parametric dimension
of the UQ problem was 648, thus high-dimensional. We remark that, since the boundaries are represented by trigono-
metric polynomials and all data are smooth functions, the collocation method converges exponentially. Resulting in
spatial approximation errors for the chosen number of boundary points, which are already of the order of the machine
precision.

Since we wish to employ the sparse quadrature to estimate our quantities of interest, we first numerically tested its
convergence by comparing it to the quasi-Monte Carlo method based on the Halton set, see Reference 32. We tested the

FIGURE 3 Convergence plot of the first (ℳ1) and second (ℳ2) moment of the forward solution
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convergence of the first and second moment of the forward and inverse solution at t¼ 189 ms. The time-independent
problem yielded a truncated Karhunen–Loève expansion of K ¼ 101 terms. To validate the applicability of the sparse
quadrature, we consider the approximation error of the moments by a comparison to the quasi-Monte Carlo method
based on Halton points. The accuracy of approximately 5 �10�5 was achieved by using 17'799 quadrature points within
the sparse quadrature. Figure 3 shows the convergence plot of the forward solution. We experimentally observed a con-
vergence rate of 0.75. The obtained result indeed corroborates that the forward problem is smooth in the parametric
space.

For the inverse problem, we tested the regularisations reported in section 4. The regularisation parameter was deter-
mined with the L-curve method, see Reference 34, on the space–time reference geometry. For each regularisation, we
then chose the maximal regularisation parameter over all the time steps. This might have led to over-regularisation for
some time steps, but it has the benefit of limiting the oscillations in the numerical solution of the inverse problem. The
values of the chosen regularisation parameters λ are reported in Table 1.

TABLE 1 Regularisation parameter choice for the zero-order Tikhonov, first-order Tikhonov, H1=2 and total variation regularisations

Zero-order Tikhonov First-order Tikhonov H1=2 Total variation

λ 10�6 10�3 10�5 10�5

(A) (B)

(C) (D)

FIGURE 4 Convergence plot of the first (ℳ1) and second (ℳ2) moment of the inverse solution with (A) zero-order Tikhonov, (B) first-

order Tikhonov, (C) H1=2 and (D) total variation regularisation
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Figure 4 shows the convergence plots of the inverse solutions. We can observe convergence towards the reference
moments for the zero order Tikhonov, the first-order Tikhonov and the H1=2 regularisations. Instead, the curves
resulting from the TV regularisation flatten out, meaning that there is no convergence and suggesting that this
regularisation is not sufficiently smooth with respect to the random parameter, and therefore inadequate for the sparse
quadrature approach. In contrast, the other regularisations are to be suitable for the sparse quadrature approach.

FIGURE 5 Solution of the forward problem. First row: expectation and confidence interval (blue), and solution with reference geometry

(dashed black). Second row: contour plots in space–time of the reference solution, expected solution and standard deviation

FIGURE 6 Solution of the inverse problem. First row: expectation and confidence interval (red), and reference solution (dashed black).

Second row: contour plots in space–time of the reference solution, expected solution and standard deviation
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Next, we present the corresponding numerical results for the inverse problem, when employing the H1=2

regularisation. We estimate the mean and the standard deviation of the forward and inverse solution. The computed
quantities of interest for the forward problem are shown in Figure 5. We can observe that the expectation was very close
to the chest potential computed on the space–time reference geometry. Moreover, the standard deviation is small and it
mainly affects the regions with higher amplitude during the depolarisation phase. In particular, the standard deviation
is higher close to γΓ 0ð Þ. The reason for this phenomenon is that points in the vicinity of γΓ 0ð Þ are close to the heart, see
Figure 2. Therefore the effect of the shape uncertainty on the forward solution is limited.

The computed quantities of interest for the inverse problem are shown in Figure 6. We observe that the expectation
deviates slightly from the pericardial potential and shows some oscillations in the depolarisation phase. This is due to
the ill-posedness of the inverse problem and the effect of the regularisation. Indeed, the Tikhonov regularisation, espe-
cially at lower order, tends to introduce oscillations in the solution, if the regularisation parameter is not sufficiently
large. On the other hand, a strong regularisation yields smoothed out gradients, thus less accurate inverse solution. The
H1=2 regularisation might therefore introduce oscillations as well. In the bottom row of Figure 6, the standard deviation
is larger than in the forward problem and the shape uncertainty mainly affects regions with large gradients. In the
depolarisation phase, the potential is steeper and, consequently, the standard deviation is larger. This fact may have a
consequence on the quality of derived quantities such as the activation map, usually obtained from the point with larg-
est negative deflection in the signals. In conclusion, the effect of the shape uncertainty is much more relevant for the
inverse problem than for the forward problem.

7 | CONCLUSIONS

In this work, we have considered the forward and inverse problem of electrocardiography in the presence of space–time
shape uncertainties. The high parametric dimensionality of the problem, along with the non-linear map between the
input and output uncertainties, renders the problem challenging from the mathematical and the numerical perspective.

To address space–time shape uncertainties, we have suggested a model by random space–time deformation fields
with a periodic-in-time covariance kernel. This approach resulted in a high-dimensional uncertainty quantification
problem. To make this dimensionality feasible for numerical computations, we rely on the one hand on a low-rank rep-
resentation of the random deformation field and efficient quadrature techniques on the other hand. The resulting spa-
tial problem for each quadrature point in the parameter was addressed by a boundary integral formulation in
combination with a highly accurate and fast collocation method. The numerical results indicate that shape uncer-
tainties affect the solution much more strongly in the inverse problem than in the forward one, as a consequence of the
ill-posedness. Moreover, it was observed that the regularisation of the inverse solution may affect the regularity of the
solution with respect to the stochastic parameter, with possible limitations in the convergence order of the quadrature
method. Especially, the TV regularisation showed poor performance in this respect, while the H1=2 regularisation is
suitable for this problem, both in terms of regularity and quality of the reconstruction.

Future research directions include the transition to 3D models and the generalisation to piecewise-constant conduc-
tivities in the torso. In this case, it is still possible to leverage on the boundary integral formulation. From the mathe-
matical perspective, a general result on the parametric regularity of the inverse problem is still missing. Such a result
would help to shed some light on the sub-optimal convergence rate observed in our experiments and the apparent lack
of parametric regularity of the inverse problem with TV regularisation. Finally, from the clinical perspective, we shall
further investigate how segmentation uncertainty may be modelled. As a matter of fact, the uncertainty likely results
from multiple sources. Besides noise, CMR images are affected by breath holding, which may limit the volume of the
heart and spatio-temporal mis-registration. The segmentation process may amplify the acquisition uncertainty,
depending on the method. Importantly, the segmentation is sometimes a non-smooth operation, in the sense that small
perturbation in the images could yield large and possibly topological changes in the contour. Therefore, special care will
be needed in order to correctly model the uncertainty from clinical data.
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ENDNOTES
1 For the collocation method, we require also χ t,ωð Þ∈ C2 Dref

� �
for t ∈ 0,T½ �,ω∈Ω.

2 https://www.blender.org
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APPENDIX A.: Collocation method

Considering the parameterisations γΓ : 0,1½ Þ!Γ and γΣ : 0,1½ Þ!Σ, the Dirichlet-to-Neumann map (4) in dimension d¼
2 reads, for Φ ∈ Γ,Σf g and s∈ 0,1½ Þ,

� 1
4π

X
Ψ∈ Γ,Σf g

ð1
0
kVΦ,Ψ s,rð Þeρ1,Ψ rð Þdr¼ 1

2
ρ0,Φ sð Þþ 1

2π

X
Ψ∈ Γ,Σf g

ð1
0
kKΦ,Ψ s,rð Þρ0,Ψ rð Þdr,

where

kVΦ,Ψ s,rð Þ≔log k γΦ sð Þ� γΨ rð Þk22, kKΦ,Ψ s,rð Þ≔ γΦ sð Þ� γΨ rð Þ,nr,Ψh i2
k γΦ sð Þ� γΨ rð Þk22

k γ0Ψ rð Þk2

and

ρ0,Φ sð Þ≔y γΦ sð Þð Þ, eρ1,Φ sð Þ≔ ∂y
∂ns,Φ

γΦ sð Þð Þ k γ 0
Φ sð Þk2:

We consider the nΓ-points discretisation of Γ and the nΣ-points discretisation of Σ, where nΓ and nΣ are even num-
bers, and, for Φ∈ Γ,Σf g, we represent ρ0,Φ and eρ1,Φ as a linear combination of the trigonometric Lagrange polynomials
Lj, for j¼ 0,…,nΦ�1, that is,

ρ0,Φ sð Þ¼
XnΦ�1

j¼0

ρΦ0,jLj sð Þ and eρ1,Φ sð Þ¼
XnΦ�1

j¼0

eρΦ1,jLj sð Þ:

Note that, considering the discretisation si ¼ i=nΦ for i¼ 0,…,nΦ�1, it holds Lj sið Þ¼ δi,j. Using the representation of
ρ0,Φ and eρ1,Φ, we end up with

� 1
4π

X
Ψ∈ Γ,Σf g

XnΨ�1

j¼0

ð1
0
kVΦ,Ψ si,rð ÞLj rð Þdr

� �eρΨ1,j
¼ 1
2
ρΦ0,iþ

1
2π

X
Ψ∈ Γ,Σf g

XnΨ�1

j¼0

ð1
0
kKΦ,Ψ si,rð ÞLj rð Þdr

� �
ρΨ0,j

for i¼ 0,…,nΦ�1 and Φ ∈ Γ,Σf g. The goal is now to discretise the above equation. To do so, we consider the dis-
cretisation rj ¼ j=nΨ for j¼ 0,…,nΨ�1 and we distinguish between four different kinds of matrices.

In the case Ψ≠Φ, the kernel functions do not exhibit singularities. Hence, we may directly employ the trapezoidal
rule to obtain the collocation approximation of the corresponding boundary integral operators. Using the trapezoidal
rule, we have

� 1
4π

XnΨ�1

j¼0

ð1
0
kVΦ,Ψ si,rð ÞLj rð Þdr

� �eρΨ1,j ≈ � 1
4πnΨ

XnΨ�1

j¼0

kVΦ,Ψ si,rj
� �eρΨ1,j,

therefore, we define the matrix VΦΨ ∈RnΦ�nΨ whose entries, for i¼ 0,…,nΦ�1 and j¼ 0,…,nΨ�1, are

VΦΨð Þi,j≔� 1
4πnΨ

kVΦ,Ψ si,rj
� �

:

Similarly, by the trapezoidal rule we have
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1
2π

XnΨ�1

j¼0

ð1
0
kKΦ,Ψ si,rð ÞLj rð Þdr

� �
ρΨ0,j ≈

1
2πnΨ

XnΨ�1

j¼0

kKΦ,Ψ si,rj
� �

ρΨ0,j:

Hence, we define the matrix KΦΨ ∈RnΦ�nΨ whose entries, for i¼ 0,…,nΦ�1 and j¼ 0,…,nΨ�1, are

KΦΨð Þi,j≔
1

2πnΨ
kKΦ,Ψ si,rj

� �
:

If Ψ¼Φ the kernel functions exhibit a singularity for s¼ r. This singularity can be dealt with as follows: We split

kVΦ,Φ s,rð Þ¼ kV,1Φ,Φ s,rð ÞþkV,2Φ,Φ s,rð Þ,

where

kV,1Φ,Φ s,rð Þ≔log
k γΦ sð Þ� γΦ rð Þk22
4sin2 π s� rð Þð Þ

and

kV,2Φ,Φ s,rð Þ≔log 4sin2 π s� rð Þð Þ� �
:

Then, for the first term, using again the trapezoidal rule, we arrive at

� 1
4π

XnΦ�1

j¼0

ð1
0
kV,1Φ,Φ si,rð ÞLj rð Þdr

� �eρΦ1,j ≈ � 1
4πnΦ

XnΦ�1

j¼0

kV,1Φ,Φ si,rj
� �eρΦ1,j:

Since

lim
s!r

kV,1Φ,Φ s,rð Þ¼ log
γ
0
Φ rð Þ
2π

���� ����2
2
,

we set

kV,1Φ,Φ si,rj
� �

≔log
γ
0
Φ rj
� �
2π

�����
�����
2

2

for si ¼ rj and we define the matrix V1
ΦΦ ∈RnΦ�nΦ with

V1
ΦΦ

� �
i,j≔� 1

4πnΦ
kV,1Φ,Φ si,rj

� �
for i, j¼ 0,…,nΦ�1:

Since nΦ is an even number, we have nΦ ¼ 2mΦ and for the second term it holds

� 1
4π

XnΦ�1

j¼0

ð1
0
kV,2Φ,Φ si,rð ÞLj rð Þdr

� �eρΦ1,j ≈ � 1
4π

XnΦ�1

j¼0

Rj sið ÞeρΦ1,j,
where
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Rj sið Þ¼� 1
mΦ

XmΦ�1

k¼1

1
k
cos 2πk si� rj

� �� �þ 1
nΦ

cos 2πmΦ si� rj
� �� � !

,

cp. Reference 12. This gives rise to the matrix V2
ΦΦ ∈RnΦ�nΦ with

V2
ΦΦ

� �
i,j≔� 1

4π
Rj sið Þ for i, j¼ 0,…,nΦ�1:

Finally, we set

VΦΦ≔V1
ΦΦþV2

ΦΦ ∈RnΦ�nΦ :

For the double layer operator, we have

1
2π

XnΦ�1

j¼0

ð1
0
kKΦ,Φ si,rð ÞLj rð Þdr

� �
ρΦ0,j ≈

1
2πnΦ

XnΦ�1

j¼0

kKΦ,Φ si,rj
� �

ρΦ0,j:

Since

lim
s!r

kKΦ,Φ s,rð Þ¼ γ
00
Φ rð Þ,nr,Φ

	 

2

2 k γ 0
Φ rð Þk2 ,

we set

kKΦ,Φ si,rj
� �

≔
γ
00
Φ rj
� �

, nrj,Φ
	 


2

2 k γ 0
Φ rj
� �k2

for si ¼ rj and we define the matrix KΦΦ ∈RnΦ�nΦ with

KΦΦð Þi,j≔
1

2πnΦ
kKΦ,Φ si,rj

� �
for i, j¼ 0,…,nΦ�1:

APPENDIX B.: Forward problem data

The evolution in time of the pericardial potential at the point γΣ t,ωð Þ 0ð Þ from which the stimulus is delivered is given,
for t ∈ 0,T½ Þ, by

u γΣ t,ωð Þ 0ð Þ, t

 �

¼udep tð Þþurep tð Þ,

with

udep tð Þ¼�25
tanh 2 t=T�0:18ð Þ� 0:5þ t=T�0:18ð Þb cð Þ=0:1ð Þ
cosh 2 t=T�0:18ð Þ� 0:5þ t=T�0:18ð Þb cð Þ=0:1ð Þ2
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and

urep tð Þ¼ 25

2
ffiffiffiffiffi
2π

p exp �100 t=T�0:63ð Þ2� �þexp �100 t=Tþ0:37ð Þ2� �� �
:

For the other points on the pericardium Σ t,ωð Þ, the potential is shifted in time according to the arrival time of the
stimulus. For s∈ 0,1½ Þ, the shift is given by

δ sð Þ¼ 0:22 cos 2πs�πð Þþ1ð Þ=2

and the pericardial pericardial is given by

u γΣ t,ωð Þ sð Þ, t

 �

¼udep t�δ sð ÞTð Þþurep t�δ sð ÞTð Þ:
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