
1.  Introduction
Non-methane volatile organic carbons (VOCs) are emitted into the atmosphere from a wide variety of anthro-
pogenic and natural sources (Boucher et al., 2013; Guenther et al., 2012). VOCs undergo a complex series of 
chemical and physical atmospheric processes producing other VOCs, ozone (O3), and secondary organic aerosol 
(SOA; Atkinson & Arey, 2003; Ziemann & Atkinson, 2012). By fueling NOx-HOx photochemical cycles, VOCs 
also control the oxidizing capacity of the atmosphere. This in turn affects the lifetimes and the budgets of numer-
ous atmospheric chemical species.

While sources of VOCs have been widely investigated, there often still remain large uncertainties in VOC emission 
inventories owing to the diversity of VOC species and sources, and lack of up-to-date emission factors and relia-
ble activity statistics (Arneth et al., 2011; Elguindi et al., 2020; Hatch et al., 2017; Karl et al., 2018; Sindelarova 
et al., 2014). Many studies have made top-down estimates of VOC emissions using space-based observations 
of formaldehyde (CH2O), which is a high-yield intermediate product of VOC oxidation. Palmer et al.  (2003) 
suggested linear relationships between short-lived VOC emissions and local CH2O column concentrations and 
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derived isoprene emissions over North America using observations from Global Ozone Monitoring Experi-
ment (GOME). VOC emissions have been inferred from observed CH2O columns for other sources, regions, 
and times, with various measurements (Barkley et al., 2008, 2013; Fu et al., 2007; Kwon et al., 2021; Marais 
et al., 2012, 2014; Millet et al., 2008; Palmer et al., 2006; L. Zhu et al., 2014).

Several theoretical approaches exist for developing top-down constraints on emissions. Bayesian inversion statis-
tically merges observations with bottom-up knowledge of emissions (a priori) to produce top-down emission 
estimates (a posteriori). An important component of many types of Bayesian inversion is projection of the obser-
vations to the emissions, often in the form of a Jacobian matrix. The Jacobian can be estimated using a number 
(n) of sensitivity simulations with a forward model using emission perturbations (Chaliyakunnel et al., 2019; 
Curci et al., 2010; Dufour et al., 2009; Shim et al., 2005; Souri et al., 2020). In this case, the number of emission 
parameters that are constrained (n) is limited by the computational expense of running 𝐴𝐴 (𝑛𝑛) simulations. There-
fore, the emissions are often aggregated by species, sector, or region, which may introduce aggregation error. 
A common workaround for inversion of short-lived species is to neglect transport between model grid cells or 
regions resulting in a diagonal Jacobian that can be calculated with only a few forward model simulations. While 
computationally efficient, a downside is smearing error, which can be significant (Turner et al., 2012).

An alternative Bayesian approach is four-dimensional variational (4D-Var) inversion using an adjoint model to opti-
mize emissions at the model's grid-scale (without aggregation) with the complete model capabilities for describing 
transport and chemistry linking emissions to observations (Eibern & Schmidt, 1999; Elbern et al., 1997, 2000; 
Fisher & Lary, 1995). Rather than constructing the Jacobian matrix explicitly, adjoint models calculate the gradient 
of a scalar cost function (e.g., sum of squared model prediction errors and departures from a priori emissions) with 
respect to the emissions of each species, sector, and location. Using the gradient computed by the adjoint model, 
4D-Var inversion finds an optimal solution (a posteriori) that minimizes the cost function. While methodologically 
rigorous, 4D-Var inversion is computationally expensive in terms of time, storage, and memory. To alleviate some 
of this expense, 4D-Var inversion is often conducted at coarse model resolution with simplified chemistry or 
physics. Stavrakou et al. (2009) estimated the first satellite-based 4D-Var constraints on global VOC emissions for 
2003–2006 with the adjoint of IMAGESv2 at a 5° × 5° resolution using CH2O columns measured by the Scanning 
Imaging Absorption Spectrometer for Atmospheric Chartography/Chemistry (SCIAMACHY). 4D-Var inversions 
have been conducted to constrain global VOC emissions (Bauwens et al., 2016; Fortems-Cheiney et al., 2012; 
Stavrakou et al., 2009, 2015), isoprene emissions in Southeast US (Kaiser et al., 2018), isoprene emissions in 
Asia (Stavrakou et al., 2014), and VOC emissions in China (Cao et al., 2018; Stavrakou et al., 2016). The previous 
4D-Var VOC inversions conducted in Asia suggested that (a) the MEGAN biogenic isoprene emissions from Asian 
tropical forests were overestimated by a factor of 2 (Stavrakou et al., 2014), (b) Chinese VOC emissions from the 
post-harvest burning of crop residues in June were underestimated (Stavrakou et al., 2016), and (c) Chinese VOC 
emissions in warm seasons might be underestimated (Cao et al., 2018).

A challenge in developing any bottom-up or top-down estimates of VOC emissions is that validation of an inven-
tory requires measurements of a large variety of VOC species. Air quality field campaigns measuring multiple 
VOCs provide valuable opportunities for this purpose. In this study, we use measurements collected during the 
KORea–U.S. cooperative Air Quality field study (KORUS-AQ), which was conducted over South Korea from 
May 1 to June 10 in 2016 (Crawford et al., 2021). The study included extensive in-situ measurements from 20 
local flights of the NASA DC-8 research aircraft, which enabled a comprehensive analysis of local chemistry and 
sources of air pollutants. This period was characterized by the typical meteorological condition of Korean spring-
time, with an average temperature of 19°C and relative humidity generally above 60% (Peterson et al., 2019). 
Increasing sunlight over the course of the campaign resulted in increased biogenic emissions and active photo-
chemical reactions producing CH2O and O3.

In this study, we develop top-down estimates of VOC emissions in Korea at high (0.25° × 0.3125°) resolution 
using a new inversion method, in-situ measurements from KORUS-AQ, and multiple remote sensing observa-
tions. To minimize aggregation error and computational cost, while including complete treatment of atmospheric 
transport, we develop a two-step Hybrid Iterative Finite Difference Mass Balance (IFDMB) and 4D-Var inversion 
approach (Hybrid IFDMB-4DVar). Our method couples the IFDMB inversion and the 4D-Var inversion in a 
consistent, Bayesian manner to estimate grid-scale speciated VOC emissions. CH2O observations from the Ozone 
Monitoring Instrument (OMI) are used for the IFDMB inversion, and from the Ozone Mapping and Profiler Suite 
(OMPS) for the 4D-Var inversion. CH2O measurements from the DC-8 aircraft are used to correct the biases in 
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the two satellite retrievals and to control the balance between the IFDMB and 4D-Var inversions. The a posteriori 
emissions are evaluated using comparisons of modeled mixing ratio to DC-8 aircraft measurements of speciated 
VOCs and O3.

2.  Data
2.1.  KORUS-AQ Aircraft Observations

Airborne measurements during KORUS-AQ include O3 and speciated VOCs collected during 20 local flights 
of the NASA DC-8 research aircraft (Figure  1). O3 was measured by the NCAR NOxyO3, a four-channel 
chemiluminescence instrument (Weinheimer et al., 1994). Table 1 summarizes the VOC measurements we use 
for this study, which consist of VOCs measured by the University of Colorado Boulder INSTARR Compact 
Atmospheric Multi-species Spectrometer (CAMS; Fried et al., 2020; Richter et al., 2015; Spinei et al., 2018), 
the University of California Irvine Whole Air Sampling (WAS; Simpson et al., 2020), the University of Oslo 
PTR-TOF-MS (PTRMS; Müller et  al.,  2014), and the Georgia Tech Chemical Ionization Mass Spectrometer 
(GTCIMS; Huey, 2007). Speciated VOCs include CH2O, C2H4, C2H6, C3H8, ≥C3 alkenes, ≥C4 alkanes, aromatic 
species, isoprene, oxygenated VOCs (OVOCs), and peroxy acetyl nitrate (PAN). Some OVOCs were measured as 
combined species (MVK + MACR + ISOPOOH). For the PTRMS isomer measurements, we assume propanal 
is relatively negligible compared to acetone, and butanal is negligible compared to methyl ethyl ketone (MEK; 
M.-J. Kim et al., 2020; Seo & Baek, 2011). We lump species for ≥C3 alkenes, ≥C4 alkanes, and aromatic species 
(TOLU and XYLE) for comparisons with simulated species, which are also described in Section 3.1.

Figure 1.  (a) KORUS-AQ DC-8 aircraft flight dates in May–June 2016, DC-8 aircraft observations of (b) CH2O [ppbv] and (c) O3 [ppbv] collected across all flights 
during the KORUS-AQ campaign and (d) individual flight average observations of CH2O [ppbv] (blue boxes show the quartiles) sampled below 1 km.
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2.2.  OMI and OMPS CH2O Retrievals

We use CH2O tropospheric column concentrations observed by the OMI (González Abad et al., 2015) and the 
OMPS Nadir Mapper (NM; González Abad et al., 2016). OMI was launched in 2004 aboard the NASA Aura 
satellite. OMPS was launched in 2011 aboard the Suomi National Polar-orbiting Partnership (SUOMI-NPP) 
satellite. They orbit close together with an Equator crossing time in the ascending node of 13:42 local time for 
Aura and 13:30 local time for SUOMI-NPP. OMI has a cross-track swath of 2,600 km at the Earth's surface. 
The number of pixels is 60 and its spatial resolution is 13 × 24 km 2 at nadir. For OMPS, the cross-track swath 
is approximately 2,800 km. The number of macropixels is 36 and the resolution at nadir is 50 × 50 km 2 in its 
nominal configuration.

For data quality control, we require that observations (a) pass all the fitting and statistical quality checks provided 
by the standard product (e.g., main quality flag = 0, xtrack quality flag = 0), (b) have a cloud fraction less than 
0.3, (c) have a solar zenith angle less than 60°, and (d) range from −5 × 10 15 to 10 × 10 16 molec cm −2 (L. Zhu 
et al., 2014). We only use the OMI data from rows 5–20, discarding those affected by the row anomaly (Duncan 
et  al.,  2016; L. Zhu et  al.,  2017). We account for drift from instrument aging of OMI (Marais et  al.,  2012) 
by removing the increment of a linear regression of background zonal mean monthly vertical column densi-
ties (VCDs) over the Pacific [160°E− 140°W] (L. Zhu et al., 2017). The values of this correction range from 
3.6 × 10 14 to 8.0 × 10 14 molec cm −2. For OMPS, we exclude the easternmost cross-track position, whose retrieved 
CH2O column can be biased relative to other positions (González Abad et al., 2016), possibly due to sensor cali-
bration differences at the most far off-nadir positions (Seftor et al., 2014).

We use the reference sector corrected VCDs of the Aura OMI OMHCHO level 2 product (https://disc.gsfc.nasa.
gov/datasets/OMHCHO_003/summary). For OMPS, we convert the OMPS differential slant column density 
(δSCD) between the observation and the radiance reference spectra into VCD (González Abad et al., 2016). For 
this purpose, we conduct a 2° × 2.5° GEOS-Chem simulation. The simulated global CH2O concentrations are 

VOCs Instrument

CH2O CAMS

C2H4 WAS

C2H6 WAS

C3H8 WAS

≥C3 alkenes a WAS

≥C4 alkanes b WAS

Benzene WAS

TOLU c WAS

XYLE d WAS

Isoprene WAS

MVK + MACR + ISOPOOH e PTRMS

Acetone f PTRMS

Methyl ethyl ketone (MEK) g PTRMS

Acetaldehyde PTRMS

PAN GTCIMS

 a≥C3 alkenes  =  propene  +  1-butene  +  i-butene  +  trans-2-butene  +  cis-2-butene  +  1,3-butadiene  +  styrene.  b  ≥  C4 
alkanes  =  n-butane  +  i-butane  +  i-pentane  +  n-pentane + 2-methyl pentane + 3-methyl pentane  +  methyl 
cyclopentane  +  n-hexane + 2,3-dimethyl butane  +  cyclopentane  +  n-decane  +  n-heptane  +  methyl 
cyclohexane + n-nonane + n-octane + cyclohexane.  cTOLU =  toluene + ethyl benzene +  i-propyl benzene + n-propyl 
benzene.  dXYLE  =  m,p-xylene  +  o-xylene +  1,3,5-trimethyl benzene +  1,2,4-trimethyl benzene +  1,2,3-trimethyl 
benzene.  eThe PTRMS measurements of methyl vinyl ketone (MVK), methacrolein (MACR), and isoprene-derived 
hydroperoxides (ISOPOOH) isomers.  fThe PTRMS measurements of acetone and propanal isomers.  gThe PTRMS 
measurements of methyl ethyl ketone (MEK) and butanal isomers.

Table 1 
VOC Measurements During KORUS-AQ

https://disc.gsfc.nasa.gov/datasets/OMHCHO_003/summary
https://disc.gsfc.nasa.gov/datasets/OMHCHO_003/summary
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used to construct background VCDs over the remote Pacific for the reference sector correction (González Abad 
et al., 2016) and the shape factors used in the air mass factor (AMF) recalculation (Palmer et al., 2001).

To reduce measurement noise and increase spatial resolution at the cost of temporal specificity, we oversample 
the satellite observations using a tessellation method (Sun et al., 2018; L. Zhu et al., 2014). Considering both the 
large uncertainties in the OMI CH2O retrievals and the missing OMI observations during KORUS-AQ from May 
29 to June 13, we average monthly data for 3 years (2014–2016) to a coarse horizontal resolution (2° × 2.5°). On 
the other hand, the OMPS CH2O is averaged by simulation periods (defined in Section 3.3.2) into a finer simu-
lation resolution (0.25° × 0.3125°).

Finally, we account for bias in satellite retrievals following the method suggested by L. Zhu et al. (2020). This 
method exploits a chemical transport model as a platform to evaluate satellite CH2O retrievals with in-situ obser-
vations from aircraft campaigns. We increase the OMI CH2O during the KORUS-AQ campaign by 9% following 
the results of L. Zhu et al. (2020). For OMPS, we estimate the bias during KORUS-AQ to be −37.5% and scale 
up the OMPS CH2O by 60% (Appendix A).

The final CH2O VCDs of OMI and OMPS feature high concentrations over anthropogenic and biogenic source 
regions (Figure 2). There still remain some discrepancies between the two satellite products, which could result 
from the higher noise and fitting uncertainties in the OMI instrument as well as the uncertainties in reference 
sector correction, a priori CH2O profiles, and AMF (González Abad et al., 2016; L. Zhu et al., 2016).

Figure 2.  The (a, c) OMI and (b, d) OMPS CH2O VCDs. The OMI CH2O VCDs are oversampled at 2° × 2.5° resolution 
for (a) May 2014–2016 and (c) June 2014–2016. The OMPS CH2O VCDs are oversampled at 0.25° × 0.3125° resolution for 
(b) May 2016 and (d) June 2016. The units are molec cm −2. Ocean data is not used for the inversion because of higher noise, 
lower concentrations, and small influence from continental VOC emissions.
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3.  Methods
3.1.  A Priori VOC Emissions

Here, we describe the a priori VOC emissions that are to be optimized in our inverse modeling. Figure 3 and 
Table 2 summarize the a priori VOC emissions during the KORUS-AQ campaign over the study domain [20°– 
50°N, 100°– 140°E]. We use anthropogenic emissions from monthly KORUSv5 (Woo et al., 2012), biogenic 
emissions from MEGANv2.1 (Guenther et  al.,  2012), and daily biomass burning emissions from QFEDv2.5 
(Koster et al., 2015; Pan et al., 2020). The emitted VOCs include CH2O, C2H4, C2H6, C3H8, ≥C3 alkenes, ≥C4 
alkanes, benzene, TOLU, XYLE, isoprene, MEK, acetone, and acetaldehyde. The emission species are defined 
based on the chemical mechanism used in our study as detailed in Section 3.2.

3.2.  GEOS-Chem Forward Model

GEOS-Chem is a chemical transport model driven by meteorology from the 
Goddard Earth Observing System (GEOS) of the NASA Global Modeling 
and Assimilation Office (GMAO; Bey et  al.,  2001). In this study, we use 
GEOS-Chem adjoint v35 driven by GEOS-FP meteorology, which is based 
on GEOS-Chem forward model v8-02-01 with relevant updates through 
v9-03-01, run at global (2° × 2.5°) and nested (0.25° × 0.3125°) domains. 
The nested domain spans Korea and Eastern China [20°–50°N, 100°– 140°E]. 
The model version includes detailed O3-HOx-NOx photochemistry coupled to 
a bulk aerosol mass scheme that includes primary carbonaceous aerosols, 
dust, sea salt, secondary inorganics (sulfate, nitrate, and ammonium) and 
their partitioning. Anthropogenic emissions are taken from KORUSv5 inven-
tory (Woo et al., 2012). Biogenic emissions are calculated with MEGANv2.1 
(Guenther et al., 2012) and biomass burning emissions are from QFEDv2.5 
(Koster et al., 2015; Pan et al., 2020). The GEOS-Chem also includes emis-
sions from additional sources such as lightning NOx, aircraft, and dust as 
described in Zhang et al. (2015).

We update the GEOS-Chem model based on recent findings to make the 
model appropriate for simulating CH2O from VOCs. First, background meth-
ane concentrations are updated using optimized CH4 fields for 2016 (Maas-
akkers et al., 2019). Next, we include all chemistry updates in GEOS-Chem 
forward model v10. Additionally, we update aromatic chemistry following 
Porter et  al.  (2017) and Oak et  al.  (2019), and C2H4 chemistry following 
Kwon et al.  (2021). The updated aromatic chemistry includes oxidation of 
benzene, toluene, and xylene by OH and NOx and subsequent oxidation of 

Figure 3.  The a priori total VOC emissions at 0.25° × 0.3125° resolution during the KORUS-AQ campaign from (a) KORUSv5 (Ta,an), (b) MEGANv2.1 (Ta,bg), and 
(c) QFEDv2.5 (Ta,bb). Units are mg C m −2 day −1.

VOC Anthropogenic Biogenic Biomass Burning Sum

CH2O 0.150 – 0.115 0.265

C2H4 8.28 0.486 – 8.77

C2H6 4.02 – 0.125 4.15

C3H8 2.18 – 0.0345 2.21

≥C3 alkenes 5.57 0.609 0.0997 6.28

≥C4 alkanes 13.4 – 0.0142 13.4

Benzene 0.906 – – 0.906

TOLU 10.9 – – 10.9

XYLE 3.75 – – 3.75

Isoprene 0.377 21.3 – 21.7

MEK 0.540 – 0.0662 0.606

Acetone 0.00313 4.46 0.0899 4.58

Acetaldehyde 0.298 – 0.0833 0.381

Total VOCs 50.5 26.8 0.628 77.9

Note. See Table 1 for species definitions.

Table 2 
The A Priori VOC Emissions in Gg C Day −1 During the KORUS-AQ 
Campaign Period Over the Study Domain [20°– 50°N, 100°– 140°E]
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phenol and cresol. C2H4 is a large anthropogenic VOC emission in the KORUSv5 inventory, and it is a source 
of CH2O. Finally, we correct the daytime planetary boundary layer (PBL) height in GEOS-FP following Oak 
et  al.  (2019). We calculate hourly scale factors ranging from 0.66 to 2.17 based on discrepancy between the 
GEOS-FP PBL height and lidar observations at Seoul National University (126.95°E, 37.46°N; Brooks, 2003), 
and evaluate the calculation using ceilometer measurements at Olympic park (127.1°E, 37.52°N) and Taehwa 
(127.3°E, 37.31°N) during KORUS-AQ (Knepp et al., 2017). The same scale factors are applied to all columns in 
the simulation domain, which lower the daytime and heighten the nighttime GEOS-FP PBL height.

3.3.  A Hybrid IFDMB-4DVar Framework for Inverse Modeling

Inverse modeling is the process whereby model calculations (H(x)) and measurements (y) are combined to 
formulate an optimal estimate of the model inputs (x). In our case, the model inputs to be optimized are the VOC 
emissions. The measurements are the OMI or OMPS CH2O retrievals, and the model calculations are the GEOS-
Chem simulated CH2O VCDs as sampled by the OMI or OMPS observation operators. In this approach, a cost 
function (J(x)) is first formulated that measures the error-weighted sum of squared difference between H(x) and 
y (Jo(x)), and between the estimated inputs x and the a priori xa (Ja(x)),

𝐽𝐽 (𝐱𝐱) = 𝐽𝐽𝑜𝑜(𝐱𝐱) + 𝐽𝐽𝑎𝑎(𝐱𝐱) = (𝐻𝐻(𝐱𝐱) − 𝐲𝐲)
𝑇𝑇
𝐑𝐑−1(𝐻𝐻(𝐱𝐱) − 𝐲𝐲) + (𝐱𝐱 − 𝐱𝐱𝑎𝑎)

𝑇𝑇
𝐁𝐁−1 (𝐱𝐱 − 𝐱𝐱𝑎𝑎) ,� (1)

where H is the forward model operator, and R and B are the observation and prior error covariance matrices, 
respectively. Specification and tuning of the R and B matrices are a critical aspect of inverse modeling that we 
discuss further in the following sections. The optimal estimate, or the a posteriori (�̂ ), is the state that minimizes 
the cost function (J(x)).

The GEOS-Chem adjoint is a tool that efficiently calculates the gradient of a scalar model response function, in 
this case J(x), to a large number of parameters (x; Henze et al., 2007). The use of the adjoint model enables us to 
conduct the 4D-Var inversion without aggregation of parameters into large regions; instead, the inversion can be 
conducted at the model grid scale while still including transport.

One challenge is that the dimension of x is much greater than that of y. Measurements of a single species (CH2O) 
may not constrain the emissions of all VOC species, direct application of 4D-Var to estimate speciated emissions 
may struggle to converge to a unique solution, and convergence may be very slow (requiring numerous iterations).

Acknowledging these limitations, we develop a Hybrid IFDMB-4DVar framework, which is shown schemati-
cally in Figure 4 and described in detail in the subsequent sections. A high-level overview is as follows: We first 
constrain the total VOC emissions using the Bayesian IFDMB inversion. The GEOS-Chem forward model at the 
2° × 2.5° horizontal resolution uses the a priori VOC emissions as inputs and computes the IFDMB a posteriori 
emission estimate using the OMI CH2O VCDs. The IFDMB a posteriori is then used as input for the GEOS-
Chem adjoint model at a finer 0.25° × 0.3125° horizontal resolution. The 4D-Var method is then applied using 
the OMPS CH2O VCDs. The output of the 4D-Var inversion is the VOC emissions with the a posteriori speciation 
reflecting local chemistry and transport across grid cells. The aircraft measurements of CH2O are used to correct 
a bias in the satellite retrievals (Section 2.2) and to choose the optimal regularization parameters for the two 
inversion steps (Sections 3.3.1–3.3.2).

Two-step inversions have previously been developed for other species. For ammonia, Li et al. (2019) applied an 
a posteriori of a 2° × 2.5° IFDMB inversion to update an a priori of a 0.25° × 0.3125° 4D-Var inversion. Having 
the updated a priori reduced the computational cost of the 4D-Var inversion by 40%. In their pseudo-observation 
test, the accuracy of the 4D-Var inversion was almost identical to the results of the 4D-Var inversion using the 
initial a priori. Theoretically, two inversion solutions starting from different a priori emissions may not always 
converge to the same solution, given both the role of the a priori in constraining the cost function and that for 
a nonlinear system there likely exist multiple local minima. Our Hybrid IFDMB-4DVar framework is different 
from the method of Li et al. (2019) in that for the 4D-Var inversion, we use both the a priori and the a posteri-
ori of the IFDMB inversion which is described in detail in Section 3.3.2. The 4D-Var inversion starts from the 
IFDMB a posteriori. However, the IFDMB a priori still remains in the 4D-Var cost function (see Equation 6 in 
Section 3.3.2) and constrains the 4D-Var inversion. The IFDMB a posteriori is introduced to the 4D-Var cost 
function which constrains the solution independently of the IFDMB a priori.
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Here, we present some notations used in the following two subsections, where we describe the IFDMB and the 
4D-Var methods in detail. The emission of VOC species j from a model surface grid cell i will be denoted as Ei,j. 
At each grid cell i, we define the vector of VOC emissions (Ei) as

𝐄𝐄𝑖𝑖 =
[

𝐸𝐸𝑖𝑖𝑖1, 𝐸𝐸𝑖𝑖𝑖2,… , 𝐸𝐸𝑖𝑖𝑖𝑖𝑖

]𝑇𝑇

,� (2)

where n is the number of VOC emission species, which is 25 as described in Section 3.1. We also define the VOC 
emission vector for a simulation domain (E) as

𝐄𝐄 = [𝐄𝐄1,𝐄𝐄2,… ,𝐄𝐄𝑚𝑚]
𝑇𝑇
,� (3)

where m is the number of surface grid cells, which is determined by the resolution of the simulation. For a priori 
information, we will use the subscript Xa. In the same way as above, we define Ea,i,j, Ea,i, and Ea. In order to avoid 
confusion, we use superscript X MB and X Var to specify that the term is defined for the IFDMB or the 4D-Var inver-
sions, respectively, when such definition is needed.

3.3.1.  IFDMB

We first constrain the monthly total VOC emissions at 2° × 2.5° resolution using the IFDMB method of Cooper 
et al. (2017). This method calculates an optimal mass balance solution of a nonlinear problem with iterations of 
the GEOS-Chem forward model by neglecting horizontal transport across model columns. See Appendix B for 
details.

A limitation of the standard IFDMB method is that it is formulated to optimize only a single parameter per model 
column. Therefore, for each surface grid cell i, we define the total VOC emission (Ti) as a function of Ei,

�� = � (��) =
�
∑

�=1

��,� = ����,�.� (4)

Ti is a scaled version of the a priori value Ta,i = F(Ea,i). κi is the scaling factor, whose a priori value is 1 for any 
grid cell i.

We assume a local (not impacted by neighboring columns) nonlinear relationship between the simulated CH2O 
VCD at i (Ωi) and κi,

Figure 4.  Flowchart of the Hybrid IFDMB-4DVar. The two gray zones indicate the two steps. Emerald parallelograms are data sets. White squares are models or 
processes. White diamonds are decision points. See Section 3.3 for details.
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Ω� = �(��).� (5)

The rationale for this assumption is that the lifetimes of the VOCs and CH2O are relatively short compared to the 
time-scale of the model horizontal transport. For this assumption to hold, we use the coarse 2° × 2.5° simulation 
instead of the finer simulation. Also, we exclude methanol emissions in our inverse modeling because of its long 
lifetime (a few months). Methanol has relatively small impacts on CH2O and O3 in our domain of interest (Kwon 
et al., 2021).

The IFDMB cost function is defined for each i as

�� (��) = ��,� + ���
� ��,�

=
(Ω���,� −� (��))2

�2
�,�

+ ���
�

(��,� − ��)2

�2
�,�

,
� (6)

where Jo,i is the error-weighted squared difference between ΩOMI,i and H(κi), Ja,i is the error-weighted squared 
difference between κa,i and κi, and 𝐴𝐴 𝐴𝐴

𝑀𝑀𝑀𝑀

𝑎𝑎  is the regularization parameter for Ja,i for any i. ΩOMI,i is the OMI CH2O 
VCD oversampled at i, σo,i is the uncertainty of ΩOMI,i, and σκ,i is the uncertainty of κi.

σo,i is the sum of relative and absolute uncertainties of ΩOMI,i. The relative uncertainties are the OMI VCD uncer-
tainties taken from the OMI product. For the absolute uncertainties, the detection limit 1.0 × 10 16 molec cm −2 is 
used (González Abad et al., 2015; L. Zhu et al., 2016). The uncertainties of VOC emissions have been reported 
within a factor of 1–3 (EMEP/EEA, 2019). We roughly define σκ,i to be 2, which indicates 200% uncertainty of 
the total VOC emission.

For 𝐴𝐴 𝐴𝐴
𝑀𝑀𝑀𝑀

𝑎𝑎  , we conduct a series of sensitivity simulations with different 𝐴𝐴 𝐴𝐴
𝑀𝑀𝑀𝑀

𝑎𝑎  values and evaluate them against 
the DC-8 aircraft measurements of CH2O (Appendix C). We consider the normalized root mean squared error 
(RMSE) between the simulated column concentrations and the DC-8 aircraft observed CH2O column concentra-
tions, and the normalized difference between the 𝐴𝐴

∑𝑚𝑚
𝑀𝑀𝑀𝑀

𝑖𝑖=1
𝑇𝑇𝑖𝑖 and 𝐴𝐴

∑𝑚𝑚
𝑀𝑀𝑀𝑀

𝑖𝑖=1
𝑇𝑇𝑎𝑎𝑎𝑎𝑎 . We find that the sum of the two quanti-

ties is minimal when 𝐴𝐴 𝐴𝐴
𝑀𝑀𝑀𝑀

𝑎𝑎  is 0.1, which we use for our study.

The IFDMB method finds the optimal κi (�̂� ) by solving 𝐴𝐴
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

= 0 (Equation B1). We consider the system to be 

converged when the difference of 𝐴𝐴
∑𝑚𝑚

𝑀𝑀𝑀𝑀

𝑖𝑖=1
𝑇𝑇𝑖𝑖 between the adjacent two iterations is smaller than 0.1% for five 

consecutive iterations. The system converges in 10, and 14 iterations for May, and June, respectively.

3.3.2.  4D-Var and the GEOS-Chem Adjoint Model

We use the 4D-Var method to further optimize the VOC emissions calculated from the IFDMB in Section 3.3.1, 
as a refinement that accounts for VOC speciation, the spatial variation at the finer resolution (0.25° × 0.3125°), 
local chemistry, and the effects of horizontal transport. To reduce the computational burdens, the 4D-Var inver-
sions are conducted for four 10-day subperiods from May 1st to June 10th. All inversions are initialized with 
the same emissions (the IFDMB a posteriori) and are assumed to be independent of each other. The shorter 
time period of the 4D-Var inversions could introduce some uncertainties, but we assume that they are relatively 
smaller than other sources of uncertainty. The lifetimes of most VOCs in our system do not exceed 10 days and 
we constrain the average emissions for a simulation period.

We acknowledge that conducting the 4D-Var inversions piece-wise, in parallel, could also lead to some 
uncertainties in the inversion result. For example, the optimized concentrations in the previous period are 
not used as the initial condition of the next period simulation. We quantify the sensitivity of the 4D-Var 
cost function of the first iteration calculated for the period May 11–20 to the initial condition. When we 
use the IFDMB a posteriori, the cost function introduced by the satellite observations (Jo in Equation 12) 
is 223.745. When we use the final concentrations from hybrid a posteriori from the May 1–10 period, as a 
sensitivity test, Jo is 220.354. As this difference is only 1.5% of the cost function value, we assume the error 
associated with conducting the inversion for these periods in parallel is negligible compared to the other 
sources of uncertainty.
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In the 4D-Var method, we define a scaling factor λi,j for each Ei,j with respect to Ea,i,j. Similar to κa,i in the IFDMB 
method, the a priori value of λa,i,j is 1 for any i and j. In this formulation, we have the vector of scaling factors (Λ), 
and the simulated CH2O VCD vector (Ω) for the simulation domain:

𝚲𝚲 =
[

𝜆𝜆𝑖𝑖=1,𝑗𝑗=1, 𝜆𝜆1,2,… , 𝜆𝜆𝑚𝑚Var ,𝑛𝑛

]𝑇𝑇

,� (7)

𝛀𝛀 = [Ω𝑖𝑖=1,Ω2,… ,Ω𝑚𝑚Var ]
𝑇𝑇
.� (8)

The nonlinear operator from Λ to Ω is the GEOS-Chem forward model,

𝛀𝛀 = 𝐻𝐻(𝚲𝚲).� (9)

We apply the results of the IFDMB to the 4D-Var system, which is the vector of 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 in the 2° × 2.5° resolution 
(

�̂
)

 ,

𝐊̂𝐊 = [𝜅̂𝜅𝑖𝑖=1, 𝜅̂𝜅2,… , 𝜅̂𝜅𝑚𝑚𝑀𝑀𝑀𝑀 ]
𝑇𝑇
.� (10)

In order to use this information, we additionally define a function G of Λ that returns the vector of the total VOC 
emission scaling factors (K) in the 2° × 2.5° resolution,

�(�) = �

= [��=1, �2,… , ���� ]� .
� (11)

Note that K is an m MB-element vector whereas Λ is an m Var × n-element vector.

The 4D-Var cost function is defined as

� = �� + �Var� �� + �Var� ��

= (����� −�(�))��−1
���� (����� −�(�))

+�Var� (�� − �)��−1
� (�� − �)

+�Var�
(

�̂ − �(�)
)�
�̂−1

�
(

�̂ − �(�)
)

,

� (12)

where Jo is the error-weighted squared difference between ΩOMPS and H(Λ), Ja is the error-weighted squared 
difference between Λa and Λ, and Jp is the error-weighted squared difference between 𝐴𝐴 𝐊̂𝐊 and G(Λ). This last term 
is an additional penalty term beyond traditional 4D-Var which places a constraint on the total VOC emissions as 
obtained by the IFDMB inversion. ΩOMPS is the OMPS CH2O VCD vector defined in the same way as Equation 8. 
The covariance matrices for ΩOMPS, Λ, and 𝐴𝐴 𝐊̂𝐊 are ROMPS, Bλ, and 𝐴𝐴 𝐁̂𝐁𝜅𝜅 , respectively. 𝐴𝐴 𝐴𝐴

Var

𝑎𝑎  and 𝐴𝐴 𝐴𝐴
Var

𝑝𝑝  are the regulariza-
tion parameters.

The diagonal elements of ROMPS are the sum of the relative and the absolute uncertainties of the OMPS VCDs, 
and we assume the observation errors are independent of each other. The relative uncertainties of OMPS CH2O 
VCDs are formulated through uncertainty propagation (Boersma et  al.,  2004; De Smedt et  al.,  2018; Kwon 
et al., 2019). For this purpose, we estimate the AMF uncertainties to be 50%. The uncertainties of the background 
VCDs are defined to be the GEOS-Chem variability around the monthly mean. For the absolute uncertainties, the 
detection limit of 7.5 × 10 15 molec cm −2 is used (González Abad et al., 2016).

To construct Bλ, we estimate 200% uncertainties for the anthropogenic and biogenic emissions, and 300% for the 
biomass burning emissions. We set the uncertainties of biomass burning emissions to be the largest acknowledg-
ing the particularly high variability in the bottom-up inventories (Cao et al., 2018). As an exception, we define 
100% uncertainties for anthropogenic C2H4 and ≥C3 alkenes. Alkenes are overestimated by an order of magni-
tude in the a priori simulation compared to the aircraft observations, unlike the other VOC species which are 
underestimated. Because the inverse modeling of CH2O is expected to increase VOC emissions, we artificially 
limit the increase of the alkene emissions by applying these smaller uncertainties.

Emission uncertainties are not independent in space at the sub-regional scale, because similar measures are used 
to develop the emission inventories within countries or biomes. Therefore, grid-scale error correlations must be 
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considered especially at the fine resolution of the 4D-Var inversion. While 
it is difficult to precisely determine the correlation structure, we conduct a 
sensitivity test with different correlation length-scales from 0 to 500 km. We 
find the 4D-Var inversion result is least sensitive to the correlation length-
scale between 100 and 200 km. We choose this range because we want our 
inversion result to be insensitive to the value of this parameter, which is rather 
uncertain. Considering the diversity of VOC species and sources, and the 
heterogeneous distribution of the emissions especially in Korea, we assume a 
100-km correlation e-folding length-scale for Bλ.

𝐴𝐴 𝐁̂𝐁𝜅𝜅 is assumed to be diagonal and the elements are the uncertainties of 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 . In 
Section 3.3.1, 𝐴𝐴 𝐴𝐴

𝑀𝑀𝑀𝑀

𝜅𝜅𝜅𝜅𝜅𝑀𝑀𝑀𝑀
 is roughly assumed to be 2 at any grid cell i MB. 𝐴𝐴 𝐴𝐴

Var

𝜅̂𝜅𝜅𝜅𝜅𝑀𝑀𝑀𝑀
 is 

spatially varying as determined by the IFDMB inversion (Equation B6).

We estimate values for the regularization parameters for the 4D-Var by scaling the value used in the IFDMB 
𝐴𝐴

(

𝛾𝛾
𝑀𝑀𝑀𝑀

𝑎𝑎

)

 :

𝛾𝛾
Var
𝑎𝑎 = 𝛾𝛾

𝑀𝑀𝑀𝑀

𝑎𝑎

⎛

⎜

⎜

⎝

∑𝑚𝑚
𝑀𝑀𝑀𝑀

𝑖𝑖=1
𝐽𝐽

𝑀𝑀𝑀𝑀

𝑎𝑎𝑎𝑎𝑎

𝑚𝑚𝑀𝑀𝑀𝑀

⎞

⎟

⎟

⎠

(

𝐽𝐽
Var

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=1

𝑚𝑚Var

)−1
(

SNR𝑂𝑂𝑂𝑂𝑂𝑂

SNR𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

)

,� (13)

𝛾𝛾
Var

𝑝𝑝 = 𝛾𝛾
𝑀𝑀𝑀𝑀

𝑎𝑎

(

𝑚𝑚
Var

𝑚𝑚𝑀𝑀𝑀𝑀

)(

SNR𝑂𝑂𝑂𝑂𝑂𝑂

SNR𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

)

.� (14)

𝐴𝐴
∑𝑚𝑚

𝑀𝑀𝑀𝑀

𝑖𝑖=1
𝐽𝐽

𝑀𝑀𝑀𝑀

𝑎𝑎𝑎𝑎𝑎
 is 𝐴𝐴 𝐴𝐴

𝑀𝑀𝑀𝑀

𝑎𝑎𝑎𝑎𝑎
 at the IFDMB solution (when the IFDMB finds the IFDMB a posteriori) summed over the 

IFDMB domain. On the other hand, 𝐴𝐴 𝐴𝐴
Var

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=1
 is calculated in the 4D-Var system with the initial parameters from 

the IFDMB a posteriori. Because the two systems have different definitions of Ja at different resolutions, the 
two values are not identical. We also apply the ratio of the average signal-to-noise ratio (SNR) between the two 
satellite retrievals. The regularization parameters tune relative impacts of Jo, Ja, and Jp in the system. We place 
more emphasis on Jo when the OMPS retrievals have higher SNR. The resulting regularization parameters from 
Equations 13 and 14 are 0.07 for 𝐴𝐴 𝐴𝐴

Var

𝑎𝑎  in May, 0.05 for 𝐴𝐴 𝐴𝐴
Var

𝑎𝑎  in June, and 6 for 𝐴𝐴 𝐴𝐴
Var

𝑝𝑝  . Finally, we find the optimal 
scaling factors 

(

�̂
)

 by minimizing Equation 12.

The GEOS-Chem adjoint calculates the gradient ∇ΛJ with the L-BFGS-B quasi-Newton optimization algorithm, 
which estimates the function (J) iteratively (Byrd et al., 1995; C. Zhu et al., 1997). We consider the optimization 
to be converged when the cost function reduction (ΔJ between iterations) is less than 0.1% of the initial ΔJ for 
five consecutive iterations. Our 4D-Var inversions have converged within 82 iterations.

4.  Results and Discussions
In this section, we present the results of four simulations with different model configurations and VOCs emis-
sions: (a) base simulation, (b) a priori simulation, (c) IFDMB simulation, and (d) hybrid simulation (Table 3). 
For the IFDMB inversion, the a priori simulation and the IFDMB simulation are run at the 2° × 2.5° resolution. 
For the 4D-Var inversion and evaluation with the aircraft observations, they are then run at the 0.25° × 0.3125° 
resolution. The base simulation and the hybrid simulation are only run at the 0.25° × 0.3125° resolution.

4.1.  Impacts of Forward Model Updates

Figure 5 shows the impacts of the forward model updates described in Section 3.2. The updates lead to improved 
performance of the CH2O and O3 simulations over Korea in comparison to the aircraft observations. Correlation 
coefficients (R) are increased for both species. The regression slope of the simulated CH2O is increased from 
0.29 to 0.33, and that of the O3 is increased from 0.56 to 0.60. However, there is a persistent underestimation that 
is not resolved by these updates. This indicates that the low bias in the simulated CH2O is not fully explained by 
the uncertainties in the forward model chemistry and suggests additional uncertainties in the sources of CH2O 
(i.e., VOC emissions).

Simulation Forward model updates VOC emissions

Base – A priori

A priori Yes A priori

IFDMB Yes IFDMB a posteriori

Hybrid Yes Hybrid IFDMB-4DVar a posteriori

Table 3 
Model Configurations of Four Simulations
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4.2.  IFDMB Inversion Results

The IFDMB inversion is evaluated with the OMI CH2O over the nested domain [20°– 50°N, 100°– 140°E] 
(Figures  6 and  7). The a priori simulation underestimates the OMI CH2O by 33%. The IFDMB inversion 
increases the total VOC emissions by 35%. This results in a 4% increase in the simulated CH2O columns, and the 
low bias against the OMI CH2O is reduced slightly to 31%. The increases of emissions are large over the urban 
areas in Eastern China and Korea. There are reductions of emissions over the Southwest corner of the domain, 
where biogenic emissions dominate. The reduction in biogenic VOC emissions over the region is consistent with 
Stavrakou et al. (2014).

In general, the change in the simulated CH2O at each model column is consistent with the change in the total VOC 
emissions, which supports the assumption of local relationship (Equation 5). However, the effects of transport are 
not fully negligible even at the coarse resolution. The neighboring columns of the biogenic source region show 
decreased CH2O as opposed to the increases in the total VOC emissions because of the average southwesterly 
flow during the KORUS-AQ period. Iterations can help resolve the transport issue to some degree. For example, 
our algorithm attempts to maximize the emission increases where the transport from the biogenic source region 
violates the assumption.

4.3.  Hybrid Inversion Results and a Posteriori VOC Emissions

The Hybrid IFDMB-4DVar inversion is evaluated with the OMPS CH2O (Figures 8 and 9). The IFDMB simula-
tion underestimates the OMPS CH2O by 13%. The low bias forces the 4D-Var to further increase the IFDMB a 
posteriori by 9%, which results in the increase in the simulated CH2O columns by 3%. The hybrid a posteriori and 
the hybrid simulated CH2O show more spatial variations at the high resolution. High column concentrations over 
some urban hot spots such as Beijing, Shanghai, and Korea are better captured in the hybrid simulation.

Another key difference between the IFDMB and the 4D-Var inversions is that the 4D-Var inversion changes 
the VOC emissions by species and sector. At regional scales, the IFDMB inversion does not change the VOC 
emission speciation and sector (not shown). In contrast, the speciation and the sector contribution of the hybrid a 
posteriori has been significantly altered. The fraction of anthropogenic emissions is increased in Eastern China, 
whereas that of the biogenic emissions (mostly isoprene) is increased in Korea.

Figure 5.  The mixing ratio of (a) CH2O and (b) O3 between two simulations (y-axis) and the DC-8 aircraft observations sampled below 1 km (x-axis) during 
KORUS-AQ. The gray color is the evaluation of the base simulation and the dark blue color is that of the updated simulation. The updates are described in detail in 
Section 3.2. The reduced major axis regression equation and the correlation coefficient are written in each panel.
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Figure 10 and Table 4 summarize the hybrid a posteriori VOC emissions during the KORUS-AQ campaign over 
the study domain [20°– 50°N, 100°– 140°E]. Among the three emission sectors, the anthropogenic emissions are 
increased the most by 56%, mainly due to the large increase in Chinese urban areas. Among the VOC emission 
species, ≥C3 alkenes show the largest increase (102%) because of its high CH2O yields. The second-largest 
increase is in ≥C4 alkanes emissions (80%) because of their large abundance. C2H4 (45%), isoprene (33%), and 
aromatic species (30%–39%) show moderate increases. Overall, the hybrid a posteriori emissions are 46% larger 
than the a priori emissions.

We point out that not all species of VOC emissions are likely to be equivalently constrained in our inversion. 
VOCs with low CH2O yields are not likely to be strongly constrained. Also, biogenic emissions such as C2H4 
and ≥C3 alkenes, because of their relatively small abundances, are not as well constrained by the inversion. 
However, it is not unreasonably complicated to have all 25 VOC emission species in our inversion to allow for 
the possibility of some improvement; it should not make the solution worse given the inversion is constrained by 
the a priori emissions.

We consider details of the hybrid a posteriori VOC emissions particularly in Korea (33°– 38°N, 124.5°– 132.0°E), 
since we use the KORUS-AQ aircraft observations to evaluate the inversions (Figure  11). Highly populated 
urban areas located alongside the West and South coastlines comprise only a small fraction of the country. 
The remaining 70% is covered by mountains where biogenic emissions dominate. The biogenic emissions are 
significantly increased from 0.702 to 1.95 Gg C day −1 (178%), whereas the increases in anthropogenic emissions 
are small from 1.80  to 2.21 Gg C day −1 (23%). This does partly result from the constraint on the total VOC 
emissions in our hybrid inversion system, as obtained by the IFDMB inversion (Jp in Equation 12). The increase 
in biogenic emissions restricts the increase in anthropogenic emissions. The constraint is especially notable in 
Korea, where the two sectors are distinct but densely located in small region; most of the country is covered by 
just one 2° × 2.5°grid cell. As VOC species with the largest emissions are constrained the most by the IFDMB a 

Figure 6.  The results of the IFDMB inversion. Top: the CH2O VCDs of (a) the OMI product, (b) the a priori simulation, and (c) the IFDMB simulation. Bottom: (d) 
the total VOC emission scaling factors calculated by the IFDMB, and the total VOC emissions of (e) the a priori, and (f) the IFDMB a posteriori.
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posteriori, the increase in aromatic emissions (2%–34%) is restricted by the constraint from Jp. Overall, the total 
VOC emissions in Korea are increased from 2.51 to 4.17 Gg C day −1 by 66%.

We present the changes in VOC emission speciation from the hybrid inversion in seven major anthropogenic 
source regions in Korea (Figure  12). The regions are defined following Kwon et  al.  (2021), who calculated 
top-down anthropogenic VOC emissions in Korea using the CH2O VCDs measured by GeoTASO instrument 
aboard the NASA B200 aircraft during KORUS-AQ. All seven regions show increases in VOC emissions, which 
are consistent with Kwon et al. (2021), who calculated the increase in anthropogenic emissions in Korea in the 
KORUSv5 inventory by a factor of 1.0–6.9. We note that the biogenic emissions are not negligible in the a priori 

Figure 7.  The results of the IFDMB inversion. Top: the comparisons between the a priori and the IFDMB simulations of (a) the total VOC emissions and (b) the 
simulated CH2O VCDs. Bottom: the comparisons to the OMI CH2O VCDs of (c) the a priori and (d) the IFDMB simulated CH2O VCDs.
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emissions for SMA2 and Daegu, where Kwon et al. (2021) calculated high increases in anthropogenic emissions 
(310 ± 180% and 290 ± 170%, respectively). The biogenic fractions in the two regions are increased significantly 
by the Hybrid inversion, while the increases in anthropogenic emissions are comparably small.

4.4.  Evaluation With Aircraft VOC Observations

We cross-validate the inversions using the DC-8 aircraft observations of VOCs during KORUS-AQ. Figures 13 
and 14 show the ratio of the simulated to the observed VOC mixing ratio. The a priori simulation underestimates 
most of the observed VOCs except for alkenes (C2H4 and ≥C3 alkenes). The VOC oxidation product, CH2O, is 
therefore underestimated by a factor of 2. The simulated mixing ratio of all the VOCs is collectively increased in 
the IFDMB simulation. Since the emissions in each grid cell are increased by the same factor for all VOC emis-
sion species, the changes in the mixing ratio are also simple: all boxes move to the right in Figures 13 and 14. In 
the IFDMB simulation, alkenes are even more overestimated and high alkanes and benzene are now biased high 
(Figure 13).

On the other hand, the 4D-Var inversion does not change all the VOCs uniformly. In the hybrid simulation, the 
underestimated VOCs tend to increase (e.g., isoprene), while the overestimated VOCs are rather constrained (e.g., 
C2H4, heavy alkanes, and benzene). Strong constraints on aromatics are also shown as expected by the evaluation 
of the a posteriori emission inventory (Section 4.3).

Strong constraints on aromatics could be controlled in future application. One factor that introduces the uncer-
tainties in the 4D-Var inversion is our approximated emission error specification (Section  3.3.2). We simply 
assume 200% errors for both anthropogenic and biogenic emissions. This might be too crude, especially in Korea 
where the emissions from these two sectors are both large in magnitude and have overlapping spatial distributions 
within the single 2° × 2.5° grid cell that covers much of Korea.

Another factor is our definition of Jp in Equation 12. Jp restricts emissions of species or sectors that have the larg-
est contribution to the total VOC emissions. This might result in an issue where the contribution to Jp of single 
(or few) emission species or sectors is particularly high. This is the case in Korea, where aromatic species are 
significantly high in emissions and ambient concentrations. Reformulating Jp considering the contributions could 
alleviate the issue, which is not attempted in this study.

Figure 8.  The results of the Hybrid IFDMB-4DVar inversion. Top: the CH2O VCDs of (a) the OMPS product, (b) the a priori simulation, (c) the IFDMB simulation, 
and (d) the hybrid simulation. Bottom: (e) the total VOC emission ratio of the hybrid a posteriori to the IFDMB a posteriori, and the total VOC emissions of (f) the a 
priori, (g) the IFDMB a posteriori, and (h) the hybrid a posteriori.
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We see that this is a limitation of the proposed inversion framework using the CH2O observations alone. We think 
that additional constraints on the inversion from geostationary satellites, such as isoprene and glyoxal, could help 
further constrain VOC oxidation.

4.5.  Impacts on Simulated O3 Over Korea

We evaluate the effects of our top-down constraints on VOC emissions on the simulated O3 mixing ratio in Korea 
using the DC-8 aircraft observations during KORUS-AQ (Figure 15). The simulated O3 is underestimated in the 
a priori simulation. In the hybrid simulation, the normalized mean bias (NMB) is decreased from −0.19 to −0.06 
and the correlation is also increased from 0.60 to 0.70. The improvement in the O3 simulation is attributed to the 

Figure 9.  The results of the Hybrid IFDMB-4DVar inversion. Top: the comparisons between the IFDMB and the hybrid simulations of (a) the total VOC emissions and 
(b) the simulated CH2O VCDs. Bottom: the comparisons to the OMPS CH2O VCDs of (c) the IFDMB and (d) the hybrid simulated CH2O VCDs.
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emission adjustments made in the IFDMB inversion. The 4D-Var inversion does not greatly affect the O3 simu-
lation. The slope of the regression line and NMB are slightly improved in the hybrid simulation compared to the 
IFDMB simulation. However, the correlation and the errors show slight decreases.

Similar trends are shown for the comparisons of the CH2O mixing ratio between the simulations and the aircraft 
observations. The hybrid simulated CH2O shows improved performance compared to the a priori simulation in 
terms of all the statistics presented in Figure 15. As the inversion progresses from the a priori to the IFDMB to 
the hybrid, the slope, NMB, mean absolute error (MAE), and RMSE gradually improve. However, the correla-
tion is increased in the IFDMB inversion but decreased in the 4D-Var inversion (R from 0.65, 0.66 to 0.61). The 
degraded correlations with the aircraft observations are consistent with the results in Section 4.4.

5.  Conclusions
In this study, we constrain springtime VOC emissions in Northeast Asia using the CH2O concentrations observed 
by OMI, OMPS, and the DC-8 aircraft during the 2016 KORUS-AQ campaign. We first show that the uncertain-
ties in the GEOS-Chem forward model do not fully explain the uncertainties in CH2O simulation. We updated 
the GEOS-Chem forward model with KORUSv5 anthropogenic emission inventory, optimized background CH4 
concentrations, and updated aromatic and C2H4 chemistry. Although the updates lead to improved performance 
in CH2O (R 0.56 to 0.65, NMB −0.57 to −0.51) and O3 (R 0.42 to 0.60, NMB −0.25 to −0.19) simulation, there 
still remains persistent underestimation for both species.

Next, we perform a two-step Hybrid IFDMB-4DVar inversion to optimize the VOC emissions. First, the IFDMB 
inversion quantifies the total VOC emissions at 2° × 2.5° using the OMI CH2O without considering the VOC 

Figure 10.  Top: the hybrid a posteriori total VOC emissions at 0.25° × 0.3125° resolution during the KORUS-AQ campaign period from (a) anthropogenic 
(

�̂��
)

 , (b) 
biogenic 

(

�̂��
)

 , and (c) biomass burning 
(

�̂��
)

 sectors. Bottom: the emission changes from the a priori total VOC emissions for (d) anthropogenic (ΔTan), (e) biogenic 
(ΔTbg), and (f) biomass burning (ΔTbb) sectors. Units are Gg C day −1.



Journal of Geophysical Research: Atmospheres

CHOI ET AL.

10.1029/2021JD035844

18 of 27

VOC Anthropogenic Biogenic Biomass burning Sum

CH2O 0.203 (35%) – 0.119 (3%) 0.322 (22%)

C2H4 12.2 (47%) 0.470 (−3%) – 12.7 (45%)

C2H6 4.64 (15%) – 0.115 (−8%) 4.76 (15%)

C3H8 2.59 (19%) – 0.0365 (6%) 2.63 (19%)

≥C3 alkenes 12.0 (115%) 0.588 (−3%) 0.107 (7%) 12.7 (102%)

≥C4 alkanes 24.1 (80%) – 0.0147 (4%) 24.1 (80%)

Benzene 1.18 (30%) – – 1.18 (30%)

TOLU 15.2 (39%) – – 15.2 (39%)

XYLE 5.04 (34%) – – 5.04 (34%)

Isoprene 0.532 (41%) 28.4 (33%) – 28.9 (33%)

MEK 0.705 (31%) – 0.0722 (9%) 0.777 (28%)

Acetone 0.0405 (29%) 5.29 (19%) 0.0980 (9%) 5.43 (19%)

Acetaldehyde 0.397 (33%) – 0.0953 (14%) 0.492 (29%)

Total VOCs 78.8 (56%) 34.8 (30%) 0.659 (5%) 114 (47%)

Note. The emission increases [%] from the a priori emissions are written in parentheses. See Table 1 for Species Definitions.

Table 4 
The Hybrid a Posteriori VOC Emissions in Gg C Day −1 During the KORUS-AQ Campaign Period Over the Study Domain 
[20°– 50°N, 100°– 140°E]

Figure 11.  Same as Figure 10 but over Korea.
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speciation and transport between model grid cells. Next, the 4D-Var inversion optimizes the VOC emissions 
at 0.25° × 0.3125° using the OMPS CH2O accounting for the emission speciation at the high resolution, local 
chemistry, and transport between model grid cells. We also utilize the CH2O observations from the DC-8 aircraft 
during KORUS-AQ to balance the steps in the hybrid system. Using the aircraft observations as a single stand-
ard, biases in the two satellite retrievals are corrected, and the tuning parameters for the two inversion steps are 
chosen.

The total VOC emissions are increased by 35% by the IFDMB inversion, and further by 9% (47% in total) by 
the 4D-Var inversion. Only the 4D-Var inversion changes the VOC emission speciation. Alkane emissions from 
anthropogenic sources are increased in Eastern China. In contrast, in Korea, it is the biogenic emissions that are 
increased the most. Comparisons with the aircraft observed VOCs demonstrate that the changes in the VOC 
emission speciation by the 4D-Var of CH2O are reasonable, although highly approximated.

Figure 12.  (a) Major anthropogenic source regions in Korea. (b) Comparisons of VOC emissions between the a priori (left bars) and the hybrid a posteriori (right bars) 
emission inventories for major anthropogenic source regions in Korea. Colors indicate different VOC types. Units are Gg C day −1.

Figure 13.  The ratio of the simulated to the aircraft observed VOC mixing ratio sampled below 1 km over the seven anthropogenic source regions in Korea during 
KORUS-AQ (see Figure 12 for definitions). The simulated mixing ratio is from (a) the a priori simulation, (b) the IFDMB simulation, and (c) the hybrid simulation. 
The x-axis is the ratio of the simulated to the observed mixing ratio in log-scale. The VOC species are shown on the left in the order of OH reactivity. Colors indicate 
different VOC types. The box width shows the quartile range. The PTRMS measurement of isoprene is possibly biased high compared with the WAS isoprene near 
petrochemical source region (e.g., Daesan) and Seoul due to interference from other hydrocarbons.
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Following these adjustments to emissions, the low biases of the simulated CH2O are reduced (NMB from 
−0.51, −0.32, to −0.15). In each step, the CH2O simulation is improved in terms of errors (MAE, RMSE). 
The correlation coefficient, however, is only increased in the IFDMB inversion (R 0.65 to 0.66), and in the 
4D-Var inversion, the value is decreased (0.61). The O3 simulation shows similar improvements to the CH2O 
simulation.

One value of our two-step inversion is that it provides two different solutions to be compared. The hybrid simu-
lation is not uniformly better than the IFDMB simulation. The biases of CH2O and O3 are reduced, yet for some 
VOCs, the performances are degraded compared to those in the IFDMB simulation. Lack of additional informa-
tion on VOC emission speciation prevents the inversion from finding a better solution.

For future studies, we suggest that our two-step Hybrid IFDMB-4DVar inversion framework could be enhanced in 
several ways. The forward model can be updated, such as to include monoterpene chemistry (Fisher et al., 2016). 
The averaged monoterpene mixing ratio was 0.2 ppbv at the surface during KORUS-AQ (S. Kim et al., 2021). 
Including monoterpene chemistry could result in an increase of the surface CH2O mixing ratio of up to 0.6 ppbv 
in Korea during KORUS-AQ, which is about 15% of the observed CH2O.

New information and observations can be utilized and integrated by introducing additional constraint terms in 
the inversions cost function. To improve the inversion result, the errors for each VOC species should be speci-
fied uniquely based on detailed evaluation by species and region. Another improvement would be to add more 
species-specific observations in the inversion system. For example, additional constraints on the inversion from 
geostationary satellite measurements of other species, such as isoprene and glyoxal, could help further constrain 
VOC oxidation (Cao et  al.,  2018). In particular, glyoxal is produced at high yields from early oxidations of 
aromatic species, which were found to be significant in Korea during KORUS-AQ.

Additional constraints on the inversion from NO2 observations, could also help constrain VOC oxidation. In 
the a priori simulation, the NOx concentrations are not biased against the DC-8 aircraft observations (NMB 
0.00, not shown). In the two a posteriori simulations where the VOC concentrations increased (the IFDMB 
and the hybrid), the NOx concentrations are decreased and biased low (NMB −0.17 and −0.10, respectively, 
not shown). This is because the increase in the simulated VOCs concentrations enhanced NO to NO2 conver-
sion. This suggests that the future inversions could also benefit from joint assimilation of CH2O with NO2 
observations.

Figure 14.  Same as Figure 13 but for the rest of the Korean domain excluding the seven anthropogenic source regions.
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Appendix A:  OMPS CH2O Bias Correction
We follow L. Zhu et al. (2020) to validate the OMPS CH2O retrievals. In this method, we use GEOS-Chem as 
the intercomparison platform to evaluate the OMPS CH2O VCDs against the DC-8 aircraft observations during 
KORUS-AQ. Beginning with the results from the IFDMB simulation (Section 4), the GEOS-Chem simulated 
CH2O concentrations are sampled along the flight tracks at the times and locations of the DC-8 aircraft meas-
urements during KORUS-AQ (Section 2.1). We integrate the CH2O mean vertical profile of the GEOS-Chem 
simulation and the aircraft observations weighted by the monthly mean OMPS averaging kernel. We find that the 
average CH2O column concentrations of the GEOS-Chem simulation is 25% lower than the aircraft observations. 
Therefore, we correct the GEOS-Chem CH2O column concentrations by a uniform factor of 1.34.

Figure 15.  The vertical profiles of the simulated (lines) and the observed (circles with bars) (a) CH2O in pptv and (b) O3 in ppbv during KORUS-AQ. The bars indicate 
the standard deviation of the observations in space and time. Four simulations are evaluated: the base simulation without the updates in Section 3.2 (gray solid), the a 
priori simulation (dark blue solid), the IFDMB simulation (brown solid), and the hybrid simulation (orange dashed). (c) The slopes of the root-mean squared regression 
lines, the correlation coefficients (R), the normalized mean biases (NMBs), the mean absolute errors (MAEs), and the root mean squared errors (RMSEs) calculated 
using the data sampled below 1 km altitude.
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Next, we compare the corrected GEOS-Chem CH2O VCDs with the OMPS CH2O VCDs. The corrected GEOS-
Chem CH2O VCDs are first calculated with the OMPS observation operator along the OMPS swaths. Then the 
monthly averaged VCDs of the corrected GEOS-Chem and OMPS retrievals are sampled along the DC-8 flight 
locations during KORUS-AQ. The OMPS CH2O VCDs are biased low by 37.5% against the corrected GEOS-
Chem CH2O VCDs. We therefore scale up the OMPS CH2O VCD by 60%.

This bias correction method is sensitive to the GEOS-Chem model configuration (e.g., chemistry and emissions) 
because the model CH2O vertical profile affects the VCD calculation. For example, the scaling factor of the 
OMPS CH2O VCD is calculated to be 1.7 when we instead use the GEOS-Chem simulation with the a priori 
emissions. Ultimately we use the IFDMB simulation because the simulated vertical profile shows higher correla-
tion with the aircraft observed vertical profile than the base or the a priori simulations (Figure 15).

The reference sector correction and the AMF recalculation (Section 2.2) are additional sources of uncertainty in 
the bias correction. Uncertainties and biases in the simulated CH2O concentrations over the remote Pacific ocean 
and the local CH2O vertical profile contribute to the OMPS VCDs. The scaling factor would be different from 1.6 
if a different model was used for the procedure.

Appendix B:  IFDMB Method
For detailed description of the IFDMB method, we refer readers to Cooper et al. (2017). Here, we briefly intro-
duce the equations and the solution of the IFDMB in Section 3.3.1.

The solution (�̂� ) that minimizes the IFDMB cost function (Equation 6) is found by solving
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Since this equation is nonlinear and does not have an analytic solution, we linearize the function H around κa,i.
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where ΔΩi is the change in Ωi driven by the change in κi (Δκi). We use a Δκi of 10% as the initial perturbation. 
For subsequent iterations, we calculate hi using the adjacent two simulations.

Using the linearization, Equation B1 becomes
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The solution is
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where gi is the gain factor of the IFDMB, which is defined as
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The errors in the IFDMB a posteriori emissions are calculated as
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Appendix C:  Regularization Parameters for IFDMB
For selecting an optimal regularization parameter for the IFDMB method, we conduct an analysis of the sensi-
tivity of the IFDMB inversion to 𝐴𝐴 𝐴𝐴

𝑀𝑀𝑀𝑀

𝑎𝑎  . We test five 𝐴𝐴 𝐴𝐴
𝑀𝑀𝑀𝑀

𝑎𝑎  values from 0.001 to 1. Figure C1 shows the CH2O 
mixing ratio of the a priori simulation, the five IFDMB simulations, and the DC-8 aircraft observations. All of 
the IFDMB simulations result in an increase of CH2O compared to the a priori simulation. The larger increases 
correspond to the smaller 𝐴𝐴 𝐴𝐴

𝑀𝑀𝑀𝑀

𝑎𝑎  used in the IFDMB inversion. The evaluation with the aircraft observations shows 
that the low bias of the a priori simulated CH2O is mitigated when using 𝐴𝐴 𝐴𝐴

𝑀𝑀𝑀𝑀

𝑎𝑎  in the range of 0.03–1.

We define the cost function to select the optimal 𝐴𝐴 𝐴𝐴
𝑀𝑀𝑀𝑀

𝑎𝑎  as
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N(RMSE) is the normalized RMSE between the simulated and the aircraft observed CH2O mixing ratio defined 
as

N(RMSE) =
RMSE

RMSEa

,� (C2)

Figure C1.  The vertical profiles of the simulated (lines) and the observed (circles with bars) CH2O in pptv in May 2016 
during KORUS-AQ. The bars indicate the standard deviation of the observations in space and time. Six simulations are 
evaluated: the a priori simulation (dark blue solid), and the five IFDMB simulations with different 𝐴𝐴 𝐴𝐴

𝑀𝑀𝑀𝑀

𝑎𝑎  values: 1 (magenta 
dots), 0.1 (orange solid), 0.03 (cyan solid), 0.01 (blue dashed), and 0.001 (violet dots). The slope of the root-mean squared 
regression line, the correlation coefficient (R), the normalized mean bias (NMB), the mean absolute error (MAE), and the 
root mean squared error (RMSE) are calculated using the data sampled below 1 km altitude. The number of data used for the 
statistics is 780.
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where RMSEa is the RMSE of the a priori simulated CH2O.

N(ΔT) is the normalized difference between 𝐴𝐴
∑𝑚𝑚

𝑀𝑀𝑀𝑀

𝑖𝑖=1
𝑇𝑇𝑖𝑖 and 𝐴𝐴

∑𝑚𝑚
𝑀𝑀𝑀𝑀

𝑖𝑖=1
𝑇𝑇𝑎𝑎𝑎𝑎𝑎 defined as Equations C3 and C4.
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𝑇𝑇𝑎𝑎𝑎𝑎𝑎� (C3)

N(Δ𝑇𝑇 ) =
Δ𝑇𝑇

∑𝑚𝑚𝑀𝑀𝑀𝑀

𝑖𝑖=1
𝑇𝑇𝑎𝑎𝑎𝑎𝑎

� (C4)

Figure C2 shows the cost function is minimal when 𝐴𝐴 𝐴𝐴
𝑀𝑀𝑀𝑀

𝑎𝑎 = 0.1 . We consider this is the optimal value for our 
IFDMB inversion.

Data Availability Statement
The IFDMB and the hybrid a posteriori emissions calculated by this work are available at https://scholar.colo-
rado.edu/concern/datasets/2f75r919r (Choi, Henze, Cao, et al., 2021). The oversampled OMPS CH2O VCDs, and 
uncertainties are available at https://scholar.colorado.edu/concern/datasets/p5547s49h (Choi, Henze, Nowlan, 
et al., 2021).
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