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Abstract

Introduction: The current study presents a deep learning framework to determine,

in real‐time, position and rotation of a target organ from an endoscopic video. These

inferred data are used to overlay the 3D model of patient's organ over its real

counterpart. The resulting augmented video flow is streamed back to the surgeon as

a support during laparoscopic robot‐assisted procedures.

Methods: This framework exploits semantic segmentation and, thereafter, two

techniques, based on Convolutional Neural Networks and motion analysis, were

used to infer the rotation.

Results: The segmentation shows optimal accuracies, with a mean IoU score greater

than 80% in all tests. Different performance levels are obtained for rotation,

depending on the surgical procedure.

Discussion: Even if the presented methodology has various degrees of precision

depending on the testing scenario, this work sets the first step for the adoption of

deep learning and augmented reality to generalise the automatic registration

process.
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1 | INTRODUCTION

In recent years, artificial intelligence (AI) and deep learning (DL) are

becoming increasingly common due to the widespread digitalisation

that has occurred in many fields. This spreading resulted in collecting

a huge amount of data enabling their better accessibility and their

exploitation for automated processes, especially pertaining to AI, in a

general perspective of efficiency improvement. Since medicine and

health care have always been among the areas that benefit the most

from progress, several efforts are still being made to implement the

AI technology for practical medical treatments and health care

management.1 In particular, the development of F (CNNs) has

allowed the machines to learn useful tasks from images, such as

detecting and characterising suspicious patterns from radiographs or

provide diagnosis and prognosis in different medical fields.2 Urology

was one of the first adopters of artificial intelligence for object

detection, image classification, image segmentation, skills assess-

ment, and outcome prediction for complex urologic procedures.2 The
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advantages of DL have been exploited also in laparoscopic surgery to

support the surgeon during certain procedures. Laparoscopic surgery

is currently one of the most performed surgical technique as it is

minimally invasive yet, despite its benefits, it leads to a lack of direct

tactile and visual perception of the surgical site.3 Furthermore, the

surgical scene is typically complex and dynamic, resulting in events

that contribute to occluding, blurring, and defacing the view.4 These

drawbacks can be mitigated exploiting augmented reality (AR), which

allows real‐time overlapping between computer‐generated images or
3D models, comprising of anatomical structures of interest, and the

real environment. The main challenge of an AR application is the

registration process, namely, the accurate alignment of the virtual

model with its physical counterpart, in terms of spatial and rotational

coordinates.5 The registration phase is fundamental to accurately

discern the structures of interest from noise and background and

ensure that the augmented view conforms as closely as possible to

the real surgical scene.

In order to superimpose the preoperative model on the intra-

operative image, it is necessary to know the six degrees of freedom,

that is, three parameters for position and three for rotation along the

three X, Y, and Z axes. These six parameters allow to univocally

determine position and orientation of an object in three‐dimensional
space and are referred to as its 6D pose. As higher demand for new

scenarios has risen, this topic has been highly investigated in recent

years. Different kind of information is used to address this task, from

texture, colour, and geometry to depth information, since lately a

great development of hardware has occurred, nevertheless depth‐
based approaches have not been considered for this study. After a

comprehensive literature review of the current methodologies for 6D

pose estimation, the top performers were selected. Considering these

approaches, a novel framework was proposed to support the surgeon

in the visualization and localization of surgical targets and critical

structures of interest, such as endophytic or posteriorly located tu-

mours, that would otherwise be arduously identified. To this purpose,

a virtual 3D model of the patient's organ, obtained from the preop-

erative imaging,6 was intraoperatively and automatically super-

imposed on the endoscopic view and displayed on the screen of the

surgery robotic system in use, to guide the surgeon during the inci-

sion. Given the variety of solutions presented in the literature using

different data and different devices, this methodology is an easy‐to‐
integrate alternative, whatever robotic surgical system is in use, as it

does not add hardware complexity.

The core of the framework is to recover the 6D position of the

organ in real‐time, relying solely on endoscopic video RGB frames. In

other words, to address this task, we could rely only on the elements

present in the endoscopic video, that is the rigid instruments, which

are inserted and remain static during the operation, and the organs,

which are deformable and not easily distinguishable from the sur-

rounding tissues.

Three phases could be defined: (1) localization, (2) registration,

and (3) tracking.

To localise the different elements in the scene, a first step con-

sisted of semantic segmentation (SegmentationCNN), consisting of

assigning class labels to the pixels of the image, obtaining colour‐
coded segmentation masks of the classified objects, while, in a sec-

ond phase, a CNN addressed the rotation estimation (RotationCNN)

to perform the registration. Depending on the element used as

reference, the RotationCNN showed a lack of robustness. When rigid

instruments figured out, it proved to be a stand‐alone solution, and it
was possible to indirectly retrieve the 6D organ position using some

specific surgical instruments as references. When it was tested on

organs, it was necessary to add to the methodology an alternative

third approach, based on Optical Flow (OF), to mitigate the lack of

robustness of the RotationCNN. To this aim, since consecutive

frames have high correlation, instead of inferring the 6D pose for

each frame through the RotationCNN, the Optical Flow, starting from

an initial frame, deduces the 6D pose by performing a pixel wise

tracking of the organ. In this way the temporal information of the

video flow is exploited. The SegmentationCNN was tested by eval-

uating the Intersection‐over‐Union (IoU) metric, while the Rota-

tionCNN and the OF, were tested by comparing the predicted values

with the actual ones. The presented framework was conceived as a

generalized procedure capable of handling different surgical opera-

tions. To demonstrate the generalisation capability in terms of both

the surgical procedure and the element used for the registration, two

surgical operations, namely the Robot‐Assisted Radical Prostatec-

tomy (RARP) and the Robot‐Assisted Partial Nephrectomy (RAPN),

were considered, and three case studies were taken into consider-

ation: the first involving a static artificial element, such as the cath-

eter, while the second and the third relying solely on organs, that is,

the prostate and the kidney.

The paper is organised as follows: Section 2 conveys an extensive

overview on recent 6D pose estimation systems; Section 3 gives a

description of this generalized framework, subdivided into: datasets

presentation (Section 3.1), location estimation (Section 3.2), and

rotation inferring (Section 3.3), training process and testing metrics

(Section 3.4), Case Studies in analysis (Section 3.5); Section 4 dis-

cusses the results obtained; Section 5 discusses the study; finally,

Section 6 gives a brief conclusion of the work.

2 | RELATED WORKS

6D position estimation is an essential task in many Computer Vision

(CV) applications. It concerns, as well as the surgical field,7,8 ro-

botics,9 autonomous driving,10 and virtual/augmented reality (VR/

AR) applications11 and is extensively used in the entertainment in-

dustry.10 The problem itself is simple and consists of determining the

3D rotation and translation of an object which shape is known in

relation to the camera, using details observable from the reference

2D image. However, achieving a solution to this problem is not

trivial.9 Firstly, due to auto‐occlusions or symmetries, the objects

cannot be clearly and unequivocally identifiable. Moreover, the image

conditions are not always optimal in term of lighting and occlusions

between the objects represented in the picture.12,13 In these situa-

tions, it is often necessary to add an earlier stage of object detection
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or localization to distinguish the area of the image which contains the

object, before estimating its position.

Although this problem has been studied for many years, the

advent of DL gave a renewed push to find a solution, as well as it

fostered the research in other fields of application, such as the

medical14–16 or face recognition17,18 domains. Old pose estimation

methods were based on geometrical approaches, as for example,

Feature‐based methods,19 which tried to establish correspondences

between 3D models and 2D images of objects by using manually

annotated local features. With texture‐less or geometrically complex
objects, it was not easy to select local features. In these cases, even

though the matching phase usually took much time, it might fails and

provides a not always accurate result.20

In opposition to these methods, researchers introduced

Template‐based methods,21,22 which represented the 2D object from

different points of view and compared these representations with the

original image to establish the position and orientation. These ap-

proaches were very susceptible to variations in lighting and occlu-

sions even if they could manage texture‐less objects and required

many comparisons to reach a certain accuracy level, increasing the

execution time.11 With the diffusion of DL, researchers improved

traditional methods by introducing Learning‐based methods, making

them more efficient and performing. The basic idea of these systems

involves CNNs to learn a mapping function between images with

three‐dimensional position annotations, and object 6D position.

Some of these systems23,24 employ a CNN to predict the 3D

bounding box, and then a PnP algorithm, which calculate the 6D

position from matches between 2D features on the test image and

3D points on the CAD model.25 Other types of Learning‐based
methods, instead, need only a CNN to resolve a classification26,27

or a regression problem.28,29 For this reason, Learning‐based
methods are referred as Bounding box prediction and PnP

algorithm‐based, Classification‐based, and Regression‐based
methods, respectively. These methods can reach very high levels of

precision, but they need many data to train the network accurately

and to be able to work well in real cases. Alternatively, CNNs can be

used to execute the most critical steps of traditional methods to join

the advantages of the various strategies into the final solution.20

After identifying the golden standards of 6D pose estimation in

various fields, works related to the laparoscopic surgery augmenta-

tion specific purpose were investigated. This second phase of the

review aimed to analyse the surgical goal to understand the variety

of contexts of use and to find out if any effective method was already

proposed.

The most popular 6D pose estimation algorithms, mainly focus

on objects with distinctive shapes or textures. These characteristics

make the process less complex than the one here addressed. As a

matter of fact, anatomical structures do not have easily recognisable

patterns, yet their texture and shape depend on many factors, from

the anatomy of the patient to even his/her position or pathology. For

this reason, every approach used for anatomical purposes should be

produced as intended to be generalisable for different patients and,

at the same time, sufficiently accurate for the specific case. Most of

the medical applications are referred to abdomen laparoscopic pro-

cedures; since the real‐time video of the surgical scene is captured

and displayed on an external monitor, it can be easily accessed to

process the intraoperative information.

Applications were proposed for kidneys, prostate, uterus, and

liver.4 Depending on the organ some approaches were more suitable

than others.30,31 The aim of these applications is to perform a first

registration of the virtual 3D model on the endoscopic view and the

tracking phase, in which the model adapts its position and orientation

in accordance with the real organ.

These tasks are challenging mainly because of the lack of sta-

tionery features to fall back on, as there are discrepancies between

the preoperatively obtained data and the intraoperative real‐time
video flow. Performing the pneumoperitoneum, namely the insuffla-

tion of air or another gas in the peritoneal cavity, the abdominal

cavity undergoes some deformations that make the target in the

scene different from the one from the preoperative images. In

addition to this, further deformations due to tool interactions, as well

as smoke and blood presence, must be dealt with. For this reason,

keeping track of the target position and recovering it if needed, is

fundamental.

The first and easiest method of anchoring is the manual regis-

tration.32,33 Efforts have been made to minimise the human

contribute, by introducing semi‐automatic systems, pause and editing
approaches,32,34 deformation handling30,33 and fully automatic

algorithms.8,35

For what concerns the tracking phase, the artificial model has to

follow the organ movements in real‐time. This task can be performed
following four main approaches4 which rely on techniques of

increasing complexity. The first method, known as interactive, mainly

exploits the human assistance, such as the pause and editing

approach, analogously to the manual registration.36 In some cases,

artificial or anatomical cues can be used as fiducial markers, to

perform a point‐based match between the endoscopic organ and the
virtual model, since they are visible both preoperatively and intra-

operatively.8,33 On the contrary, surface‐based methods focus on the
intraoperative perspective rather than on preoperative data, because

the surface is intraoperatively reconstructed directly on laparoscopic

images and registered only at a later stage.37,38 Finally, the volume‐
based methodologies are the most complex ones, as they require

an intraoperative imaging system in addition to the endoscope, to

better locate the hidden structures.39 On the other hand, a double

registration is needed, between preoperative and intraoperative

volumes and between the preoperative volume and the endoscopic

image.

Moreover, the previous matching techniques are mainly based on

the rigidity hypothesis, meaning that organ deformations are not

considered, hence the registration accuracy may be affected. To

mitigate this problem, deformation models have been introduced to

intraoperatively modify the preoperative model, aiming to fulfil the

compromise of adaptability and accuracy.30,33

Up to now, the most investigated methods in the surgical field

require, in addition to the two‐dimensional RGB image, other types

PADOVAN ET AL. - 3 of 12



of data or other processing steps in the intraoperative stage.

Although it is helpful to have supplemental data, the introduction of

new sensors and possibly additional cameras is a cumbersome

procedure that would lengthen the operating time of the procedure,

as well as increase its cost, and introduces complications such as

synchrony of these elements. This work intends to propose a more

immediate and time‐saving novel methodology, able to perform a

real‐time registration relying on RGB intraoperative monocular

images only.

3 | MATERIALS AND METHODS

The methodology of the proposed framework, represented in

Figure 1, consists of two subsequent phases and an alternative third

phase. Firstly, the RGB image, captured by the endoscope, is fed to

a first CNN to perform the semantic segmentation of the actors. A

segmentation mask is returned, which distinguishes the objects in

the scene, in this way the scale and position values of the element

used as reference (coloured in green) are obtained. Contextually,

the RGB image is fed to another CNN which returns the rotation

values. Depending on whether the main actor is a rigid instrument

or an organ, the RotationCNN could show different performances.

For this reason, in some cases, it would be more accurate to deem

this kind of registration as an initialisation step, performed on im-

ages in which the organ is fully exposed and well framed by the

camera.

Thus, three different use cases were considered:

(1) When rigid instruments are present, such as the catheter

(Case Study 1), the RotationCNN can be applied recursively,

merging registration and tracking tasks in the same method.

The reason why the rotation can be more easily retrieved, is

that, among the three axes, only one is effectively unknown.

Indeed, the rotation on the Z‐axis is irrelevant because of the
catheter's symmetry, while the rotation along the Y‐axis can
be successfully retrieved from the semantic map,16 as proven

by results in Table 3. Thus, only the rotation along the X‐axis
should be predicted.

(2, 3) When the organ is the only information to fall back on,

different problems arise, such as organs' deformability, diffi-

culty in distinguishing organ's texture from the surrounding

tissues, and the fact that their rotation is bound to a fixed

anatomical constraint. In this case, the RotationCNN should

predict three rotations, as the one along the Z‐axis is now

relevant and the one along the Y‐axis is not retrievable with

precision from the semantic map. For this reason, when the

organ has a particularly recognisable shape in ideal frames,

such as the prostate (Case Study 2), the RotationCNN can be

used for registration, while in other cases, when the organ

presents a more complex structure, such as the kidney (Case

Study 3), the initialisation should be manually performed.

After the semi‐automated registration, the organ is tracked

using a CV based approach, which exploits an OF motion

analysis algorithm. This technique performs the pixel‐wise
tracking of the organ to infer the frame‐to‐frame rotation

and maintain the real‐time superimposition of the model

correctly oriented.

The information from the two CNNs is combined for locating and

orienting the 3D virtual model, to overlay it on the endoscopic view

and displayed on the monitor of the robotic surgical system. The

CNNs, used for these different tasks, are detailed in the next sub‐
sections.

F I GUR E 1 Schematic illustration of the system workflow. The video frame is fed to a Segmentation Convolutional Neural Networks (CNN)
and a Rotation CNN, depending on the Case Study. Target's position and scale are obtained through the Segmentation CNN for every Case

Study. Target's orientation is retrieved in different ways depending on the Case Study: Rotation CNN output the predicted rotation for each
frame (Case Study 1); RotationCNN for registration in an initial frame and OF tracking for next frames (Case Study 2); Manual Registration in
an initial frame and OF tracking for next frames (Case Study 3)
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3.1 | Datasets

The dataset creation strategy was different depending on the se-

mantic segmentation or the rotation estimation CNNs. Both the ap-

proaches are detailed below.

3.1.1 | SegmentationCNN

The images employed for the dataset creation were acquired from

nine endoscopic videos of different patients, recording the laparo-

scopic procedures in analysis. In particular, five videos referred to the

prostate and, depending on the phase of the procedure, frames were

extracted for Case Study 1 and 2, while 4 videos, referring to kidney,

were used for Case Study 3. The average length of the procedures'

videos was about 20 min, from which the most significant portions,

from few seconds to 5 min each, were selected. Among the extracted

frames, only those belonging to portions of the procedures in which

the target object was well framed by the endoscope were actually

used for datasets creation. The SegmentationCNN output, for each

frame, a segmentation mask, containing three different classes, each

marked with a unique ID.

3.1.2 | RotationCNN

To infer the organ rotations along the three axes through a Learning‐
based approach, the CNN must be trained on images in which the

organ rotation values are provided. This is a troublesome task to

perform through manual rotational tagging on real images because it

would be heavily operator‐dependent, hence unreliable. To avoid this
source of uncertainty, a synthetic dataset was created in Blender,

starting from the preoperative 3D virtual model of the target. The

actual dataset creation is performed by a Python code, that renders

synthetic images after computing scene changes such as: tools posi-

tion and rotation, texture rotation, light changes, and organ rotation.

The main advantage of the synthetic dataset is that the rotation of

the organ is known, as it is controlled by the script itself.

3.2 | Location and scale inferring

Given an RGB image, the first step of the organ localization is the

semantic segmentation task, which aims to produce a matrix having

the same size of the input image containing the predicted class

identifiers corresponding to all pixels. To choose the network model,

different attempts were made by combining pre‐trained base models
and segmentation architectures. Among all the combinations be-

tween architecture and methods, UNet architecture with ResNet as

base model has shown the best test accuracy, as usually happens for

medical images.40

By applying the segmentation model to an intraoperative video,

the target semantic mask can be visualised. To extract the target

location, the irregular mask is circumscribed by a fitting ellipse, the

centre of which is retrieved. Its coordinate is assigned to the centre

of mass of the target's 3D model to perform the anchoring and the

real‐time superimposition translation in the frame space. The same

ellipse is used to infer the scale factor of the frame, meaning the

distance from the camera, as its dimension is proportional to the one

of the organ that is fitting.16

3.3 | Rotation inferring

To perform the registration task, the rotation values must be first

estimated. The RGB image, used as input of the SegmentationCNN, is

fed to the RotationCNN, based on a modified version of ResNet50

model, with a different branch for each axis rotation. Every branch

has the same structure, which contains: a Dense Layer, with 4096

neurons and a ReLU activation function; a Batch Normalisation Layer;

a Dropout Layer; a Classification Dense Layer, with several neurons

equal in number to the current axis classes, and an Activation Layer,

which applies the Softmax activation function to the output. The

estimation of the rotation along the three axes was solved as a

classification problem. The set of possible rotation values along an

axis were discretised in N classes, according to the range of orien-

tation angles the target can assume during the surgical operation.

The output neuron, corresponding to the highest probability value

according to the Softmax activation function, fires and produces the

corresponding rotation value. An overall representation of the

Rotation Neural Network for the three axes rotation prediction case

is presented in Figure 2.

3.3.1 | Optical flow

In case the target is the organ, the RotationCNN prediction is often

not robust enough, hence must be manually corrected by the

operator. The subsequent organ tracking is then addressed by the

OF algorithm. The advantage of this method is the use of temporal

information. As a matter of fact, the registration of the model,

solved as a tracking task, is more easily retrievable, but not

necessarily more accurate than if addressed by inferring the 6D

pose within a single frame, due to the high correlation consecutive

frames have. Through OF algorithm, motion analysis can be per-

formed, by extracting the displacements, between consecutive

frames, only regarding the organ pixels. OF returns two vectors, the

magnitude and the angle direction of the displacement, used to

display the displacement arrows on the image. The different distri-

bution of the arrows direction on the organ contains the information

about the rotation trajectory of the organ. Since the framework is

applied when the organ is in situ, it is constrained to the sur-

rounding anatomical structures. Therefore, the organ cannot move

freely in the abdominal cavity, so the flow vectors do not describe

pure translation, but they also contain rotation information. From

this assumption, it was hypothesised that the magnitude of the
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vectors is an indicator of the rotation angle, while their direction is

an indicator of the rotation axis. Once peculiar characteristics within

the specific case of the organ movement were identified, according

to the considered case studies (Section 3.5), it was observed that,

when the displacement follows a particular pattern, it is possible to

assume the rotation direction. Since these assumptions cannot be

generalized, a heuristic was written to identify and quantify the

organ rotation.

3.4 | Training and metrics

The networks described in Sections 3.2 and 3.3 were trained by

tailoring hyper‐parameters according to the available data of each

case study (Section 3.5). To evaluate the CNNs, two different metrics

have been involved.

The SegmentationCNN model was assessed by the Intersection‐
over‐Union (IoU) metric, a diffuse metric for semantic segmentation,

defined as:

IoU ¼
Overlap Area
Union Area

where Overlap Area represents the intersection between the pixels

belonging to the predicted mask and those belonging to the ground

truth one, while Union Area represents the union between the

pixels belonging to the predicted mask and those belonging to the

ground truth one. The IoU score ranges from 0 to 1, where the edge

values mean completely wrong and perfectly correct predictions,

respectively.

The RotationCNN was evaluated by comparing the predicted and

the actual rotation values on the X, Y and Z axes.

Both the CNNs ran on an NVIDIA Quadro P4000 GPU, involving

the open‐source Keras library for neural networks, which is written

in Python and run on top of TensorFlow.

3.5 | Case studies

The proposed framework is designed to support the surgeon during

critical phases of robot‐assisted laparoscopic surgical procedures. In

particular, the urological field was considered, as it deals with organs

with symmetrical, rounded and not very distinctive shapes and tex-

tures, that make them hardly distinguishable from the surrounding

anatomical parts. These drawbacks can be mitigated by AR solutions.

F I GUR E 2 Rotation Neural Network overall architecture, which involves a modified version of the ResNet50 model, with a branch for

each axis rotation
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The opportunity to visualise 3D reconstructions overlayed on their

real counterpart introduces several benefits as stated in literature,4,5

as for example,: exploiting AR during preoperative planning for

tailoring incisions and cutting plans; reducing surgery time; aug-

menting the surgeon's spatial perception of the surgical field,

compromised by the use of the robot console, avoiding unnecessary

manipulations or accidental injuries to inner organs; reducing the

surgeon's distractions by allowing him or her to access the

augmented information contextually without having to look for it in a

different monitor.

In this work, the datasets are parts of intraoperative endoscopic

videos from different patients and were provided by the "Division of

Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano

(Turin), Italy". AR has been used to support the surgeon during the

following case studies.

3.5.1 | Robot‐Assisted Radical Prostatectomy
(RARP)

Radical Prostatectomy removes the prostate gland and tissues sur-

rounding it in case of prostate cancer. The precision of this procedure

is fundamental for patient well‐being to avoid short and long‐term
complications. The RARP procedure can be subdivided in five

stages: (1) defatting and incision of the endopelvic fascia, (2) man-

agement of the bladder neck, (3) vase clamping and nerve‐sparing, (4)
surgery by the prostatic apex, and (5) targeted biopsy. According to

surgeons, phases 3 and 5 could benefit the most from AR, for which

appropriate registration techniques have already been imple-

mented.3 In both phases the overlay of the organ would be a signif-

icant help for the operating surgeon41: in the vase clamping and

nerve‐sparing phase, AR is helpful for accurate nerves and vases

localization, crucial for preserving patient's well‐being; while AR

guided tumour localization in targeted biopsy is essential, in case of

extra capsular tumour, to verify that the extra parenchyma part,

which may have been in contact with the surrounding tissue, has not

compromised it leading to metastases development later on. In phase

5, a catheter is inserted, and it could be used as a target to overlay

the 3D model (Case Study 1). On the contrary, in phase 3 the 6D

information have to be retrieved from the prostate (Case Study 2).

3.5.2 | Robot‐Assisted Partial Nephrectomy (RAPN)

In Partial Nephrectomy, only the affected portion of the kidney is

excised to preserve its functionality. Analogously to RARP, the RAPN

procedure can be subdivided in five main stages: (1) bowel mobi-

lisation, (2) hilum dissection, (3) tumour identification and demarca-

tion, (4) clamping of the hilum, and (5) tumour excision. According to

surgeons, the procedure phase that benefits the most from AR is

phase 3, which allows the surgeon to quickly identify endophytic and

posteriorly located tumours,42 since during this procedure the kidney

is not perfused with blood and consequently risks necrosis. Thus, the

kidney was used as a target (Case Study 3).

Concerning the RARP and RAPN data at disposal, main datasets

parameters, namely number of real or synthetic images for both the

CNNs and rotation ranges, are resumed in Table 1. In all cases,

datasets, for both segmentation and rotation, were split into 70%,

15%, 15% for train, validation and test, respectively.

The network used for segmentation was a UNet‐ResNet archi-
tecture, trained for 50 epochs using a batch size of 4 and an Adam

optimizer with a learning rate of 0.0001, while the one used for

rotation was a modified version of ResNet50, trained for about 15

epochs, using a batch size of 32 and an Adam optimizer with a

learning rate of 0.00001.

4 | RESULTS

4.1 | SegmentationCNN

The SegmentationCNN showed optimal results for all case studies,

represented in Table 2. Before selecting the final architecture, as

mentioned in Section 3.2, several of the most used models for se-

mantic segmentation were compared. The final choice was made

relying on the IoU metric, computed both on the individual classes

(background, tool, target) and as an average between them. The IoU

score for the target class was used as discriminating factor, since the

organ identification is the main goal of the semantic segmentation

task. Among all the model combinations, UNet‐ResNet was finally

deemed as the best, as it showed the highest IoU score in terms of

both target class (0.9450 for the catheter, 0.7296 for the prostate

TAB L E 1 Values referring to the images used for datasets creation, both synthetic and real, for segmentation and rotation Convolutional

Neural Networks

Segmentation
Rotation

Surgical operation Case study Target # Real images # Synthetic images

Rotation ranges in degrees

(−X,+X)/(−Y,+Y)/(−Z, +Z)

RARP 1 Catheter 375 40000 (−40, 10)/‐/‐

RARP 2 Prostate 388 35000 (−15, 20)/(−25, 25)/(−5, 15)

RAPN 3 Kidney 208 40000 (−10, 10)/(−10, 10)/(−10, 10)

Note: For the latter, considered rotation ranges are also shown. For the catheter, the Rotation CNN was trained to predict only the X rotation, as Y was

derived directly from the segmentation map and Z was considered irrelevant.
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and 0.8602 for the kidney) and mean value (0.8940 for the catheter,

0.8067 for the prostate and 0.9069 for the kidney). In Figure 3

representative samples of the network's output masks, together with

their overlay on the real images, are shown.

4.2 | RotationCNN

The results related to the rotations' prediction are resumed in

Table 3.

The network was first tested with 3000 synthetic images for

catheter (C), 1750 for prostate (P) and 3000 for kidney (K) generated

with Blender. The accuracies for X, Y and Z, were computed as the

number of correct predictions over the total number of samples,

using different acceptable ranges. In the testing phase, it was decided

to consider 5 degrees of tolerance and therefore a prediction was

deemed wrong in case the difference between the estimate and the

actual value was greater than this threshold. This was considered a

good compromise as a difference of 5° does not significantly affect

the visual result of the model superimposition. For the same reason, a

10° tolerance range was considered acceptable by the surgeons. Each

evaluating parameter, namely, accuracies for [−5, +5] and [−10, +10]
ranges, were computed for each one of the rotation axes (X, Y, Z) and

for C, P and K classes, respectively.

This same network was then tested with 30 real images tagged

manually for C, 36 for P and 30 for K.

The accuracies in this case were predictably acceptable only for

the catheter. To improve the results for the prostate and the kidney,

the network was subsequently fine‐tuned with 100 additional real

images and tested with the same images as before.

4.3 | Optical flow

The motion analysis algorithm was tested on an endoscopic video

stream of a nephrectomy procedure fragment lasting 10 s. The results,

comparing estimated and real rotation trends, are shown in Figure 4

The evaluation of themethodwas performed by comparing the tagged

(blue values) and the inferred (red values) rotations for each axis

separately. The rotation values were extracted for 30 sample frames,

namely with a 10 frame‐step, adding up the rotation variations of all
the in‐between frames. Analogously to the RotationCNN results, tol-

erances of 5 and 10° was considered to deem an estimation as correct.

TAB L E 2 IoU scores referring to the mean value of the actor
classes (background, tool and target) and the target class only:

catheter (C), prostate (P) and kidney (K)

IoU score

Target class Mean

C 0.9450 0.8940

P 0.7296 0.8067

K 0.8602 0.9069

F I GUR E 3 Sample images referring to original endoscopic images, segmentation masks and mask overlay (columns) for each case study
(rows): catheter (C), prostate (P) and kidney (K)
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5 | DISCUSSION

In recent years artificial intelligence, computer vision and augmented

reality technologies have spread to many fields, including surgery. In

this article, the use of these technologies in supporting applications

to the surgeon during laparoscopic Robot Assisted procedures was

addressed. These technologies aim to augment the surgeon's

perception of the surgical scene, which is usually more limited than in

open procedures, as the field of view is narrowed. To mitigate this

drawback, AR aims to superimpose the preoperative model on the

intraoperative image, hence it is necessary to know the 6D pose of

the organ.

After extensive literature analysis, both in the currently used

methodologies for 6D pose estimation of an object and in the specific

context of its application to AR in laparoscopic surgery, the discussed

methodology was delineated. The proposed framework is a novel

approach for automatic and real‐time registration of the 3D model on

the endoscopic view as it relies solely on RGB data, captured by the

endoscope and displayed on the screen of the robotic surgical sys-

tem, with no need of further external sensors or devices. Three case

studies were identified and, depending on them, different ways of

handling the problem were pursued. Case Study 1 relies solely on a

specific rigid instrument, the catheter. Case Study 2 and 3 dealt with

soft tissue having different complexity levels.

The first phase involved a SegmentationCNN, UNet‐ResNet, for
all the case studies, to distinguish the actors and obtain the target

position and scale. In the second phase, a RotationCNN predicted the

rotation values along the three axes, X, Y and Z. In the third additional

phase, an OF algorithm handled the target tracking.

In Case Study 1, the approach handles both the location and

rotation estimation tasks recursively for every single frame while, in

Case Study 2, the rotation estimation is performed only for a starting

ideal frame, then, next frames rotations are inferred through OF.

These two approaches are fully automated. On the contrary, in Case

Study 3, given the complexity in predicting the rotation, the regis-

tration should be manually performed before applying the OF

technique.

The SegmentationCNN showed optimal accuracies, with a mean

IoU score greater than 80% for all the case studies.

For the RotationCNN, accuracies for [−5, +5] and [−10, +10]
ranges, were computed for each one of the rotation axes (X, Y, Z).

Test results for synthetic images reached values close to 1, showing

F I GUR E 4 Trends representation of organ orientation on X, Y and Z axes comparing tagged (blue) and OF estimated (red) rotation values
for each sample frame

TAB L E 3 Values of mean accuracies when testing with a synthetic dataset, a real dataset and the same real dataset after fine‐tuning the
network

Accuracies [−5, +5] Accuracies [−10, +10]

# of imagesX‐axis Y‐axis Z‐axis X‐axis Y‐axis Z‐axis

Synthetic dataset C 0.9987 ‐ ‐ 0.9987 ‐ ‐ 3000

P 0.9971 1 0.9983 0.9994 1 0.9994 1750

K 0.9990 1 0.9990 0.9997 1 0.9987 3000

Real dataset C 0.5333 0.9457* ‐ 0.7333 0.9886* ‐ 30

P 0.5000 0.0000 0.2778 0.5556 0.0833 0.3611 36

K 0.0000 0.0000 0.0000 0.0000 0.0000 0.2000 30

Real dataset (after fine tuning) P 0.3333 0.5000 0.6667 0.7778 0.7222 0.9444 36

K 0.0000 0.0000 0.5000 0.0000 0.0000 0.7333 30

Note: Each value is computed for the considered target classes: catheter (C), prostate (P) and kidney (K). The accuracies for X, Y and Z, were computed as
the number of correct predictions over the total number of samples, using different acceptable ranges: prediction with an error in the range [−5, +5] and
in the range [−10, +10].
*Y−Axis rotation values for C were retrieved from the semantic segmentation CNN.
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that the network actually learnt. To evaluate the generalisation

capability of the network, real images were tested too, showing,

acceptable results just in the first case study involving the catheter,

aided by the fact that the Y accuracy was derived from the seg-

mentation map. On the contrary, the results for the prostate and the

kidney were not considered acceptable. Thus, fine tuning was per-

formed with 100 additional real images for each organ. After fine‐
tuning, the network underwent major improvements with the pros-

tate, resulting in error values minor than 10° for almost every image.

These tests were performed on frames where the organ was well

distinguishable. On the contrary, with the kidney, the network did not

improve its performances even after fine‐tuning. The only solution in
this case was to perform a manual registration. Afterwards, an

alternative method was included to tackle the rotation inferring task,

the OF. This last approach was evaluated on an endoscopic video

stream, showing that the general trend of the organ's orientation

changes was correctly tracked, hence rotation events were

recognized.

Nevertheless, this was the very first proposal for a generalized

framework, hence there are still several limits to overcome. In

particular, one of the limitations of the current application is the

restricted amount of videos for the CNN training, which limits the

heterogeneity of the dataset, in particular the organs have different

shape and texture depending on the patient's anatomy and health

condition. In addition, the case studies addressed all fall within the

urological field, hence, to effectively test its generalisability, it should

be broaden also to other organs such as uterus and liver. Another

limitation for the generalisation of the framework refers to the

heuristic that infers rotation from OF, since this was deduced from

specific movement patterns of the organ. The RotationCNN perfor-

mances have still room for improvement, since it still struggles in

detecting the value of the rotation precisely enough to perform the

tracking when dealing with soft tissues.

Considering each case study, when satisfactory results were

obtained during the test phase on the endoscopic videos, in vivo tests

were performed. In particular, the first Case Study, meaning when

the catheter is present, was successfully tested in vivo and it worked

in real‐time. For what concerns the other case studies, dealing with
complex scenarios, are currently being tested, gaining positive

feedback from surgeons and new insights for further improvements.

In future works, adjustments could be made in several

directions. For the concerns of segmentation, instead of traditional

CNNs, the novel attention technique could be exploited to focus on

those pixels that are informative of the motion information, fading

out the others, resulting in a faded mask rather than in a binary one.

For the concerns of rotation estimation, besides testing the Rota-

tionCNN in the operating room, the heuristic inferring of the OF

method should be amplified and its precision improved. Acquiring a

greater number of endoscopic procedure videos could also benefit

the training of the neural networks. To better exploit intraoperative

information, more data should be collected, for example, an organ

could have different shape and dimension depending on the patient

and, the more the samples the better the ability of the neural

network to improve generalisation. Furthermore, the current version

of this work only used one video stream from a monocular view to

reduce processing complexity, yet, in future research, a binocular

vision could be used to exploit the depth information of stereoscopy.

Finally, for the concerns of the real‐time tracking task, variations

should be made to control whether the organ is fully framed or not,

in order to correctly detect the centre of the organ under different

conditions.

6 | CONCLUSION

The current study presents a novel framework for automatic and

real‐time registration of the 3D model on the endoscopic view from

endoscope video flow images. The output video stream displays the

endoscopic view coupled with 3D information on the screen of the

robotic surgical system, with no need of further external sensors or

devices.

This work exploits semantic segmentation to estimate the posi-

tion, while to infer the rotation two techniques, based on Convolu-

tional Neural Networks and motion analysis were used, depending on

the surgical scenario.

The use of AR in the medical field has been widely investigated in

recent years, proving that it could be an effective aid to the surgeon.

Further research is required to improve the generalisation capability

of this first version of the framework, and further tests are needed to

consolidate real clinical advantages of AR‐aided and robot‐assisted
surgery.
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