Table 7.
The performance of baseline and different FluSense sensor-based models with different feature subset for total daily flu test count and total daily test positive count prediction. The performance was measured with respect to Pearson correlation coefficient (ρ) and Root Mean Squared Error (RMSE) with Leave-One-Day-Out cross-validation experiment.
Leave-One-Day-Out | |||||
---|---|---|---|---|---|
Total Test | Total Positive | ||||
Model | Feature | ρ | RMSE | ρ | RMSE |
Baseline | Baseline ∈ {dayType, isHoliday} | 0.42 | 5.02 | 0.19 | 2.28 |
Linear Regression | Baseline + top 3 | 0.53 | 4.58 | 0.33 | 2.07 |
Ridge Regression | Baseline + top 3 | 0.53 | 4.57 | 0.33 | 2.07 |
Poisson Regression | Baseline + top 3 | 0.43 | 5.48 | 0.25 | 2.24 |
Gradient Boosted Tree | Baseline + top 3 | 0.58 | 4.44 | 0.45 | 2.01 |
Random Forest | Baseline + top 3 | 0.65 | 4.28 | 0.61 | 1.68 |
Random Forest | Baseline + tac | 0.59 | 4.34 | 0.40 | 2.00 |
Random Forest | Baseline + csr | 0.58 | 4.39 | 0.38 | 2.03 |
Random Forest | Baseline + cbypt | 0.56 | 4.44 | 0.36 | 2.05 |