Skip to main content
. Author manuscript; available in PMC: 2022 Jul 15.
Published in final edited form as: Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020 Mar 18;4(1):1. doi: 10.1145/3381014

Table 7.

The performance of baseline and different FluSense sensor-based models with different feature subset for total daily flu test count and total daily test positive count prediction. The performance was measured with respect to Pearson correlation coefficient (ρ) and Root Mean Squared Error (RMSE) with Leave-One-Day-Out cross-validation experiment.

Leave-One-Day-Out
Total Test Total Positive
Model Feature ρ RMSE ρ RMSE
Baseline Baseline ∈ {dayType, isHoliday} 0.42 5.02 0.19 2.28
Linear Regression Baseline + top 3 0.53 4.58 0.33 2.07
Ridge Regression Baseline + top 3 0.53 4.57 0.33 2.07
Poisson Regression Baseline + top 3 0.43 5.48 0.25 2.24
Gradient Boosted Tree Baseline + top 3 0.58 4.44 0.45 2.01
Random Forest Baseline + top 3 0.65 4.28 0.61 1.68
Random Forest Baseline + tac 0.59 4.34 0.40 2.00
Random Forest Baseline + csr 0.58 4.39 0.38 2.03
Random Forest Baseline + cbypt 0.56 4.44 0.36 2.05