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1  | INTRODUC TION

The commercial share of wrist-worn “Smartbands” has grown rap-
idly in recent years. Such devices can collect physiological data in 

a user-friendly and minimally invasive way, making them suitable 
for daily activity tracking (Henriksen et  al.,  2018). Smartbands 
have come to the medical community’s attention as tools capable 
of collecting biomarkers information, and therefore to monitor 
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Summary
Consumer “Smartbands” can collect physiological parameters, such as heart rate (HR), 
continuously across the sleep–wake cycle. Nevertheless, the quality of HR data de-
tected by such devices and their place in the research and clinical field is debatable, as 
they are rarely rigorously validated. The objective of the present study was to investi-
gate the reliability of pulse photoplethysmographic detection by the Fitbit ChargeHR™ 
(FBCHR, Fitbit Inc.) in a natural setting of continuous recording across vigilance states. 
To fulfil this aim, concurrent portable polysomnographic (pPSG) and the Fitbit’s pho-
toplethysmographic data were collected from a group of 25 healthy young adults, for 
≥12 hr. The pPSG-derived HR was automatically computed and visually verified for 
each 1-min epoch, while the FBCHR HR measurements were downloaded from the ap-
plication programming interface provided by the manufacturer. The FBCHR was gener-
ally accurate in estimating the HR, with a mean (SD) difference of −0.66 (0.04) beats/
min (bpm) versus the pPSG-derived HR reference, and an overall Pearson’s correlation 
coefficient (r) of 0.93 (average per participant r = 0.85 ± 0.11), regardless of vigilance 
state. The correlation coefficients were larger during all sleep phases (rapid eye move-
ment, r = 0.9662; N1, r = 0.9918; N2, r = 0.9793; N3, r = 0.9849) than in wakefulness 
(r = 0.8432). Moreover, the correlation coefficient was lower for HRs of >100 bpm 
(r = 0.374) than for HRs of <100 bpm (r = 0.84). Consistently, Bland–Altman analysis 
supports the overall higher accuracy in the detection of HR during sleep. The relatively 
high accuracy of FBCHR pulse rate detection during sleep makes this device suitable for 
sleep-related research applications in healthy participants, under free-living conditions.
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patients’ health status. Their role has been investigated in oncol-
ogy, where they were tested as a tool for the activity tracking in 
breast cancer survivors (Chung et  al.,  2019), and in emergency 
departments, where they were tested for the low-cost heart rate 
(HR) monitoring in critical patients (Dagan & Mechanic, 2020). Both 
studies concluded that commercial Smartbands are a feasible tool 
for HR monitoring in these two different circumstances. The pos-
sibility to collect data in a non-invasive way accounts for the large 
spread of commercial Smartbands in sleep research and explains 
why there is a large amount of validation studies that address their 
accuracy (Henriksen et  al.,  2018). For instance, they have been 
used in population-based projects to investigate circadian rhythms 
and sleep (Brazendale et al., 2019; Dunker Svendsen et al., 2019; 
Guarnieri et  al.,  2020; Lee & Finkelstein, 2015) and in autonomic 
nervous system (Dobbs et al., 2019; Hernando et al., 2018). Fitbit 
Inc. Smartbands are frequently used in research projects and are 
among the most popular wrist-worn devices (Lewis et  al.,  2020). 
The FBCHR is one of the Fitbits Inc. Smartbands. It is equipped with 
a photoplethysmography sensor, a detector of microvascular oscil-
lations of blood volume used to compute the HR. The FBCHR mea-
surements have been validated in a plethora of different studies, 
as compared to electrocardiography (ECG) (Allen, 2007; Benedetto 
et al., 2018), polysomnography (PSG) (de Zambotti et al., 2016) and 
chest-worn HR devices (Bai et  al.,  2018; Reddy et  al.,  2018). The 
accuracy of HR estimation was studied in different experimental 
settings, including both sedentary and physical activity conditions 
(Benedetto et al., 2018; Nelson & Allen, 2019) or during daily ac-
tivity (Nelson & Allen,  2019). The FBCHR received the attention 
of sleep researchers interested in validating its HR measurements 
during sleep. Among them, de Zambotti et al.,  (2016) investigated 
the quality of HR detection of the FBCHR in sleep and compared 
its performance to the PSG-based HR estimation. However, this 
experimental setting provides information on how FBCHR behaves 
under mostly sedentary conditions, as the data were collected in 
a controlled environment. Moreover, that study lacked sleep-stage 
specificity as it did not consider the heterogeneity of HR across 
different sleep stages. In particular, the HR variability between 
vigilance stages could be considerably high, as well assessed by dif-
ferent studies (Penzel et al., 2003; Zemaityte et al., 1986). In fact, 
the mean HR tends to be lower in N1, N2, N3 stages compared 
to wakefulness, while in rapid eye movement (REM) stage the HR 
tends to be higher compared to N1, N2 and N3 stages. Haghayegh 
et al.,  (2019) addressed the quality of HR detection in each sleep 
phase, comparing the quality of HR measurement to the ECG 
with a 5-min resolution. However, a temporal resolution of 5 min 
could not properly describe the sleep-related HR dynamics (Penzel 
et al., 2003; Zemaityte et al., 1986).

In the present study, we aimed to address the quality of HR 
detection of the FBCHR in a natural setting, across all vigilance 
stages, with a 1-min resolution, by comparing the HR data ob-
tained from the manufacturer server with the portable PSG 
(pPSG)-derived HR.

2  | METHODS

2.1 | Participants

A total of 25 volunteers were recruited among undergraduate 
and graduate students at the University of Pisa. The group com-
prised 17 females and eight males and the mean (SD) age was 
22.36  (3.00)  years. This study was approved by the University 
of Pisa Bioethical Committee (Review No: 02/2020 Prot. 
0036352/2020).

2.2 | Procedure

Participants were concurrently monitored with the FBCHR and a 
pPSG device. Once participants were equipped with the two de-
vices, they were asked to carry on their daily routines without any 
specific activity restrictions. Participants spent ≥12-hr wrist-wearing 
under continuous (Nelson & Allen, 2019) monitoring.

2.3 | Portable PSG

The pPSG recordings were performed through a portable device 
(MORPHEUS HOME LTM, Micromed). The electrodes were placed 
according to the American Academy of Sleep Medicine (AAMS) 
guidelines (Berry et al., 2012). We applied on the scalp 12 electroen-
cephalographic (EEG) derivations electrodes (F3, F4, C3, C4, T3, T4, 
P3, P4, T5, T6, O1, O2, P, ground in Cz, reference in Fz), one ECG deri-
vation on the chest, placed symmetrically around the sternum within 
the third and fourth ribs, two electrooculographic (EOG) (left and 
right vertical), and two electromyographic (EMG) derivations (elec-
trodes placed on the chin over the suprahyoid muscles). Each 30-s 
epoch was scored by a trained professional according to the AASM 
guidelines (Berry et al., 2012). The pPSG ECG measurements (sam-
pled at 512 Hz) were imported and processed through a custom func-
tion in MATLAB (MATLAB R2020b, Math Works). The ECG signals 
were filtered through a Savitzky–Golay filter and a high-pass filter. 
The Savitzky–Golay polynomial order (7) and frame length (30) were 
respectively maximised and minimised in order to improve the QRS 
complex quality (Hargittai,  2005). Due to a low-frequency compo-
nent in all 25 PSG’s ECG signals, we applied a high-pass filter with a 
passband of 2 Hz.

The pPSG-derived HR was then automatically computed by 
identifying the R peaks in each 1-min epoch. The results of the com-
putation were visually verified for 1-min each epoch.

2.4 | The FBCHR

A FBCHR Smartband is a wrist-worn commercial device able 
to track the activity through a tri-axial accelerometer sensor 
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(micro-electro-mechanical systems [MEMS] tri-axial accelerometer), 
whose measurements are used to compute steps and energy ex-
penditure through a proprietary algorithm, and a photoplethysmog-
raphy. The latter sensor can detect blood volume oscillations in the 
microvascular bed of a tissue, continuously. The collected data are 
shaped as a waveform, which is composed of a pulsatile component 
and a group of slow frequency components attributed to respiration, 
sympathetic nervous system activity, and thermoregulation. The for-
mer pulsatile component is generated by the cardiac synchronous 
changes in the blood volume with each heartbeat. The synchronicity 
of the pulsatile waveform to the blood volume is then used to com-
pute the HR (Allen, 2007).

The FBCHR is equipped with a PurePulse® light-emitting diode 
(LED), a photoplethysmographic technology that could be found 
in other Fitbit Inc. devices, such as Fitbit Charge 2™, Fitbit Charge 
3™, Fitbit Alta HR™, Fitbit Versa™, Fitbit Blaze™, and Fitbit Ionic™ 
(Haghayegh et al., 2019). We accessed FBCHR MEMS tri-axial accel-
erometer and PurePulse® measurements from the Fitbit Inc. server 
via the application programming interface (API), provided by Fitbit Inc. 
through a third-party platform (www.sleep​acta.com). Calorimetric and 
steps measures were stored at one data point per minute. As far as 
the HR data, Fitbit Inc. discloses that “Heart rate data is stored at one-
second intervals when in exercise mode and at five-second intervals at 
all other times”, but does not officially disclose the HR sampling rate. 
However, the manufacturer does claim that the HR detectable range 
spans from 30 to 220 beats per min (bpm); a validation study could 
confirm that data are collected up to 153 bpm (Nelson & Allen, 2019), 
consistently with our data. The pPSG and FBCHR measurements 

were synchronised on the same computer when the participants were 
equipped with the devices, at the beginning of the recording session. 
Once data were imported in the MATLAB environment, they were 
graphically cross correlated to pPSG measurements for alignment 
(Buck et al., 2002).

2.5 | Statistical analysis

Statistical analysis was performed in Python using NumPy library 
(Harris et al., 2020), while plots were computed through the Seaborn 
library.

While the FBCHR HR data were sampled at a 1-min resolu-
tion, the pPSG were scored according to the AAMS criteria with 
a 30-s resolution. We re-coded pPSG epochs’ sleep score from 
30-s resolution to 1-min resolution so that they were coupled 
(Sadeh et  al.,  1994; de Zambotti et  al.,  2016). We compared the 
FBCHR and pPSG measurements of HR on a minute-by-minute 
basis (Figure 1).

We computed the mean and the standard deviation (SD) of the 
single-epoch differences between the pulse detected by the FBCHR 
and the pPSG. The same calculation was repeated for each vigilance 
state (i.e. sleep stages and wake). Pearson’s correlation coefficient 
was computed for each participant between paired data that were 
not stratified for vigilance state, and then for all sleep stages and 
waking (Giavarina,  2015). Correlation coefficients were computed 
separately in the two groups identified by PSG’s HR ≥100 bpm and 
PSG’s HR <100 bpm.

F I G U R E  1  Minute-by-minute heart 
rate (HR) across the recording for a 
representative participant. Top panel: 
HR (beats/min [bpm]) derived from the 
portable polysomnographic (pPSG) 
electrocardiography (ECG) derivation 
(ECG, in blue) is plotted against the Fitbit 
ChargeHR™ (FBCHR, in red). Bottom 
panel: corresponding hypnogram, 
depicting the transitions across pPSG-
determined behavioural states (Wake, N1, 
N2, N3, rapid eye movement [REM]) 
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To formally test whether the correlation between paired data 
varied for different HR zones, as graphically suggested by the Bland–
Altman plots, correlations between the pPSG and Fitbit-detected 
HR were re-computed for bins of 10-bpm intervals.

Along with Pearson’s correlation coefficients, we calculated both 
the Lin’s concordance correlation coefficients (CCC) and the mean 
absolute percentage errors (MAPE).

A Bland–Altman analysis (Aadland & Ylvisaker, 2015; Nelson & 
Allen,  2019) was performed in order to visually assess the distri-
bution of the difference between HR measured by the FBCHR and 
pPSG. Both Bland–Altman plots and limits of agreement (LoA) were 
computed for each sleep stage and in wakefulness.

To understand how movement, detected as actiomet-
ric measures, might affect the HR detection of the FBCHR, 
we estimated a quantile regression model with response 
ΔHR = (HRFITBIT − HRPSG) and the following predictors: the PSG 
itself, and a natural cubic spline that describes the effect of the 
actiometric measures.

3  | RESULTS

3.1 | Correlation Analysis between pPSG and 
FBCHR HR detection

Pearson’s correlation coefficient (r) was computed on aggregated 
paired HR data (FBCHR and pPSG), showing an overall correlation 
of 0.93 (number of samples [n] = 13,058; Figure 2a). The correla-
tion was lower in wakefulness (r = 0.84, n = 5,028, Figure 2b), and 
greater for each and every sleep phase (REM, r = 0.97, n = 1,656; 
N1, r = 0.99, n = 77; N2, r = 0.98, n = 3,282; N3, r = 0.98, n = 3,015, 
Figure 2c–f). In Table 1 the correlation coefficients are reported for 
each monitored subject, while in Table S1 are shown the CCCs and 
MAPEs.

For the same HR intervals, the correlation was consistently 
higher during sleep than waking (Figure 3). Moreover, epochs with 
HRs >100 bpm showed a significantly worse correlation (r = 0.35, 
n = 116) than those with HRs <100 bpm (r = 0.84, n = 4,912).

3.2 | Bland–Altman analysis

Overall, regardless of vigilance state, the mean difference of HR 
measurements between the FBCHR and pPSG was ΔHR = (HRFITBI

T − HRPSG) = −0.66 SEM: 0.04 bpm (Figure 4a). Such bias was larger 
for wake epochs (ΔHR  =  −1.51  SEM: 0.10  bpm, Figure  4b) com-
pared to each sleep stage (REM, ΔHR = 0.03 SEM: 0.06 bpm; N1, 
ΔHR = −0.29 SEM: 0.16 bpm; N2, ΔHR = −0.12 SEM: 0.04 bpm; N3, 
ΔHR = −0.21 SEM: 0.04 bpm, Figure 4c–f). As it can be observed in 
Figure 4, the HR estimation by the FBCHR from 60 to 80 bpm, while 
it tends to overestimate the HR for lower and upper frequencies, 
respectively. Furthermore, in Bland–Altman plots (Figure  4) those 

samples lying at >100 bpm have a more diffuse distribution (i.e. a 
wider dispersion).

3.3 | Quantile regression model

In Figure 5, we show the predicted quantiles of order 0.05 and 0.95, 
for pPSG = 60 bpm. The bias of the FBCHR is generally positive and 
is closer to zero at low actiometric measures. While the bias is an 
increasing function of the actiometric measures, the rate of increase 
is much higher during wake than during sleep.

4  | DISCUSSION

In the present study the accuracy of pulse estimation by the FBCHR 
is evaluated in comparison to the HR estimated by the pPSG 
under free-living conditions (Aadland & Ylvisaker, 2015; Nelson & 
Allen, 2019). Our present results show that the FBCHR tends to un-
derestimate the HR detected by the pPSG ECG recording (overall 
Bland–Altman bias = −0.66 SEM: 0.04 bpm). This evidence is sup-
ported by other studies suggesting that the FBCHR’s PurePulse is 
prone to underestimate the HR compared to the HR detected on 
ECG traces recorded by PSG devices (de Zambotti et  al.,  2016), 
chest-worn three-lead ECG (Haghayegh et  al.,  2019) and ambu-
latory ECG (Nelson & Allen,  2019). The bias is larger during wake 
than during sleep phases (Waking Bland–Altman bias = −1.514 SEM: 
0.10 bpm). Consistently, also the correlation coefficient between the 
pPSG and FBCHR measurements is at its peak during wakefulness 
compared to sleep. The observation that the FBCHR is less relia-
ble when the wearer is awake is consistent with other studies (Jo 
et al., 2016; Reddy et al., 2018). The higher wrist movement rates 
during waking and the related lower stability of the sensor contact 
with the skin during wakefulness can account for the lower agree-
ment between the FBCHR and pPSG during wake, as suggested by 
the quantile regression model. The impact of movement on wrist 
photoplethysmographic HR detection has been already proposed 
by Benedetto et al.,  (2018) and by Bent et al.,  (2020). Instead, we 
exclude that the difference in accuracy between sleep and waking 
might depend on the mean difference in frequency rates between 
vigilance states. In fact, after controlling for the HR ranges, the 
FBCHR remains more accurate during sleep as compared to waking. 
Moreover, the correlation between HR measured by the FBCHR and 
pPSG highlights the low reliability of FBCHR in estimating HR when 
the pulse is >100 bpm. The accuracy of the FBCHR during moderate 
to high physical activity states is controversial in the literature: some 
studies (Bai et al., 2018; Reddy et al., 2018) indicate an accurate HR 
estimation by the FBCHR PurePulse technology. Other studies (Bent 
et al., 2020; Jo et al., 2016) also support our conclusions: the FBCHR 
could not be considered as a reliable HR estimator of the HR during 
fitness activities. In the same paper, along with Sjoding et al., (2020), 
the authors show how the skin tone does impair the accuracy of the 
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F I G U R E  2  Scatterplots and regression lines for aggregated vigilance states (Panel a), wakefulness (Panel b), rapid eye movement (REM, 
Panel c), N1 (Panel d), N2 (Panel e) and N3 (Panel f). The corresponding Pearson’s correlation coefficients and p values are superimposed to 
each plot. Each colour displays data obtained from a single subject. Time resolution: 1 min 
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TA B L E  1   Participants’ Pearson’s correlation coefficients (r) calculated for aggregated activity states (number of samples [n] = 13,058) 
and for each activity state (Wake, n = 5,028; REM, n = 1656; N1, n = 77; N2, n = 3,282; N3, n = 3,015). The number of outliers is shown in 
brackets

ID Age, years Samples, n
Whole 
recording Wake (outliers) REM (outliers) N1 (outliers) N2 (outliers) N3 (outliers)

1 21 452 0.89 0.92 (12) 0.69 (3) 0.91 (0) 0.87 (0) 0.84 (0)

2 22 586 0.69 0.65 (66) 0.96 (0) 0.98 (0) 0.90 (0) 0.88 (0)

3 24 540 0.84 0.77 (42) 0.83 (0) 1 (0) 0.50 (3) 0.50 (6)

4 21 597 0.93 0.91 (27) 0.91 (3) 1 (0) 0.82 (3) 0.95 (0)

5 20 663 0.83 0.77 (30) 0.86 (0) 0.83 (0) 0.79 (6) 0.86 (0)

6 20 517 0.81 0.78 (33) 0.72 (0) 0.59 (0) 0.73 (3) 0.83 (3)

7 23 565 0.89 0.84 (66) 0.86 (3) 0.97 (0) 0.68 (9) 0.69 (3)

8 22 605 0.92 0.86 (87) 0.92 (0) 1 (0) 0.95 (0) 0.95 (0)

9 20 316 0.92 0.93 (0) 0.97 (0) 0.93 (0) 0.88 (3)

10 30 348 0.88 0.80 (21) 0.86 (0) 0.89 (0) 0.93 (0)

11 22 692 0.94 0.91 (90) 0.95 (0) 0.65 (0) 0.94 (3) 0.96 (0)

12 30 528 0.91 0.89 (3) 0.90 (3) 0.77 (0) 0.86 (0)

13 24 441 0.77 0.62 (183) 0.68 (12) 1 (0) 0.93 (0) 0.79 (3)

14 21 547 0.82 0.55 (54) 0.85 (3) 0.87 (0) 0.85 (0) 0.86 (3)

15 20 649 0.89 0.86 (21) 0.89 (0) 0.98 (0) 0.81 (6) 0.80 (3)

16 21 580 0.91 0.89 (33) 0.92 (0) 0.96 (0) 0.97 (0)

17 22 583 0.65 0.57 (36) 0.81 (0) 0.97 (0) 0.74 (3) 0.78 (3)

18 21 564 0.81 0.74 (81) 0.91 (3) 1 (0) 0.93 (0) 0.83 (3)

19 22 376 0.93 0.88 (51) 0.84 (0) 0.82 (0) 0.88 (0) 0.88 (0)

20 20 473 0.91 0.82 (168) 0.75 (3) 0.98 (0) 0.83 (0) 0.76 (0)

21 21 605 0.79 0.71 (33) 0.94 (0) 0.93 (0) 0.88 (0)

22 20 250 0.95 0.95 (27) 0.36 (3) 0.95 (0) 0.55 (6)

23 29 694 0.48 0.47 (105) 0.73 (0) 0.66 (6) 0.44 (3)

24 24 370 0.84 0.87 (21) 0.73 (0) 0.76 (9) 0.83 (0)

25 19 517 0.91 0.78 (12) 0.99 (0) 0.94 (3) 0.93 (0)

Mean [SD] (outliers) 22.36 [3.00] 522.32 [115.71] 0.84 [0.11] 0.78 [0.13] 
(1,302)

0.83 [0.130] 
(36)

0.91 [0.14] 
(0)

0.83 [0.11] 
(54)

0.82 [0.14] 
(36)

ID, participant identification number; REM, rapid eye movement.

F I G U R E  3   Pearson’s correlation 
coefficients (r) plotted against heart rate 
ranges. Correlation coefficients between 
Fitbit ChargeHR™ (FBCHR) and portable 
polysomnographic (pPSG) paired data 
are higher in aggregated (large blue solid 
line) as well as in each sleep stage, plotted 
separately (rapid eye movement [REM], 
thin red dashed line; N1, thin green 
dashed line; N2, thin blue dashed line; N3, 
thin dashed black line) than waking (large 
solid yellow line), across all heart rate 
frequency bins 
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detection. In our study, given the demographics of the subjects en-
rolled, we could not verify this claim.

Consistently with the correlation coefficients results, the LoA of 
Bland–Altman analysis (Figure 4) are wider for waking samples com-
pared to sleep LoA. This result suggests that the HR measurements 
of the FBCHR tends to be more accurate (i.e. nearer to the HR mea-
sured by the pPSG) in sleep epochs compared to wakefulness.

Both the low accuracy in wakefulness and the reliability of 
HR estimation in sleep have multiple implications. The FBCHR 
can provide clinicians a feasible tool for accurately and continu-
ously monitor HR during sleep. Beyond the clinical applications, 
it can be exploited in basic sleep research protocol, especially 
in those studies investigating HR variability and the autonomic 
nervous system. Also, the FBCHR could improve the analysis of 
sleep parameters such as wake after sleep onset or sleep effi-
ciency. The FBCHR can possibly be used in HR monitoring during 
resting wakefulness, when the low rate of rest movements af-
fects the contact between the PurePulse diode and the skin less. 
Because PurePulse LED technology is shared with other Fitbit 
Inc. Smartbands, our results are generalisable to other devices 
(Haghayegh et al., 2019). A limitation of our present study is that 
it was conducted on a relatively small sample, entirely composed 
of Caucasian, healthy young adults, the majority of whom were 

females. Furthermore, we computed the correlation coefficients 
for HR >100 bpm on 116 paired samples. The small sample size 
could further affect our results and our conclusion on the FBCHR 
reliability in this frequency range.

In conclusion, in the present study we addressed the quality of 
HR detection of a Fitbit Inc. wrist-worn Smartbands device (Fitbit 
ChargeHR™) across all vigilance states (i.e. all sleep stages and wak-
ing). We conducted this quality assessment through different sta-
tistical methodologies, such as correlation coefficient computation 
and Bland–Altman analysis with a 1-min temporal resolution. Our 
present results indicate that the accuracy of the tested Smartband is 
substantially higher during sleep than in waking, across all HR zones. 
A plausible explanation is provided by the motion-related artefacts 
occurring during waking.
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