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Abstract
Nonlinear mixed effect (NLME) models are the gold standard for the analysis of 
patient response following drug exposure. However, these types of models are 
complex and time-consuming to develop. There is great interest in the adoption 
of machine-learning methods, but most implementations cannot be reliably ex-
trapolated to treatment strategies outside of the training data. In order to solve 
this problem, we propose the deep compartment model (DCM), a combination of 
neural networks and ordinary differential equations. Using simulated datasets of 
different sizes, we show that our model remains accurate when training on small 
data sets. Furthermore, using a real-world data set of patients with hemophilia 
A receiving factor VIII concentrate while undergoing surgery, we show that our 
model more accurately predicts a priori drug concentrations compared to a previ-
ous NLME model. In addition, we show that our model correctly describes the 
changing drug concentration over time. By adopting pharmacokinetic principles, 
the DCM allows for simulation of different treatment strategies and enables ther-
apeutic drug monitoring.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Current implementations of machine learning (ML) in pharmacometrics cannot 
reliably be extrapolated to timepoints and treatment outside of the training data.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can we develop a ML model that can be used to accurately predict drug concen-
trations by constraining the solution using differential equations?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The proposed deep compartment model does not require large data sets, can be 
individualized to unique treatment schedules of patients, and is highly accurate 
on unseen data.
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INTRODUCTION

There is much interest in the adoption of machine learn-
ing (ML) in the field of pharmacometrics. Implementation 
of covariates in population pharmacokinetic (PK) models 
can be very complex, and might benefit from the auto-
matic learning capabilities of ML algorithms. Previous 
studies have examined the accuracy of such models for 
predicting drug concentrations.1–3 Although these studies 
report similar or improved accuracy compared to nonlin-
ear mixed effect (NLME) models, which are widely con-
sidered to be the gold standard in the field, none of these 
models allow for practical use. For example, most of the 
proposed ML models have only been trained to predict 
drug concentrations at specific timepoints. Extrapolating 
from these timepoints can lead to highly inaccurate re-
sults. In addition, dosing and timing information is often 
a direct input to the model, even though we are uncertain 
that they will be interpreted as such. As a result, trust in 
the ML algorithm is low because we do not understand 
the translation from covariates to drug concentrations. A 
simple way to overcome these issues is to constrain the 
solution space to satisfy knowledge about drug dynamics. 
This involves using an ML model to predict the latent pa-
rameters z of another function, such as the one compart-
ment model:

Here, the elimination rate constant (ke) and the distribu-
tion volume (Vd) of the drug are estimated by an ML model, 
whereas dose D and time since dose t can be supplied di-
rectly to C(t,D). If the drug is eliminated at a constant 
concentration-dependent rate, we can thus reliably extrapo-
late to different timepoints or doses. Unfortunately, for most 
drugs, this assumption does not hold, and as soon as the 
complexity of the compartment model or dosing schedule 
increases, no simple closed form solution exists.

A recent paper by Chen et al.4 reports on an automatic 
differentiation method for calculating the gradient of an 
ordinary differential equation (ODE) solution with re-
spect to its inputs. This means that methods relying on 

automatic differentiation for gradient calculations, such 
as neural networks, can be constrained based on ODEs. 
Because we can represent any compartment model using 
a system of ODEs, this opens the door for a reliable use of 
ML algorithms in the field of pharmacometrics. In addi-
tion, interventions (such as drug doses) can be defined to 
perturb the ODE system at specific timepoints, allowing 
for the differentiation of the solution with respect to indi-
vidual treatment schedules.

In this study, we present the deep compartment model 
(DCM). In a DCM, a neural network is used to predict 
the latent parameters of a system of ODEs representing 
a compartment model. This technique allows for a full 
model-based approach which automatically implements 
covariates in PK models. We will test the accuracy of this 
model for predicting drug concentrations using simulated 
data sets of different sizes. In addition, we will compare its 
accuracy to an NLME model on real-world data of patients 
with hemophilia A receiving standard half-life (SHL) fac-
tor VIII (FVIII) concentrate while undergoing surgery. 
Both models will be fit on a retrospective data set,5 and 
will be validated on data collected during the OPTI-CLOT 
randomized controlled trial.6

RELATED WORK

Brier et al. discussed a comparison of steady-state peak 
and trough gentamicin concentrations predictions made 
by a neural network and NLME model.1 The neural net-
work predicted peak gentamicin concentrations between 
2.5 and 6.0 μg/ml with lower bias compared to the NLME 
model. However, when extrapolating to samples which 
were outside of this range (and not in the training set) 
the NLME model was more accurate. This indicated that 
using ML algorithms as is likely results in problems with 
respect to extrapolating to unseen data.

Lai et al. introduce an implementation of neural net-
works (and regression splines) in the likelihood function 
for a nonparametric estimation of covariate effects in popu-
lation PK models.7 The neural network was used to directly 
learn the relationship between covariates and the PK pa-
rameters of a one-compartment model. They show how the 

(1)C(t,D) =
D

Vd
⋅ exp

(

− ket
)

, z ∈
{

Vd,ke
}

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Our study opens the door for the reliable use of ML for many applications in the 
field of pharmacometrics. The method is extremely fast, sharply reducing the time 
spent developing complex mathematical models. Because we are explicitly adding 
known constraints to our model, we reduce the need for large data sets which is 
often a limitation for the implementation of ML in the field of pharmacometrics.
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neural network is able to accurately represent nonlinear 
effect of covariates. However, the approach focuses on the 
use of compartmental models with a closed-form solution 
and is difficult to extend to more complex models.

Finally, Lu et al. reported on the deep-learning-based 
approach which utilizes a neural ODE4 to handle time and 
dose irregularities.8 A recurrent neural network encoder 
is used to learn the initial state for an ODE solver. The 
solver translates this state based on the current time inter-
val between doses into a latent variable space z. Finally, a 
decoder is used to translate samples from z to the concen-
tration predictions. The authors show how this approach 
can be used to correctly extrapolate to treatment schedules 
not seen during training, in contrast to other ML-based 
methods. However, a possible issue is its inherent reliance 
on black box methods for estimation. It is difficult to un-
derstand what the latent variables z represent, how the 
neural ODE produces them, and finally how the decoder 
relates them to the observations.

Results from the above papers indicate how using time 
and dose as direct inputs to ML models will likely lead to 
poor extrapolation to samples outside of the training data. 
This is eloquently shown by Lu et al., where such models 
still predict drug exposure even when the given dose is set 
to zero.8 In this work, neural networks are used to predict 
parameters for an ODE (similar to NLME models), which 
makes it easier to implement complex compartment mod-
els and dosing schedules. The proposed architecture is 
relatively simple compared to the NeuralODE.8 The latent 
variables z predicted by the neural network now represent 
PK parameters, which are more interpretable and can be 
compared to previous results.

METHODS

Problem definition

We consider a dataset of n patients with d observed co-
variates xi ∈ Xn×d, i ∈ {1… n}; and corresponding drug 
concentration measurements yi ∈ ℝ

k
+

 for k measurements 
in time window t ∈ [0,T]. The number of measurements 
may differ between patients. For each patient i, we can 
define a set of clinical interventions Ii, which, for example, 
contains information of drug doses given at specific time-
points. In classical PK modeling, we can represent the dy-
namics of this drug using a system of ODEs A(t, z, I) with 
p latent parameters z ∈ ℝ

p
+ (aptly named the PK param-

eters). We often assume that the information in X is insuf-
ficient to completely describe the interindividual variation 
(IIV) in the concentration measurements, so our goal is to 
predict the typical or population predicted concentrations 
E
[

yi
]

. The corresponding typical PK parameters � i for each 

patient are predicted directly from the covariates using a 
set of functions f� so that:

The algebraic form of f� has to be specified but its pa-
rameters � can be estimated from data. In many cases, 
prior knowledge is present for choosing an appropriate 
compartment model, but not f�. As a result, implementa-
tions of f� can be suboptimal, resulting in lower accuracy 
of E

[

yi
]

. To combat this issue, NLME models introduce 
two random variables: one describing the IIV: � ∼ (0,Ω) , 
and one describing the residual variability: � ∼ (0,Σ).  
� is used to transform � to obtain a distribution of z which 
describes the residual IIV in the population:

Here, we have depicted a commonly used transforma-
tion of � which results in a log normally distributed ran-
dom variable z. NLME models predict a set of parameters 
Θ = {�,Ω,Σ} and produces a maximum a posteriori esti-
mate of � which maximizes p

(

� ∣ yi,Θ
)

. A downside of this 
approach is the requirement of sufficient measurements 
in yi, especially when T is large. Because the a priori pre-
dicted E

[

yi
]

 can be inaccurate, we often need to generate 
a PK profile for new patients. This can be perceived as an 
additional burden for the patient, especially when mea-
surements need to be taken over the span of multiple days.

Deep compartment model

In order to improve the prediction of � we developed the 
DCM. Here, a neural network �w with weights w is used 
to predict the latent parameters of a compartment model 
based on Ii. Because �w directly predicts � instead of yi, we 
can better interpret its output. The neural network learns 
to represent � from a latent z in a nonparametric manner. 
When we assume that each concentration measurement 
yij is drawn i.i.d. from a Gaussian distribution with mean 
�ij and variance �2 so that yij = �ij + �ij, �ij ∼

(

0,�2
)

; we 
can find the optimal weights w∗ by minimizing the mean 
squared error (MSE) objective function:

The DCM model was developed in the Julia program-
ming language (Julia Computing, Inc., version 1.6.0). 
Dosing events in Ii were implemented as time-based 
callbacks to the ODE solver. These callbacks affected 
the rate of drug flowing into the central compartment. 

(2)� i = f�
(

xi
)

.

(3)z = � ⋅ exp(�)

(4)w∗ =min
w

(X) =
1

n

n
∑

i=1

(

yi−A
(

ti,�w
(

xi
)

,Ii
))2
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Consequently, bolus doses were converted to short dura-
tion infusions with a fixed duration of 1 minute and rate 
D ⋅ 60 IU/h. Model covariates were normalized between 
zero and one using minimum-maximum normalization. 
Two variants of the DCM were developed. The first di-
rectly outputs � in the final layer, using a softplus activa-
tion function to ensure � ≥ 0. The second can be passed a 
set of initialization parameters �0. In the latter case, the 
final layer of �w has the following form:

Here, L denotes the number of layers l in �w, ⊙ indicates 
the Hadamard product, �( ⋅ ) is the CELU activation func-
tion with 𝛼 < 1,9 and �⃗1 is a vector of ones of length p. In this 
case, the model learns the deviation from �0 based on xi. The 
CELU activation function acts as an implicit constraint to 
penalize the gradient of ln−1 as it reaches 1 − �, preventing  
� to be zero. The “standard” DCM can be used in cases where 
measurement data is rich, whereas the DCM with initializa-
tion can help to improve parameter predictions when data 
are sparse.

In this paper, we have used a basic neural network 
encoder structure in order to reduce the number of pa-
rameters in the model. The model contained two fully 
connected hidden layers: the first had 64 neurons, and 
the second had 16 neurons. The swish activation function 
was used for the hidden layers.10 The output layer con-
tained four neurons representing the PK parameters. No 

optimization of model architecture was performed. The 
ADAM optimizer was used for updating neural network 
weights with a learning rate of 1e-3.11

All relevant code and results will be made available 
for public access at https://github.com/Janss​ena/DeepC​
ompar​tment​Models.jl at the time of publication.

Simulation experiment

We simulated a data set of 500 patients based on a pre-
viously published NLME model.5 This model was de-
veloped using retrospective data from 119 patients with 
hemophilia A treated with an SHL FVIII concentrate 
perioperatively. This model predicted � based on patient 
weight, age, blood group, and surgical risk score. A two-
compartment model with clearance (CL), central volume 
of distribution (V1), intercompartmental clearance (Q), 
and peripheral volume (V2) parameters was used.

The goal of our simulation was to evaluate the ac-
curacy of the DCM in sparse and dense data scenarios. 
For each patient, we simulated a single intravenous dose 
of 25–50 IU kg−1 (rounded to nearest multiple of 250) 
of SHL FVIII concentrate at t  =  0. Typical PK param-
eters were calculated based on samples from covariate 
distributions fit to the original dataset. FVIII levels were 
simulated based on these PK parameters and collected at 
t = 0.5 h and every hour until t = 48 h. Average simulated 
FVIII peak level was 0.89 IU ml−1 (0.43–1.31), and aver-
age trough level at t = 48 h was 0.09 IU ml−1 (0.01–0.21). 

(5)ln = �0 ⊙
(

𝜋
(

lL−1
)

+ �⃗1
)

Sampling strategy

Standard DCM
DCM with 
initialization

n Train Test Train Test

t = 0.5, 4, 12, 24, 36, 48 120 99.0 ± 0.21 99.1 ± 0.25 99.6 ± 0.12 99.4 ± 0.16

60 93.3 ± 13.0 93.0 ± 12.5 98.9 ± 0.42 97.9 ± 0.18

20 89.5 ± 1.09 84.4 ± 1.79 92.8 ± 1.76 88.7 ± 3.27

t = 4, 24, 48 120 65.2 ± 8.68 65.3 ± 8.86 97.8 ± 0.33 97.8 ± 0.41

60 60.7 ± 0.61 59.5 ± 0.62 96.0 ± 0.85 94.8 ± 0.97

20 58.2 ± 0.99 59.1 ± 0.71 96.3 ± 1.18 90.1 ± 2.00

t = 8, 30 120 75.9 ± 0.65 76.1 ± 1.08 90.8 ± 6.63 90.3 ± 6.19

60 72.4 ± 1.33 73.6 ± 1.19 81.4 ± 3.29 83.0 ± 3.08

20 66.8 ± 1.78 61.2 ± 1.41 77.7 ± 4.82 76.5 ± 2.19

t = 24 120 28.6 ± 3.69 28.9 ± 5.31 76.2 ± 2.74 76.0 ± 2.41

60 29.2 ± 1.21 29.4 ± 1.02 66.8 ± 2.23 65.2 ± 2.14

20 29.6 ± 2.68 32.2 ± 1.92 73.7 ± 1.83 72.9 ± 1.80

Note: Train and test accuracy is represented as the percentage of predictions within 0.05 IU ml−1 of true 
simulated FVIII levels ≥0.15 and within 0.02 IU ml−1 of levels <0.15. Time points are in hours. n is the 
number of patients in the train set. Test set size is the remainder of 500 – n. Values are represented as the 
mean ± one SD of five replicates.
Abbreviations: DCM, deep compartment model; FVIII, factor VIII.

T A B L E  1   Accuracy of predicted FVIII 
levels in the simulation experiment

https://github.com/Janssena/DeepCompartmentModels.jl
https://github.com/Janssena/DeepCompartmentModels.jl
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Gaussian noise (� = 0.05) was added to produce train-
ing measurements. Any resulting negative concentra-
tions were fixed to zero. Multiple sets of measurements 
were collected to evaluate an extremely limited (t = 24), 
limited (t  =  8, 30), routine (t  =  4, 24, 48), and exten-
sive (t = 0.5, 4, 12, 24, 36, and 48) sampling strategy.12 
The DCM was trained on 20, 60, or 120 patients repre-
senting datasets of low, medium, and large size, respec-
tively. Corresponding test sets contained the remaining 
480, 440, or 380 patients. Models were trained until MSE 
stopped improving. Both a standard DCM and DCM 
with initialization were fit for all scenarios. A reasonable 
set of initialization parameters �0 = [150, 2500, 150, 2000] 
was used for CL (ml/h), V1 (ml), Q (ml/h), and V2 (ml), 
respectively. Training procedure was replicated five 
times to account for the influence of the random initial-
ization of w on the accuracy.

Accuracy of FVIII level predictions was defined as the 
percentage of predictions within a range of the “true” 
simulated FVIII level (without noise) evaluated at all 
simulated timepoints. This target range was set at 0.05 
IU ml−1 for �true ≥ 0.15 IU ml−1, and at 0.02 IU ml−1 for 
𝜇true < 0.15 . These values represent clinically relevant 
differences in the FVIII level. Because patients with lev-
els above 0.15 IU ml−1 hardly suffer from joint bleeding, 
we chose this as the lower limit.13 The 0.05 IU ml range 
represents an estimate of assay accuracy. This range was 
decreased to 0.02 IU ml to emphasize the importance of 
making accurate predictions of FVIII trough levels (e.g., 
<0.15 IU ml−1). A large difference in accuracy between the 
train and test set was indicative of model over-fitting. The 
mean accuracy ± one standard deviation (SD) was pre-
sented for each model.

Finally, speed of the algorithm was evaluated by deter-
mining the calculation time per epoch. We calculated the 
gradient and updated the parameter for 100 epochs, re-
corded the total duration, and presented the average time 
spend per epoch. We used a 16 GB, Intel Core i7-9750H 
CPU computer for our tests. Models were trained on the 
CPU only.

Validation using real-world data sets

Following the simulation experiment, we compared the 
accuracy of a priori predicted perioperative FVIII levels 
of a DCM and NLME model using real-world data. Both 

models were developed on the retrospective dataset from 
Hazendonk et al.5 Data from the OPTI-CLOT trial was 
used as an independent validation dataset.6 In this study, 
perioperative FVIII consumption was compared between 
PK-guided and standard dosing regimens. FVIII levels 
were actively monitored and dosing was adjusted follow-
ing daily measurements if required.

The one-stage assay used in both datasets was known 
to significantly under-report FVIII levels from a �-domain 
deleted recombinant FVIII product (BDD-rFVIII; moroc-
tocog alfa/ReFacto AF).14 The proposed DCM architecture 
did not support estimation of the effect of covariates that 
influence the drug concentration directly. We removed 
all patients who received this product (9 and 4 patients 
in the train and validation set, respectively). The final 
retrospective dataset contained 110 patients with a total 
of 1380 perioperative FVIII measurements, and the vali-
dation set contained 62 patients with 526 measurements. 
Re-estimating the NLME model parameters on the retro-
spective data without these patients did not lead to mean-
ingful differences so the final model was used as is.

We fit a DCM based on patient weight, age, and having 
blood group O using a two-compartment model as these 
covariates have generally accepted biological significance 
with respect to FVIII drug dynamics. We used the same �0 
as in the simulation study. Additional covariates shared 
between the two data sets were von Willebrand factor 
antigen (VWF:Ag) and activity (VWF:Act) levels, hemo-
philia severity, and pre-assessed surgical risk score. They 
were added to the base set of covariates if inclusion im-
proved objective function value on the training data. This 
was somewhat similar to a stepwise procedure, although 
we could not use p values as there were no explicit para-
metric assumptions. Accuracy of the resulting models was 
evaluated on the validation set. Models were trained for 
100 epochs and the set of parameters w from the epoch 
resulting in the highest accuracy on the retrospective data 
set were selected. We again performed five replications 
of the training procedure, resulting in five independently 
fit models. For the NLME model, the final model from 
Hazendonk et al.5 was implemented in NONMEM (ICON 
Development Solutions, version 7.4.2). Covariates used in 
the NLME model were patient weight, age, blood group, 
and surgical risk score. Accuracy was again represented as 
the percentage of predictions within 0.05 IU ml−1 of mea-
sured FVIII levels greater than or equal to 0.15 IU ml−1, 
and 0.02 IU ml−1 for levels <0.15.

F I G U R E  1   Bias and variance of residuals. Mean residuals on the test set of a single replicate of the standard DCM (circles), DCM with 
initialization (diamonds), and corresponding SD (shaded areas) are shown for the extensive (a), routine (b), limited (c), and extremely 
limited (d) sampling strategies. Points were added for the purpose of comparison. Dotted line indicates zero residual error. Images on the 
left were trained on 120 patients, and images on the right on 20. Positive residuals indicate underestimation of FVIII levels while negative 
residuals indicate overestimation. DCM, deep compartment model; FVIII, factor VIII
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RESULTS

DCM accuracy on simulated data

The accuracy of FVIII predictions by the DCM for the dif-
ferent scenarios is shown in Table 1. In general, a higher 
number of measurements or training samples resulted in 
improved accuracy. However, accuracy was higher for the 
standard DCM trained on limited measurements com-
pared to the routine set. Slight model over-fitting was seen 
when training on 20 samples but not for the other sample 
sizes. In all cases, we saw that initialization using �0 in-
creased both train and test accuracy. When using initiali-
zation, there was no large improvement in accuracy when 
increasing the number of measurements from three (rou-
tine) to six (extensive). Furthermore, using initialization 
greatly improved model accuracy when only one meas-
urement was available (from roughly 29% to 65–75%).

In Figure 1, we have depicted the mean residuals in-
cluding SD for the different sampling strategies at n = 120 
or 20. For the standard DCM, we can appreciate that de-
creasing the number of training samples increases vari-
ance of the residuals, whereas decreasing the number of 
measurements increases bias. We also see that for all but 
the extended measurements set high bias can be seen for 
peak concentration predictions. For some scenarios, using 
initialization is able to reduce this bias.

In Figure 2, we have shown predictions for a random 
patient for each of the sampling strategies. Here, we can 
notice that an insufficient number of measurements can 
allow the standard DCM to predict unrealistic FVIII re-
sponses (Figure  2d). Using initialization, we guide the 
DCM to find a solution that follows an initial belief about 
the value of each of the PK parameters.

With respect to algorithm speed, we found that time 
spend per epoch increased proportional to the number of 
samples in the train set (Table S1). The type of DCM or the 
number of available measurements did not affect compu-
tational time.

Comparison with NLME model using  
real-world data

In Table 2, we show the accuracy of a priori predictions of 
the DCM and NLME model using real-world data. Only 

adding VWF:Ag to the base set of covariates resulted 
in an improvement of the objective function value. The 
DCM + VWF:Ag model showed improved accuracy on the 
validation set compared to the NLME model (23.1% vs. 
21.6%). The base DCM had similar accuracy to the NLME 
model (22.0%). Time spent on training a single replicate 
for 100 epochs took ~ 25 s.

In Figure 3, the residuals of the NLME model and DCM 
are compared per 24 h from the day of surgery. The resid-
ual error of DCM predictions suggest lower bias, as judged 
by the median residual error being generally within the 
accuracy threshold. In contrast, the NLME model more 
often underestimated FVIII levels. For all models, vari-
ance of the residual error started decreasing after t = 72.

In Figure  4, we have shown the prediction by the 
DCM + VWF:Ag compared to the NLME model for six pa-
tients. Here, we see that the DCM can accurately represent 
the changing FVIII levels over time when subjected to 
complex dosing schemes. For some patients, the DCM and 
NLME model predicted concentrations are very similar.

DISCUSSION

In this study, we present a technique for improving the 
performance of ML models for predicting drug concentra-
tions by constraining the solution space. Here, we have 
used a neural network to predict the latent parameters of 
a system of ODEs and determined its accuracy in different 
scenarios during a simulation experiment. We show that 
when using initialization parameters, the accuracy of such 

T A B L E  2   Accuracy of a priori predicted FVIII levels for the 
independent OPTI-CLOT data set

Model Accuracy

NLME 21.9%

DCM 22.0 ± 0.417%

DCM + VWF:Ag 23.1 ± 1.12%

Note: Here we show the accuracy of the models as the percentage of 
predictions within 0.05 IU ml−1 of observed FVIII levels ≥0.15. For 
observations <0.15 this threshold was set at 0.02 IU ml−1. DCM accuracy 
is shown as the mean accuracy of five independent runs ± SD. The 
DCM + VWF:Ag model included VWF:Ag as an additional covariate. Bold 
text indicates the most accurate model.
Abbreviations: DCM, deep compartment model; FVIII, factor VIII; NLME, 
nonlinear mixed effect; VWF:Ag, von Willebrand factor antigen.

F I G U R E  2   Examples of FVIII level predictions in the simulation experiment. Here, predicted FVIII levels by a single replicate of the 
standard DCM (circles) and DCM with initialization (diamonds) are compared. The accuracy threshold (shaded area) is also shown. Points 
were added for the purpose of comparison. Results are shown for a single patient for the extensive (a), routine (b), limited (c), and extremely 
limited (d) sampling strategies. Stars represent the observed FVIII levels. Images on the left were trained on 120 patients, and images on the 
right on 20. DCM, deep compartment model; FVIII, factor VIII
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an approach is high (>80%) when training on medium-
sized datasets with at least two measurements. Next, we 
compared the accuracy of the DCM to an NLME model 
using real-world data. The DCM displayed increased ac-
curacy of FVIII level predictions on an independent vali-
dation set (23.1% ± 1.12 SD compared to 21.9% for the 
NLME model). Even though many measurements were 
available, achieved model accuracy was lower compared 
to the simulation experiment. This is indicative of the 
complexity of predicting perioperative FVIII levels, where 
other (unknown) factors seem to contribute to the IIV.

In the simulation experiment, we found that the ac-
curacy of the standard DCM was higher for the limited 
sampling strategy compared to the routine sampling 
strategy. This suggests that it is not only the number 
of measurements but also their timing that can affects 
model bias. This is reflected in Figure  2b,c, where we 
can see that the routine sampling strategy leads to 
higher bias between t = 4 and t = 24 compared to the 
limited sampling strategy. For all scenarios, we found 
that using initialization parameters improved prediction 
accuracy. Especially when training on smaller datasets 
(n = 20), bias of residual error greatly reduced compared 
to a standard DCM. In small data sets, there is likely not 
enough data to correctly characterize the relationship 
between the covariates and the PK parameters. When 

measurements were extremely limited, a standard DCM 
was completely free to choose how to fit the single FVIII 
level and often degenerated to a flattened concentration 
curve (i.e., very low clearance; see Figure 2d). By using 
initialization, we can drive the model to follow an initial 
guess of compartment dynamics. However, we found 
that the current �0 could still lead to a biased estimation 
of peak concentration predictions. Similar to choosing 
an informative prior in the Bayesian setting, choosing 
the “correct” �0 can be difficult. In our case, we noticed 
that the DCM could maintain accurate predictions of 
the measurements while excessively adjusting V1. As 
no measurements were present at early timepoints for 
many of the scenarios, the model was not penalized for 
over or underestimating peak FVIII levels. It is thus im-
portant to choose �0 carefully by, for example, monitor-
ing the distribution of residual errors during training 
and adjusting initial estimates accordingly.

The results suggest, however, that a more rigid con-
straint against extreme predictions is required. One such 
approach would be to include a prior belief over the PK 
parameters and performing maximum a posteriori esti-
mation. By setting a prior distribution over our parame-
ters we can penalize more extreme estimates. However, 
in the case of a neural network, this prior has to be set 
over the weights of each layer. Choosing a correct weight 

F I G U R E  3   Box-plots of residual error of predicted perioperative FVIII levels. Here, we show the residual error of a priori predictions 
grouped per 24 h for the NLME model (dark boxes), DCM (lightly shaded boxes), and DCM with VWF:Ag (white boxes). The shaded area 
indicates the 0.05 IU ml−1 accuracy threshold. t = 0 corresponds to the day of surgery. Mean prediction from the five independent DCM 
runs was taken to calculate residual error. Positive residuals indicate underestimation of FVIII levels, whereas negative residuals indicate 
overestimation. DCM, deep compartment model; FVIII, factor VIII; NONMEM, nonlinear mixed-effect modeling; VWF:Ag, von Willebrand 
factor antigen
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distribution that matches our prior belief over the PK 
parameters is very complex, and is an area of active re-
search.15,16 Another related improvement is the use of a 
Bayesian neural network.17 Again, using a prior over the 
neural network weights, we can obtain a credible interval 
for our parameter estimates, similar to the standard error 
estimates NLME produces. This allows us to contribute a 
measure of certainty to the PK parameters, and identify 
patients for which the prediction is inaccurate. It might 
be difficult to implement such methods relating to prior 
selection so other approaches might have to be evaluated.

In the real-world experiment, the DCM trained using 
patient weight, age, having blood group O, and VWF:Ag 
achieved higher accuracy than the NLME model. Although 
this improvement was not extremely large, fitting and ad-
justing a DCM is far less time-consuming. Training the 
model required only roughly 25 s, whereas development 
of NLME models can take far longer. A downside, how-
ever, can be that the DCM was programmed in the Julia 
programming language, which is unfamiliar to many 
pharmacometricians. We have made our model code pub-
licly available and include a tutorial on how to fit a DCM 

model to any NLME compatible data set using only a few 
lines of code. This way, we hope to reduce the complexity 
of using this new technique. New covariates can simply 
be added to a base set of covariates and accuracy can be 
monitored during training. The method also allows for the 
user to simulate new treatment strategies by adjusting Ii. 
As seen in Figure 4, the model accurately represents the 
changing concentration over time.

We have shown examples where we use a DCM to es-
timate the effect of all covariates, but it is also possible to 
add a layer where the relationship between a covariate 
and the PK parameters is explicitly stated. An example 
would be to use allometric scaling to represent the effect 
of weight on the PK parameters, while having the neural 
network learn the effect of the other covariates using stan-
dard layers. The practical use of this concept will have to 
be evaluated.

From the above experiments some limitations of the 
DCM have come to light. First, it is sometimes the case 
that no prior knowledge exists for choosing an appropri-
ate compartment model to describe the drug concentra-
tions. In these cases, we suggest fitting multiple DCM 

F I G U R E  4   Examples of a priori perioperative predicted FVIII levels. DCM predictions represent the predicted FVIII levels by a single 
replicate of the DCM + VWF:Ag model. Stars represent observed FVIII levels. Both the prediction by the DCM (solid line) and the typical 
prediction from the NLME model (dotted line) are shown. For some patients, pre-surgery prophylactic doses are also shown. DCM, deep 
compartment model; FVIII, factor VIII; NLME, nonlinear mixed-effect modeling; VWF:Ag, von Willebrand factor antigen
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models with different model structures and inspect the 
solution in order to resolve model misspecification. Next, 
the proposed architecture of the DCM does not sup-
port covariates that affect the predicted concentration 
directly. This has resulted in the removal of all patients 
in the datasets who received BDD-rFVIII. In the NLME 
model, this effect can be directly estimated in the model, 
whereas for the DCM estimating this quantity next to w 
can be difficult. The DCM also does not quantify any form 
of residual variability. Use of the MSE implicitly assumes 
simple additive error, where in many cases a combined 
additive and proportional error model is more appropri-
ate. In addition, the model does also not quantify resid-
ual IIV, making the model potentially more susceptible 
to over-fitting. We have performed some prior work on 
combining the DCM with the extended least squares ob-
jective function as a possible solution to these problems.18 
We, however, found that the implementation is unstable 
and requires careful tuning of training parameters. More 
work is required to improve the random effect estimation 
when using neural networks. Finally, although the rela-
tionships between PK parameters and covariates can be 
visualized after fitting the DCM, understanding the rela-
tionships between covariates and PK parameters can be 
difficult. ML explanation methods, such as SHAP,19 can 
be performed in order to help visualize these relation-
ships. Fact remains that neural networks are black box 
models, and the discussion of trust in ML method in the 
field of pharmacometrics is still in its infancy.

In conclusion, the DCM is a reliable tool for introduc-
ing ML models in population PK analysis. The DCM can 
automatically learn covariate relationships from data re-
ducing the need for tedious covariate analysis. In contrast 
to other ML models, the DCM is based on compartment 
models allowing for the implementation of prior knowl-
edge of drug dynamics. In addition, the DCM can be used 
with any dosing scheme, and allows for reliable extrapola-
tion to different timepoints.
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