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Brain-wide screen of prelimbic cortex 
inputs reveals a functional shift during 
early fear memory consolidation
Lucie Dixsaut, Johannes Gräff*

Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole 
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract Memory formation and storage rely on multiple interconnected brain areas, the contri-
bution of which varies during memory consolidation. The medial prefrontal cortex, in particular the 
prelimbic cortex (PL), was traditionally found to be involved in remote memory storage, but recent 
evidence points toward its implication in early consolidation as well. Nevertheless, the inputs to the 
PL governing these dynamics remain unknown. Here, we first performed a brain-wide, rabies-based 
retrograde tracing screen of PL engram cells activated during contextual fear memory formation in 
male mice to identify relevant PL input regions. Next, we assessed the specific activity pattern of 
these inputs across different phases of memory consolidation, from fear memory encoding to recent 
and remote memory recall. Using projection-specific chemogenetic inhibition, we then tested their 
functional role in memory consolidation, which revealed a hitherto unknown contribution of claus-
trum to PL inputs at encoding, and of insular cortex to PL inputs at recent memory recall. Both of 
these inputs further impacted how PL engram cells were reactivated at memory recall, testifying to 
their relevance for establishing a memory trace in the PL. Collectively, these data identify a spatio-
temporal shift in PL inputs important for early memory consolidation, and thereby help to refine the 
working model of memory formation.

Editor's evaluation
In this study, the authors used state-of-the-art methods to perform a brain-wide screening of engram 
cells in the prelimbic cortex. They identified specific activity patterns of these inputs across different 
phases of fear memory consolidation and describe the contribution of the claustrum and insula to 
prelimbic inputs during encoding and recall of recent memory, respectively. This study will be of 
broad interest for neurobiologists studying memory.

Introduction
The brain’s ability to form enduring memories is essential for an individual’s survival. Memories first 
need to be encoded and subsequently stored in the brain, a process that is termed memory consoli-
dation. Memory consolidation occurs both at the scale of individual cells (cellular consolidation), which 
happens in the order of seconds to hours, and at the scale of brain networks (systems consolidation), 
which takes place in the days to weeks after learning (Dudai, 2004; Dudai, 2012). Systems consolida-
tion across several brain areas is thought to be essential for the establishment of enduring memories 
(Nadel and Hardt, 2011).

Traditionally, the hippocampus (HPC) was demonstrated to be necessary during the early stages of 
memory formation and the retrieval of recent memories (which in the mouse are typically studied one 
day after encoding), while the medial prefrontal cortex (mPFC) was found to be rather responsible for 
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the consolidation and retrieval of remote memories (which are studied at least 14 days after encoding) 
(Albo and Gräff, 2018; Frankland and Bontempi, 2005). Indeed, multiple studies using immediate 
early gene mapping (IEGs, that are expressed specifically upon neuronal activation), whole brain 
region inhibition, or cell type-specific optogenetic manipulations (Aceti et al., 2015; Frankland et al., 
2004; Frankland et al., 2006; Goshen et al., 2011; Makino et al., 2019; Silva et al., 2019; Wheeler 
et al., 2013) showed that the mPFC was predominantly important at later times as opposed to the 
HPC. However, recent evidence has challenged this view by highlighting a role for the mPFC also 
during fear memory encoding (Bero et al., 2014; Cho et al., 2017; Cummings and Clem, 2020; Tang 
et al., 2005; Zelikowsky et al., 2013) as well as for fear memory recall at recent times (Do-Monte 
et al., 2015; Rajasethupathy et al., 2015). The rich connectivity of the mPFC indeed places it as a 
potential hub region for memory consolidation, as it receives not only inputs from other cortical areas, 
including sensory ones, but also from various subcortical areas such as the hippocampal formation, 
amygdala, and thalamus (Dixsaut and Gräff, 2021; Le Merre et al., 2021), which are all implicated 
in memory formation (Cho et al., 2017; Nonaka et al., 2014; Ramirez et al., 2013; Reijmers et al., 
2007; Taylor et al., 2021).

At the cellular level, mounting evidence suggests that memories are encoded and stored in 
engram cells, which, by definition (Tonegawa et al., 2015), are cells that are activated during the 
initial learning, undergo molecular and/or cellular modifications following learning, and the reactiva-
tion of which correlates with and can trigger memory recall. Engram cells have been discovered not 
only in the HPC (Josselyn et al., 2015; Liu et al., 2012; Ramirez et al., 2013), but more recently also 
in the mPFC (DeNardo et al., 2019; Kitamura et al., 2017; Matos et al., 2019). Interestingly, engram 
cells in the mPFC were reported to have the particular feature of staying silent until the memory is fully 
consolidated, although they are formed during the original learning phase (DeNardo et al., 2019; 
Kitamura et al., 2017; Matos et al., 2019). This implies that mPFC engram cells are first active during 
encoding, stay silent during a recent recall, and are reactivated at remote recall, although they are 
functionally able to trigger memory retrieval at any time.

Based on these grounds, we hypothesized that the functional contribution of mPFC inputs may 
change over the course of memory consolidation to govern how the mPFC engram is formed and 
subsequently reactivated. For this reason, we first sought out to establish a comprehensive functional 
map of mPFC inputs across time during fear memory consolidation, and second to analyze the down-
stream effect of these inputs on memory retention and mPFC engram reactivation.

Results
The prelimbic cortex is specifically active during the encoding of a fear 
memory
The mPFC is composed of the three following major areas: The anterior cingulate (ACC), the prelimbic 
(PL) and the infralimbic (IL) cortices (Carlén, 2017; Le Merre et al., 2021). In order to evaluate the 
relative activity of these subregions during the different phases of fear memory consolidation, we 
used a contextual fear conditioning (CFC) paradigm in combination with cFos immunohistochemistry 
(IHC), an IEG marker of neuronal activity (Pérez-Cadahía et al., 2011). We measured the freezing 
percentage of wild-type (WT) mice at CFC encoding before the footshocks occurred, as well as 
at recent recall 1 day post-encoding and at remote recall 14 days post-encoding. Each group was 
controlled for by a no shock group. We observed that both at recent and remote recall, mice display 
a significantly higher freezing percentage than the no shock control groups (Figure 1B), indicating 
successful memory formation.

We then quantified cFos expression in the three subregions of the mPFC (Figure 1C) 90 min after 
the corresponding behavioral session. We found that while all regions were more active at encoding 
than during the memory recalls, only in the PL did we observe a significant increase in cFos compared 
to the no shock control groups (Figure 1C–F). These results indicate that the mPFC as a whole, and 
the PL in particular, are activated by the encoding of a contextual fear memory. In turn, this finding 
suggests an important role of the PL already during this early phase of memory consolidation, which is 
coherent with the formation of engram cells in the PL at the time of encoding (DeNardo et al., 2019; 
Kitamura et al., 2017; Matos et al., 2019).

https://doi.org/10.7554/eLife.78542
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Brain-wide screen of PL engram inputs
Next, we aimed to identify PL inputs that could be responsible for this peaked PL activity at encoding 
and for the establishment of its engram during memory consolidation (DeNardo et al., 2019; Kita-
mura et al., 2017; Matos et al., 2019). To this end, we employed an activity-dependent monosyn-
aptic retrograde tracing technique (Figure 2A and B). Specifically, we used the TRAP2 mouse line 
(DeNardo et al., 2019), in which the Fos promoter drives the expression of the tamoxifen-dependent 
CreERT2 recombinase. These mice were first injected in the PL with helper adeno-associated viruses 
(AAVs) expressing Cre-dependent nuclear GFP, the TVA receptor, and the optimized rabies glyco-
protein oG. Thereby, the expression of these proteins in PL engram cells could be triggered with 
tamoxifen injection at the time of encoding. Three  weeks post-encoding, we injected a modified 

Figure 1. The prelimbic cortex (PL) is activated by the encoding of a contextual fear memory. (A) Experimental design. For encoding, mice were 
perfused 90 min after contextual fear conditioning (CFC). For recent and remote recalls, mice were perfused 90 min after a 1 day and a 14 day recall, 
respectively. (B) Percentage freezing measured during the 3 min of habituation before the shocks (encoding, in blue), at recent (in green) or remote (in 
red) memory recalls, for the animals undergoing CFC (shock, filled) and the control groups that were exposed to the CFC chamber without the shock 
(no shock, clear). Two-tailed unpaired t-tests, ****: p<0.0001. At recent recall, Cohen’s d=2.48; at remote recall, Cohen’s d=4.24. (C) Representative 
images of cFos immunostainings in the medial prefrontal cortex (mPFC). Scale: 250 µm. (D–F) Percentage of cFos over DAPI in (D) PL (one-way-ANOVA, 
F(5, 63)=9.172, p<0.0001), (E) anterior cingulate cortex (ACC) (one-way ANOVA, F(5, 63)=4.394, p=0.0017) and (F) infralimbic cortex (IL) (one-way 
ANOVA, F(5, 65)=13.34, p<0.0001). (D–F) Stars represent least significant p-values of Tukey’s multiple comparisons tests: *: 0.01 < p < 0.05; **: 0.001 < p 
< 0.01. n=11–13 animals per group.

The online version of this article includes the following source data for figure 1:

Source data 1. Raw data for Figure 1.

https://doi.org/10.7554/eLife.78542
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Figure 2. Brain-wide retrograde tracing identifies monosynaptic inputs of prelimbic cortex (PL) engram cells. (A–B) Experimental design and timeline. 
Fos-CreERT2 animals were first injected in the PL with helper adeno-associated viruses (AAVs) expressing GFP, TVA receptor, and oG (rabies optimized 
glycoprotein) in a Cre-dependent manner. Tamoxifen (or vehicle for control) was injected right after contextual fear conditioning (CFC) to trigger 
recombination in cFos+ cells. Three weeks later, a modified rabies virus (RV∆G-mCherry with EnvA coating) was injected in PL where it infected TVA-
expressing cells, replicated in oG-expressing cells, and was retrogradely transsynaptically transported. A week later, brains were collected to quantify 
monosynaptic inputs of PL engram cells labelled with mCherry. (C, D) Representative images of the PL injection site (scale 400 µm) and magnified view 
of starter cells (scale 20 µm) with tamoxifen (C) or vehicle (D) injection. (E) Percentage of starter cells over DAPI in PL. (F) Representative images of 
traced cells throughout the brain (scale 500 µm). (G) Magnified views of traced cells (scale 100 µm) in claustrum (CLA) (inset 1), insular cortex (INS) (1), 
basolateral amygdala (BLA) (2), retrosplenial cortex (RSP) (3), ventral CA1 (vCA1) (4), and entorhinal cortex (EC) (5). (H) Brain-wide quantification of traced 
cells, normalized by the number of starter cells for each animal, in the medial prefrontal cortex (mPFC) subregions (left) and the rest of the brain (right). 
Tamoxifen: n=3 animals; vehicle: n=2 animals.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw data for Figure 2 and its supplement.

Source data 2. Abbreviations for the brain regions.

Figure supplement 1. Raw quantifications of the rabies tracing experiment.

https://doi.org/10.7554/eLife.78542
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rabies vector RV∆G-mCherry (Wickersham et al., 2007) that can only infect and replicate in TVA- and 
oG-expressing cells, respectively, allowing us to transsynaptically label all monosynaptic inputs of PL 
engram cells (Figure 2B). As expected, we found that tamoxifen injection increased the number of 
starter cells expressing both GFP and mCherry in PL compared to vehicle (Figure 2C–E), confirming 
the specificity of these tools to restrict tracing to PL engram cells.

We then quantified the percentage of traced cells (mCherry+) throughout the brain (Figure 2F–H). 
Although most traced cells were found in the mPFC itself and its neighboring areas (orbitofrontal 
cortex, OFC, and dorsal peduncular area, DP, Figure 2H), we observed traced inputs in several other 
brain regions, notably the claustrum (CLA, Figure 2G inset 1), insular cortex (INS, inset 1), basolat-
eral amygdala (BLA, inset 2), retrosplenial cortex (RSP, inset 3), CA1 field of the HPC (mostly the 
ventral part, inset 4), taenia tecta (TT), thalamus polymodal association cortex-related areas (DORpm), 
subiculum (SUB), and to a lesser extent the entorhinal cortex (EC, inset 5). Without tamoxifen injec-
tion, traced cells were negligible (Figure 2—figure supplement 1), which further confirms the rabies 
tracing specificity.

With this approach, we identified relevant PL inputs that might be responsible for the development 
of the PL engram cell population, but we still lacked information on whether, when, and the extent to 
which these inputs are activated across memory consolidation.

PL inputs are differentially activated across memory consolidation
Out of the regions projecting to PL engrams, we selected six brain areas with consistent input tracing 
for further investigation, because of their previously documented implication in various aspects of fear 
memory: The EC, for its role in memory formation (Roy et al., 2017) and its known projection to the 
mPFC necessary at encoding (Kitamura et al., 2017) and retrieval (Pilkiw et al., 2022); the RSP for its 
necessity for recent (Cowansage et al., 2014) and remote fear memory recall (Todd et al., 2016); the 
INS for its requirement during the consolidation and expression of contextual fear memories (Alves 
et al., 2013), as well as for its regulation of fear expression (Gehrlach et al., 2019; Klein et al., 2021); 
vCA1 for its importance for CFC encoding (Kim and Cho, 2020) and recent recall (Jimenez et al., 
2020); the BLA for the role of BLA to PL projections in memory encoding (Kitamura et al., 2017; 
Klavir et al., 2017) and PL to BLA projections in memory recall (Do-Monte et al., 2015; Kitamura 
et al., 2017); and the CLA as CLA to EC projections are necessary during memory encoding (Kitanishi 
and Matsuo, 2017) and for its involvement in attention (Atlan et al., 2018).

To assess the relative activity of these PL inputs during fear memory consolidation, we needed 
a tracing technique that could be coupled with neuronal activity measurements from encoding 
to remote recall, which cannot be achieved with rabies tracing from engram cells. Therefore, we 
combined conventional retrograde tracing with neuronal activity-dependent cFos staining: Injection 
of AAVretro-GFP in PL prior to any behavioral test allowed to trace all anatomical projections to the 
PL (Figure 3A and B), while cFos IHC 90 min after CFC encoding, recent and remote memory recall 
allowed to assess the activation of these projections (Figure 3A). In each region we measured cFos as 
well as GFP-traced inputs (Figure 3—figure supplements 1 and 2), thus controlling for homogenous 
tracing across behavioral groups. Next, we compared the pattern of activation between PL projectors 
only and the region as a whole to highlight the specific recruitment of PL projectors, and we focused 
on the associative information conveyed in this activity by normalizing it to the no shock control 
groups (Figure 3, see Figure 3—figure supplements 1 and 2 for quantifications only normalized to 
chance level).

We first investigated cortical areas projecting to the PL: EC (specifically layer 5, comprising most 
of EC traced cells, Figure 3C), RSPag (which contained most of RSP traced cells, Figure 3G), and INS 
(Figure 3K). In the EC, we observed a significant activation of PL projections at encoding compared 
to both recent and remote recalls (Figure 3E), which was not the case in total cFos quantifications 
(Figure 3F). This suggests a specific recruitment of EC neurons projecting to PL (EC → PL) at encoding. 
In contrast, RSPag and INS displayed a different pattern of activation, as there was no activation in 
RSPag → PL and INS → PL projections at encoding, but during recent memory recall (Figure 3I and M, 
respectively). Compared to total cFos in both regions, this activity was again specific to PL projectors 
(Figure 3J and N, respectively).

Second, we investigated PL inputs in subcortical areas: vCA1 (Figure  3O), BLA (Figure  3S), 
and CLA (Figure 3W). In vCA1, we observed no differential recruitment of vCA1 → PL projections 

https://doi.org/10.7554/eLife.78542
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Figure 3. Prelimbic cortex (PL) inputs are differentially activated during memory consolidation. (A) Experimental design, injection of AAVretro-GFP in 
the PL for input tracing, and quantification of activation by cFos immunostaining 3 weeks later at either contextual fear conditioning (CFC) encoding 
(blue), recent (green), or remote (red) recall. Brains were collected 90 min after the behavior session. (B) Representative image of AAVretro-GFP injection 
site in the PL region of the medial prefrontal cortex (mPFC). Scale: 500 µm. (C–Z) For each region: Representative image of PL input tracing, magnified 
view of GFP and cFos at encoding, recent, and remote time points (all scales: 20 µm); quantifications of cFos in PL projections and total cFos in the 
input region, expressed as fold change to the no shock control group. Note that cFos in PL projections values were first normalized by chance level 
for each animal (see Figure 3—figure supplement 1). (C–F) EC (C, scale 500 µm), (E) cFos in EC → PL (one-way ANOVA, F(2,25)=8.153, p=0.0019) and 
(F) total cFos. (G–J) RSPag (G, scale 400 µm), (I) cFos in RSPag → PL (one-way ANOVA, F(2,35)=3.275, p=0.0497) and (J) total cFos (one-way ANOVA, 
F(2,35)=3.275, p=0.0497). (K–N) INS (K, scale 500 µm), (M) cFos in INS → PL (one-way ANOVA, F(2,27)=5.405 p=0.0106) and (N) total cFos (one-way 
ANOVA, F(2,35)=4.583, p=0.0171). (O–R) vCA1 (O, scale 400 µm), (Q) total cFos and (R) cFos in vCA1 → PL. (S–V) basolateral amygdala (BLA) (S, scale 
500 µm), (U) cFos in BLA → PL (one-way ANOVA, F(2,28)=4.922, p=0.0147) and (V) total cFos. (W–Z) claustrum (CLA) (W, scale 500 µm), (Y) cFos in CLA 
→ PL (one-way ANOVA, F(2,34)=4.502, p=0.0184), and (Z) total cFos (one-way ANOVA, F(2,35)=3.833, p=0.0313). Stars represent p-values of Tukey’s 
multiple comparisons tests (*: 0.01 < p < 0.05; **: 0.001 < p < 0.01), hashtag signs represent p-values of two-tailed one-sample t-tests comparing the 
difference to 1, which represents levels of the no shock controls (#: p≤0.05; ##: 0.001 < p ≤ 0.01; ###: p≤0.001). n=9–13 animals per group.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Raw data for Figure 3 and its supplements.

Figure supplement 1. Complementary quantifications for the activation of prelimbic cortex (PL) inputs in entorhinal cortex (EC), RSPag and insular 
cortex (INS).

Figure supplement 2. Complementary quantifications for the activation of prelimbic cortex (PL) inputs in vCA1, basolateral amygdala (BLA), and 
claustrum (CLA).

https://doi.org/10.7554/eLife.78542
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between different times of memory consolidation (Figure 3Q, R; Figure 3—figure supplement 
2A). However, the elevated cFos expression in the vCA1 as a whole at encoding as well as in the 
no shock group supports the role of HPC in context exploration (Figure 3—figure supplement 
2B; Schiller et  al., 2015). For the BLA, we found a significant activation of BLA → PL projec-
tions at encoding compared to the recalls (Figure  3U), which is not the case for total cFos in 
BLA (Figure 3V). The recruitment of BLA → PL projection at encoding is in agreement with its 
importance during fear memory formation (Kitamura et al., 2017; Klavir et al., 2017). Interest-
ingly, we observed the same pattern of activation in CLA → PL projections (Figure 3Y), together 
with an overall higher activation of the whole CLA region at encoding compared to remote recall 
(Figure 3Z).

Taken together, we found that PL inputs from the EC, BLA, and CLA were active only at encoding, 
while RSPag and INS projections were recruited during recent memory recall.

Figure 4. Chemogenetic manipulation of prelimbic cortex (PL) inputs reveals the functional importance of claustrum (CLA) projections at encoding and 
insular cortex (INS) projections at recent memory recall. (A) Experimental design. AAVretro-Cre was injected in the PL, and AAV-DIO-hM4Di-mCherry 
(or AAV-DIO-mCherry for controls) in the desired input region in order to specifically inhibit the projections to the PL upon clozapine-N-oxide (CNO) 
injection. Representative images of the injection site in the input region for CLA (B), basolateral amygdala (BLA) (C), entorhinal cortex (EC) (D), RSPag 
(E), and insular cortex (INS) (F), all scales 500 µm. Experimental timeline and freezing percentage of (G) CLA → PL inhibition during encoding (at recent 
recall, Cohen’s d=–0.95), (H) BLA → PL inhibition during encoding (at remote recall, Cohen’s d=–1.02), (I) EC → PL inhibition during encoding (at remote 
recall, Cohen’s d=–0.84), (J) RSPag → PL inhibition during recent recall, (K–L) INS → PL inhibition during recent (Cohen’s d=–0.83) (K) and remote (L) 
recall. Stars represent p-values of two-tailed unpaired t-tests between hM4Di and control groups (*: p≤0.05). n=8–17 animals per group.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw data for Figure 4 and its supplements.

Figure supplement 1. Quantification of the chemogenetic inactivation of claustrum (CLA) → prelimbic cortex (PL) projections.

Figure supplement 2. Claustrum (CLA) → prelimbic cortex (PL) inhibition after encoding does not impair memory recall and does not alter locomotion 
and exploration behavior.

Figure supplement 3. Inhibition of RSPag → prelimbic cortex (PL) at recent recall does not impair reconsolidation at later times.

https://doi.org/10.7554/eLife.78542
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PL inputs are functionally relevant at different stages of memory 
consolidation
Next, in order to establish whether the differential activity in PL inputs across memory consolidation 
is also functionally relevant, we selectively inhibited each projection at the time(s) when they were 
most active and tested subsequent memory retention. We used the designer receptor exclusively 
activated by designer drug (DREADD) receptor hM4Di, which upon clozapine-N-oxide (CNO, the 
DREADD agonist) administration inhibits neuronal activity (Roth, 2016). We targeted hM4Di expres-
sion to specific PL inputs by injecting AAVretro-Cre into the PL, and AAV-DIO-hM4Di-mCherry (or 
AAV-DIO-mCherry for controls) in the desired input region (Figure 4A–F).

First, we assessed the functionality of projections that were active at encoding, namely the 
CLA, BLA, and EC. For the CLA → PL inhibition, we observed an impaired memory at recent recall 
(Figure  4G). To confirm that CNO indeed inhibits hM4Di-expressing neurons, we expressed it in 
CLA → PL neurons (Figure 4—figure supplement 1A) and perfused the animals 90 min after CFC 
to stain for cFos (Figure 4—figure supplement 1B, C). While the percentages of hM4Di+ and cFos+ 
cells were equivalent in both groups (Figure 4—figure supplement 1D, E), the amount of double 
positive hM4Di+cFos+ cells was significantly decreased with CNO injection, confirming the inhibition 
of projection neurons during behavior (Figure 4—figure supplement 1F). Furthermore, this behav-
ioral result was not due to a delayed effect of CNO injection, as inhibiting CLA → PL projections right 
after encoding did not result in impaired memory at any time point (Figure 4—figure supplement 
2A,B). Likewise, the effect of CLA → PL inhibition was not due to an unspecific effect on locomotion 
and exploratory behavior as tested in an open field arena (Figure 4—figure supplement 2C-E). In 
contrast to the effect of CLA → PL inhibition, when BLA → PL and EC → PL projections were inhibited 
during encoding, we observed an impairment of remote memory recall for both, while recent recall 
was unaffected (Figure 4H, I, respectively). These results indicate that while the BLA → PL and EC → 
PL projections are important at encoding for the consolidation of remote memories, as shown previ-
ously (Kitamura et al., 2017), the CLA → PL projection is important at encoding for recalling recent 
memories.

Next, we tested the functionality of projections that were most active during fear memory recall, 
namely the RSPag and INS to PL projections. We found that although the RSPag → PL projection was 
specifically active at recent recall (Figure 3I), its inhibition during this time did not affect memory 
retrieval (Figure 4J). It is also unlikely that the RSPag → PL projection is involved in the expression 
or reconsolidation of fear memories later on, as memory performance was unchanged at later times 
after recent recall inhibition (Figure 4—figure supplement 3A,B). However, it is still possible that 
this projection could play a role in extinction of fear memories, which would need to be tested in 
future experiments. Of further note, it was recently reported that although the entire RSP is necessary 
for recent and remote recall, it is rather the granular subregion of the RSP and not the RSPag that 
is responsible for this effect, suggesting a dissociated role of the two RSP subregions which could 
explain our observations (Tsai et al., 2022).

Conversely, INS → PL projection inhibition during recent recall resulted in decreased freezing 
(Figure 4K), positing this pathway to be important for recent fear memory expression. In contrast, 
consistent with no significant activation of the INS → PL projection at remote memory recall, the inhi-
bition of this projection did not result in any behavioral effect (Figure 4L).

Taken together, these findings indicate that CLA, BLA, and EC projections to the PL are required 
at encoding for proper memory formation, but with different time implications. While the BLA and EC 
connections are important for recalling remote memories, the CLA projection is specifically important 
for recalling recent ones. In addition, recent memory recall is also under the influence of the INS → 
PL projection, since its inhibition at this time led to significant memory impairment. This suggests a 
progressive functional shift in PL projections regulating memory consolidation.

PL engram reactivation correlates with memory retrieval when CLA or 
INS inputs are inhibited
Lastly, we decided to further investigate the effect of CLA and INS input inhibition on engram reacti-
vation in the PL. We hypothesized that if the inhibition of a specific PL input results in memory impair-
ment, then the reactivation of the original PL engram, established at the time of memory encoding, 
may also be altered. Indeed, engram reactivation has been correlated with memory retention in BLA 

https://doi.org/10.7554/eLife.78542
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(Reijmers et al., 2007), and artificial engram reactivation in the PL (Kitamura et al., 2017) or HPC 
(Liu et al., 2012) has been found to trigger memory recall. In order to measure engram reactivation, 
we used the Fos::tTA mouse line (Reijmers et al., 2007), expressing the doxycycline (Dox)-dependent 
tTA transcription factor under the Fos promoter, which we injected with AAV-TRE-GFP into the PL 
3 weeks before CFC (Figure 5A). As tTA specifically binds the TRE (tetracycline responsive element) 
promoter in the absence of Dox, this approach allows for inducible long-term expression of GFP in PL 
engram cells during a desired time-window (Figure 5B, C). In combination with chemogenetic inhibi-
tion of projection neurons as previously described (Figure 4), we then silenced selective PL inputs and 
assessed the degree of engram reactivation between CFC encoding and recall, by measuring cFos 
and GFP overlap in the PL (Figure 5C).

First, we focused on the CLA → PL inhibition at memory encoding (Figure 5D). Behaviorally, this 
approach confirmed the impaired memory at recent memory recall as observed in WT mice (Figure 5E, 
see also Figure 4G). Furthermore, we found a significant correlation between PL engram cells reac-
tivation, measured as double positive GFP+cFos+ cells normalized to the total number of GFP+ cells, 
and freezing at recent recall, which was observed only in the CNO group (Figure 5F). No differences 
were observed in overall GFP+, cFos+, double positive GFP+cFos+, and total reactivation percentages 
in PL between CNO- and vehicle-treated animals. (Figure 5—figure supplement 1A–D). In contrast, 
when we inhibited the CLA → PL projection during encoding and tested remote recall, memory was 
not impaired (Figure 5—figure supplement 2B, see also Figure 4G) and we observed no effect on 
PL engram reactivation (Figure 5—figure supplement 2C–G). Importantly, this correlation was not 
a side effect of CNO injection as we observed no behavioral nor engram reactivation differences in 
control virus-injected animals receiving vehicle or CNO (Figure 5—figure supplement 3A–C). This 
result indicates that CLA → PL inhibition during encoding modifies PL engram reactivation at recent 
recall only, and that following this inhibition, the less animals reactivate the original PL engram, the 
less they recall the fear memory.

Second, we inhibited the INS → PL projection at recent recall, which also confirmed the behavioral 
effect on memory retrieval (Figure 5H) in WT mice (Figure 4K). Similar to the CLA results, there was 
no difference between the CNO and vehicle groups in the percentage of GFP+, cFos+, double posi-
tive GFP+/cFos+ cells, or total reactivation (Figure 5—figure supplement 1E–H). However, we again 
observed a significant correlation in the CNO group between PL engram reactivation and freezing at 
recent recall (Figure 5I), indicating that INS → PL inhibition at recent recall impairs recent memory 
retrieval and modifies PL engram reactivation.

These findings suggest that the spatiotemporal shift in the activity and functionality of PL projec-
tions during memory consolidation also occurs at the level of PL engram cells.

Discussion
In this study, we investigated the role of specific PL inputs during the course of fear memory consoli-
dation. Using an unbiased tracing approach combined with pathway-specific chemogenetic inhibition 
experiments, we discovered a novel functional implication of two PL inputs, namely from the CLA and 
INS, and confirmed the role of two others, from the BLA and EC. More precisely, we found that the 
CLA → PL projection is important at encoding for contextual fear memories, specifically for recent 
memory recall, while the INS → PL pathway is required for memory expression during recent recall. 
Furthermore, our findings confirm previous reports that the BLA → PL and EC → PL projections are 
functionally relevant at encoding for remote memory recall (Kitamura et al., 2017).

These results expand the existing literature on memory consolidation and refine the working model 
of memory formation and retrieval. Importantly, our data add to the growing evidence on the impor-
tance of the mPFC during early phases of memory consolidation (Bero et al., 2014; Cho et al., 2017; 
Rajasethupathy et al., 2015; Takehara-Nishiuchi et al., 2020; Zelikowsky et al., 2013). Thereby 
they further challenge the standard theory of memory consolidation, which posits that the HPC is 
necessary for encoding and recent recall, while the mPFC would take over from the HPC only at 
remote recall (Frankland and Bontempi, 2005). Indeed, we observe a significant activation of the 
PL during memory encoding already, as well as the functional implication of several of its inputs at 
encoding and recent recall, which advances the temporal engagement of the mPFC to earlier than 
remote recall only.

https://doi.org/10.7554/eLife.78542
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Figure 5. Prelimbic cortex (PL) engram reactivation correlates with freezing when claustrum (CLA) or insular cortex (INS) inputs are inhibited. (A) 
Experimental design. 3 weeks before behavior started, Fos::tTA mice were injected with AAVretro-Cre in PL and AAV-DIO-hM4Di-mCherry in the desired 
input region, as well as AAV-TRE-GFP in the PL, so that GFP was only expressed in cFos+ cells in the absence of doxycycline (Dox). (B) GFP expression at 
the PL injection site (scale 400 µm). (C) Magnified view in the PL (scale 20 µm) of reactivated engram cells, indicated by white arrows. (D) Representative 
image of the CLA input region. (E) Experimental timeline (top) and freezing percentage (bottom) during recent memory recall when CLA → PL 
projections were inhibited during encoding (Cohen’s d=–0.87). (F) Reactivation of PL engram cells (%GFP+cFos+/GFP+) at recent recall for CLA → PL 
inhibition, correlated with freezing percentage at recent recall for clozapine-N-oxide (CNO) (orange) and vehicle (gray) groups. (G) Representative image 
of the INS input region. (H) Experimental timeline (top) and freezing percentage (bottom) during recent memory recall when INS → PL projections 
were inhibited during recent recall (Cohen’s d=–1.33). (I) Reactivation of PL engram cells (%GFP+cFos+/GFP+) at recent recall for INS → PL inhibition, 
correlated with freezing percentage at recent recall for CNO (orange) and vehicle (gray) groups. (E, H) Stars represent p-values of two-tailed unpaired 
t-tests between CNO and vehicle groups (*: p≤0.05). (F, I) Correlations assessed with linear regressions, R2 and p-values are reported on the graphs. 
n=11–12 (CLA) or 5–9 (INS) per group.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Raw data for Figure 5 and its supplements.

Figure supplement 1. Complementary quantifications for the engram reactivation analysis in the prelimbic cortex (PL).

Figure supplement 2. Claustrum (CLA) → prelimbic cortex (PL) inhibition during encoding does not affect remote recall and remote engram 
reactivation in PL.

Figure supplement 3. Clozapine-N-oxide (CNO) administration per se does not alter memory recall or engram reactivation.
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At remote memory recall, in contrast, we did not observe any PL input that was engaged or behav-
iorally relevant. To our knowledge, such an input has never been reported, although the importance 
of the mPFC as a whole (Bero et al., 2014; Frankland et al., 2004; Goshen et al., 2011), and of its 
functional outputs at remote recall is well established (Do-Monte et al., 2015; Kitamura et al., 2017). 
This apparent gap, or the impossibility to trace back the flow of information upstream of the mPFC, 
could be explained if its inputs are distributed across a vast network after memory consolidation. In 
that case, they could potentially be redundant and therefore harder to functionally identify. As such, 
these results are in agreement with the multiple trace theory (Moscovitch et al., 2006; Nadel and 
Moscovitch, 1997), which posits that the HPC first encodes memory upon learning, but does not 
store the memory per se. Rather, it is a distributed network of cortical neurons – with inputs from the 
HPC – that contains pieces for long-term information storage. With time, this leads to the creation of 
multiple traces in the brain for a given memory, making it more stable and less likely to be disrupted, 
as we have observed here.

Corroborating the implication of the PL during the early phases of memory consolidation, we found 
that the CLA → PL is required at encoding, which is the first report that this PL input is functionally 
important during fear memory formation. The CLA has known roles in attention (Atlan et al., 2018) 
and context exploration (Kitanishi and Matsuo, 2017), which are likely to support its role in memory 
formation. Interestingly, we observed that the CLA → PL projection was important at encoding only 
for recent, and not for a later remote recall. This result suggests that this projection has a time-limited 
effect on memory consolidation, and that other brain areas allow for a proper remote recall and 
thereby compensate in case of the CLA → PL inhibition at encoding. Of note, a CLA → EC projection 
has also been reported to be necessary at CFC encoding for recent recall (Kitanishi and Matsuo, 
2017), while here we have observed that the EC → PL projection is functional at encoding for remote 
recall. This opens the possibility of an indirect circuit from the CLA to the PL via the EC, which could 
compensate in case the CLA → PL direct connection is impaired, but this remains to be experimen-
tally determined. Nevertheless, these results imply a shift in PL circuits underlying the encoding of 
contextual fear memory, reminiscent of findings that reported a shift in PL circuits when an auditory 
fear memory is retrieved (Do-Monte et al., 2015).

In line with the notion of an overall shift in PL circuits during early memory consolidation, we report 
that the INS → PL projection is relevant at recent, but not at remote memory recall. The INS as a whole 
has classically been involved in taste learning (Yiannakas and Rosenblum, 2017) and the encoding 
of conditioned taste aversion (Sano et al., 2014), but has also been implicated in recent CFC recall 
(Alves et al., 2013) as well as in auditory fear memory extinction (Klein et al., 2021). The INS to 
mPFC reciprocal connectivity has only been investigated in the context of taste learning, where it was 
recently found necessary for the expression of novel taste aversion (Kayyal et al., 2021). However, a 
direct role of INS input to PL during fear memory consolidation has not been described before. This 
finding therefore supports a broader role for the INS in learning beyond taste-related tasks (Boughter 
and Fletcher, 2021; Shi et al., 2020).

Since the CLA and INS manipulations both resulted in impaired recent memory recall, we decided 
to assess PL engram cells for their reactivation, a characteristic of engram cells that is linked with 
memory performance during recall (Kitamura et al., 2017; Liu et al., 2012; Reijmers et al., 2007). 
We found that the reactivation of PL engram cells significantly correlated with freezing behavior, but 
only when the CLA and INS inputs were inhibited, and not in controls. This finding raises the question 
of the functionality of PL engram cells at recent recall in normal conditions. Recently, a concept of 
‘silent’ engram cells in the PL has been developed, which postulates that silent PL engram cells have 
the particular feature of not being activated by recent recall – although their artificial reactivation 
can trigger recall at this time – but of becoming active only at remote recall (Kitamura et al., 2017; 
Matos et al., 2019). Our findings are thus in line with this concept: When the CLA → PL projection 
is inhibited at encoding, or when the INS → PL projection is inhibited at recent recall, overall engram 
reactivation is left unchanged, but recent memory expression is impaired, which would suggest that 
the PL engram population itself is not required for recent memory recall. Since upon inhibition we 
observe the emergence of a correlation between PL engram cells reactivation and memory retention, 
it is possible that CLA and INS inputs target inhibitory neurons in the PL, which normally prevent 
engram reactivation during recent recall, thus allowing the PL engram cells to stay functionally silent. 
Releasing this inhibition could perturb normal memory expression, explaining the observed memory 
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impairment at recent recall. Indeed, it has been reported that CLA → mPFC targets inhibitory neurons 
(Jackson et al., 2018), and that PL interneurons are necessary for memory encoding (Cummings and 
Clem, 2020), but this hypothesis remains to be tested at the level of PL engram cells.

Alternatively, we can hypothesize that the activation of these projections, instead of their inhibi-
tion, would also disrupt the constraint on functional engram reactivation by increasing local inhibition 
of principal neurons, which could lead to memory impairment in an equivalent manner. Overall, the 
magnitude of the memory impairment that we have observed and the fact that projection-specific 
manipulation did not impair overall engram reactivation suggest that other projections and/or regions 
are contributing in addition to the ones we manipulated. The extensive connectivity between regions, 
and notably from the CLA, could therefore explain the apparent resilience of engrams to small pertur-
bations in the memory network.

There are several experimental limitations that accompany these findings. First, as we only used 
male mice in this study, these results cannot be generalized across sexes. Second, the use of two 
different engram-tagging mouse lines, TRAP2 for the rabies tracing and Fos::tTA for the engram 
reactivation experiments, was dictated by technical constraints. A TRE-dependent rabies tracing 
system was not readily available at the start of this study, and the use of a Cre-dependent system 
for chemogenetic inhibition precluded the use of the TRAP2 line again for the engram reactivation 
experiments. However, as these two mouse lines are both Fos promoter-based (DeNardo et  al., 
2019; Reijmers et al., 2007), we would not expect major differences with the use of one or the other 
lines. Indeed, rabies tracing from PL engram cells using the Fos::tTA line has been published since, 
and the reported input areas are all also found in our brain-wide screen (Kitamura et al., 2017). 
Third, the use of two different retrograde tracing viruses raises the question of tropism: RV∆G and 
AAVretro have been reported to not trace the exact same set of input regions, notably with AAVretro 
being biased toward cortical inputs (Sun et al., 2019). We could have therefore missed some regions 
due to preferential input tracing. Another limitation is the relatively slow kinetics of chemogenetic 
inhibition. As CNO is injected 30 min before behavior, we cannot exclude that compensation mech-
anisms may take over, especially in the case of remote recall inhibition, which would prevent a func-
tional isolation of the targeted projection during behavior as reported previously (Goshen et al., 
2011). By restricting the inhibition to the smallest possible period, the use of optogenetics could 
allow to visualize the consequences of this inhibition in real time in future experiments. Lastly, differ-
ences in timing and strength of behavioral protocols could explain discrepancies with other studies. 
For example, using cFos IHC, we did not observe an increased activity at remote recall in mPFC 
regions as opposed to previous findings (Frankland et al., 2004). Unified conditioning protocols 
could help to clarify these.

These limitations notwithstanding, here we have shown that PL circuits undergo a spatiotemporal 
shift during contextual fear memory consolidation, with claustral inputs being critical at encoding, and 
insular cortical inputs at recent memory recall. Our results therefore support a dynamic and distrib-
uted nature of memory formation and storage.

Materials and methods
Animals
All animals and procedures used in this study were approved by the Veterinary Office of the Federal 
Council of Switzerland under the animal experimentation licenses VD2808.1 and VD2808.2. C57Bl/6JR 
WT male mice were purchased from Janvier Labs (France) around 6–7 weeks of age and left for at 
least 1 week before the beginning of the experiments. Fos::CreERT2 (TRAP2) animals were bred in 
house from the original JAX strain #030323 on a C57Bl/6JR background. Fos::tTA male mice were 
bred in house from the original JAX strain #018306 on a C57Bl/6JR background. Animals were housed 
in a 12 hr light/dark cycle with water and food available ad libitum. All animals were group-housed 
except for the input tracing experiment where they were single caged 2 days before the end of the 
experiment. They were all handled by the experimenter for at least 3 days before the first behavioral 
procedure to reduce stress levels.

All behavioral procedures were performed between 1 pm and 5 pm local time and animals were 
randomly assigned to experimental groups.
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Viral stereotaxic injections
Procedure
At 7–8 weeks, animals were anesthetized with a mix of fentanyl (0.05 mg/kg), midazolam (5 mg/kg), 
and metedomidin (0.5  mg/kg), i.p. After shaving and subcutaneous injection of a local anesthetic 
mix (lidocaine 6 mg/kg and bupivacaine 2.5 mg/kg), the animal was placed on a stereotaxic frame. 
The skin was disinfected with betadine and opened with a scalpel. The skull was thoroughly cleaned, 
the orientation of the head was adjusted, and holes were drilled at the desired coordinates with a 
0.5 mm drill bit. The virus was loaded into pulled glass capillaries (intraMARK, Blaubrand, tip diameter 
10–20 µm), and injected to the target area at a speed of 100 nL/min. The needle was left in place for 
5 min, and slowly pulled up to limit backflow. After all injections were done, the skin was sutured (5/0 
Prolene, Ethicon), the animal was injected i.p. with atipamezol (2.5 mg/kg) to reverse the anesthesia, 
and placed back in a heated cage. After surgery, the animals were administered paracetamol in the 
drinking water for a week (Dafalgan, 1 mg/mL).

Viruses
The following viruses were used in this study:

•	 AAV-DIO-TVA-2A-oG (Salk Institute Vector Core, serotype 8), here referred to as AAV-DIO-
TVA-oG. Titer: 8.78 × 1012 GC/mL, mixed 1:1 with AAV-FLEX-GFP-oG (see below).

•	 AAV-EF1a-FLEX-H2B-GFP-P2A-oG (Salk Institute Vector Core, serotype 8), here referred to as 
AAV-FLEX-GFP-oG. Titer: 3.93 × 1012 GC/mL, mixed 1:1 with AAV-DIO-TVA-oG; total injection 
volume in PL: 400 nL.

•	 Modified rabies virus RV∆G-mCherry, EnvA pseudotyped (Salk Institute Vector Core, SADB19 
strain). Titer: 3.5 × 108 ifu/mL. Injection volume in PL: 300 nL.

•	 AAV-CAG-GFP (Addgene 37825, retrograde serotype), here referred to as AAVretro-GFP. Titer: 
7 × 1012 GC/mL; injection volume in PL: 200 nL.

•	 AAV-pgk-Cre (Addgene 24593, retrograde serotype), here referred to as AAVretro-Cre. Titer: 
1.7 × 1013 GC/mL; injection volume in PL: 200 nL.

•	 AAV-hSyn-DIO-hM4D(Gi)-mCherry (Addgene 44362 or Zürich VVF v84, serotype 8), here 
referred to as AAV-DIO-hM4Di-mCherry. Titer: 1.8 × 1013 GC/mL (Addgene – diluted ½) or 4.5 
× 1012 GC/mL (VVF); injection volume: 150–200 nL depending on the regions.

•	 AAV-hSyn-DIO-mCherry (Addgene 50459, serotype 8), here referred to as AAV-DIO-mCherry. 
Titer: 2.3 × 1013 GC/mL, diluted ½; injection volume: 150–200 nL depending on the regions.

•	 AAV-TRE3G-GFP (UNC Vector Core, serotype 8), here referred to as AAV-TRE-GFP. Titer: 4.1 × 
1012 GC/mL, mixed 1:1 with AAVretro-Cre; injection volume in PL: 250 nL.

Injection coordinates from bregma
•	 PL: AP +2.0; ML ±0.35; DV -2.2.
•	 EC: AP -4.15; ML ±3.55; DV -4.3.
•	 RSPag: AP –2.6; ML ±1.1; DV –0.6.
•	 INS: AP +1.0; ML ±3.85; DV –4.0 in WT mice, or AP +1.0; ML ±3.9; DV –4.0 in Fos::tTA mice.
•	 BLA: AP -1.0; ML ±3.15; DV -4.55.
•	 CLA: AP +1.0; ML ±3.2; DV –4.0 in WT mice, or AP +1.0; ML ±3.1; DV –4.0 in Fos::tTA mice.

For input tracing experiment with AAVretro-GFP, animals were injected unilaterally. For all other 
experiments, animals were injected bilaterally.

Behavioral procedures
Contextual fear conditioning
CFC encoding and recall were performed in the same chamber (TSE Systems). CFC encoding consisted 
in a first 3 min exploration phase, followed by three 2 s long 0.8 mA footshocks spaced by 28 s. After 
the last shock, the animal was left in the chamber for an additional 15 s and brought back to its home 
cage. The recall consisted in a 3 min exposure to the same context, without any shock. For all exper-
iments except the engram reactivation, recent recall took place 1 day after the encoding and remote 
recall 14 days later. For the engram reactivation experiment, recent recall took place 2 days after the 
encoding, to leave enough time for GFP expression. The movement of the animals was automatically 
measured using an infrared beam cut detection system (TSE Systems). Freezing detection threshold 
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was set at 1 s of immobility. No shock control animals underwent the same procedure but did not 
receive any shocks. Animals without any chemogenetic manipulation were excluded if they froze less 
than 20% of the time during the recall (in total two animals were excluded in all experiments).

Tamoxifen injection
In the rabies tracing experiment, TRAP2 mice were injected i.p. with tamoxifen (4-hydroxytamoxifen, 
Sigma-Aldrich, CAS 68392-35-8, 50  mg/kg) immediately after CFC. Tamoxifen was prepared as 
follows: powdered tamoxifen was dissolved in ethanol 100% at a concentration of 20 mg/mL and 
stored at –20°C. On the day of the experiment, tamoxifen was re-dissolved by shaking at 37°C, 2 
volumes of corn oil were added and ethanol was evaporated shaking at 37°C, for a final concentration 
at 10 mg/mL. Tamoxifen was kept at 37°C until injection to prevent precipitation.

Chemogenetic inhibition
In these experiments, mice were injected i.p. with CNO (Sigma-Aldrich, CAS 34233-69-7, 3 mg/kg) 
30 min before the desired behavioral phase. CNO was prepared as follows: 5 mg of CNO were resus-
pended in 50 µL of DMSO and stored at –20°C. On the day of the experiment, CNO was diluted 1/500 
in NaCl to reach a concentration of 0.2 mg/mL, and injected at the desired volume. In the engram 
reactivation experiment, control animals were injected with an equivalent volume of vehicle i.p. (0.9% 
NaCl, B. Braun, and 1/500 DMSO).

Open field test
For CNO control experiments, 30 min after CNO injection the animals were placed in a large circular 
arena and left to freely explore for 15 min. Video-tracking of the animals and locomotion quantifica-
tion was automatically performed using the EthoVision software (Noldus).

Engram reactivation
Fos::tTA mice were administered Dox (Sigma-Aldrich, CAS 24390-14-5) in the drinking water at 
0.2 mg/mL. Dox was prepared as follows: Powdered Dox was resuspended in water from the animal 
facility at 50 mg/mL, aliquoted and frozen at –20°C until further use. It was then diluted in water 
bottles to reach a concentration of 0.2 mg/mL. Dox was administered at least 3 weeks before the 
behavioral protocol started, and was refreshed every week. In order to open the tagging-window, 
Dox was removed 2 days before encoding, and administered back right thereafter for the remaining 
time of the protocol.

Sample size and behavioral replicates
No statistical method was used to predetermine sample size. The number of animals used in each 
experiment was the minimum required to obtain statistical significance, based on our experience 
with this behavioral paradigm and in agreement with standard literature. Data from the input tracing 
experiment was pooled from three independent batches (Figures 1 and 3 and their supplements). 
Data from the rabies tracing experiment comes from one batch (Figure 2 and its supplement). Data 
from the chemogenetic manipulation in WT was pooled from at least two independent batches for 
each manipulation (Figure 4). Data from the CNO controls comes from one batch each (Figure 4—
figure supplements 1 and 2C–F). Data from the engram reactivation was pooled from one to two 
batches (Figure 5 and its supplements). In all graphs, one dot represents one animal.

Histology
Ninety min after the last behavioral test, animals were anesthetized with pentobarbital (150 mg/kg, 
Streuli Pharma) and transcardially perfused with first 1× PBS and then 4% paraformaldehyde (PFA) in 
1× PBS. Brains were extracted, post-fixed overnight in 4% PFA, transferred in cryoprotectant (30% 
sucrose in 1× PBS) for at least 48 hr, and frozen at –80°C. Sections of 20 µm were cut using a cryostat 
and kept free-floating in an antifreeze solution (30% ethylene glycol, 15% sucrose, 0.02% azide in 1× 
PBS) until staining.

For cFos immunostaining, sections were incubated in blocking buffer (1% BSA, 0.3% Triton-X in 1× 
PBS) for 90 min at room temperature, followed by primary antibody incubation for two nights at 4°C 
in antibody dilution buffer (1% BSA, 0.1% Triton-X in 1× PBS). After four washes in 1× PBS + 0.1% 
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Triton-X, they were incubated with secondary antibody in antibody dilution buffer for 2 hr at room 
temperature, stained with Hoechst (1:10,000 in 1× PBS, Invitrogen #H3570) for 5 min and washed three 
times before mounting on glass slides and covered with Fluoromount-G mounting medium (Southern 
Biotech). Images were acquired on an Olympus slide scanner VS120 L100 with a 20× objective.

For the input tracing experiment, a primary antibody goat anti-cFos (1:1000, Santa Cruz #sc-52-G, 
RRID: AB_2629503) with a secondary antibody donkey anti-goat AF-647 (1:1000, Thermo Fisher 
Scientific #A21447, RRID: AB_2535864) was used. For all other experiments, a primary antibody rabbit 
anti-cFos (1:1000, Synaptic Systems #226003, RRID: AB_2231974) with a secondary antibody donkey 
anti-rabbit AF-647 (1:1000, Thermo Fisher Scientific #A31573, RRID: AB_2536183) was used. GFP and 
mCherry signals were not amplified.

For verification of the injection sites, six sections per animal were taken spanning the injection site, 
stained with Hoechst and mounted. Images were acquired on an Olympus slide scanner VS120 L100 
with a 10× objective.

For the rabies tracing experiment, one every four sections of 20 µm were mounted on Superfrost 
slides (Fisher scientific) and stained with Hoechst, before imaging on an Olympus slide scanner VS120 
L100 with a 10× objective.

For simplicity and clarity in the text, we used ‘DAPI’ to refer to nuclei stained with Hoechst.

Image analysis
Images were analyzed using QuPath (v0.1.4 to v0.3.1) (Bankhead et al., 2017), by an experimenter 
blinded to the groups.

For the rabies tracing experiment (Figure 2), every section was aligned to the reference Allen Brain 
Atlas using a Fiji plug-in developed by the bioimaging platform at EPFL (Chiaruttini et al., 2022), 
before using a QuPath custom-built script for cell detection and classification (see supplementary 
material). It used multiple rounds of the built-in ‘Cell Detection’ plug-in (once for each channel, plus 
one for DAPI). After detection, cells are given a classification based on the overlap of their coordinates 
to the DAPI channel detections.

For the input tracing experiment (Figure 3), two to three sections per brain region per animal were 
manually annotated based on the Allen Brain Reference Atlas, and identification of the detected GFP+ 
and cFos+ cells within each annotated region was established using the custom-made QuPath script. 
An animal was excluded from further analysis if the percentage of traced inputs in a given area was 
below a region-specific threshold, as the amount of traced cells was region-dependent (thresholds 
were EC: 2%; RSPag: 1%; INS: 0.5%; vCA1: 0.5%; BLA: 0.6%; CLA: 1%). The chance ratio was calcu-
lated as (GFP+cFos+/DAPI)/chance level, where chance level was calculated as (GFP+/DAPI)x(cFos+/
DAPI). Then, chance ratios were further normalized by the averaged chance ratio of the matching no 
shock control groups (Figure 3). cFos+ cells in mPFC (Figure 1) were quantified in the non-injected 
contralateral mPFC using three to four sections per animal.

For the chemogenetic manipulation experiments (Figures  4–5), animals were excluded if the 
hM4Di-mCherry signal was leaking outside of the target region or if the amount of infected cells was 
too low. cFos+ and hM4Di+ in CLA (Figure 4—figure supplement 1) were quantified using the QuPath 
custom-built script, in three to four sections per animal.

For engram reactivation experiments (Figure 5), cFos+ and GFP+ cells were quantified in PL using 
the QuPath custom-built script, in three to four sections per animal. Animals were excluded from 
further analysis if the percentage of GFP was below 1%.

Statistics
All statistics and graphical representations were done with GraphPad Prism 9. All data are repre-
sented in mean ± SEM, with one dot representing one animal in all graphs. Data from the input tracing 
screen were analyzed using ordinary one-way ANOVAs, and further comparisons were performed 
with Tukey’s multiple comparisons tests between all groups (alpha = 0.05). In case of normalizations, 
difference to 1 was analyzed using two-tailed one-sample t-tests (alpha = 0.05). Data from the chemo-
genetic manipulation and engram reactivation experiments were analyzed using two-tailed unpaired 
t-tests between the two groups (alpha = 0.05), and correlations were assessed with simple linear 
regressions. Statistical differences in freezing percentage are all accompanied by a measure of the 
effect size with a calculation of Cohen’s d.
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