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A B S T R A C T   

Wastewater-based genomic surveillance can identify a huge majority of variants shed by the infected individuals 
within a population, which goes beyond genomic surveillance based on clinical samples (i.e., symptomatic pa
tients only). We analyzed four samples to detect key mutations in the SARS-CoV-2 genome and track circulating 
variants in Ahmedabad during the first wave (Sep/Nov 2020) and before the second wave (in Feb 2021) of 
COVID-19 in India. The analysis identified a total of 34 mutations in the spike protein across samples categorized 
into 23 types. The spike protein mutations were linked to the VOC-21APR-02; B.1.617.2 lineage (Delta variant) 
with 57% frequency in wastewater samples of Feb 2021. The key spike protein mutations were T19R, L452R, 
T478K, D614G, & P681R and deletions at 22029 (6 bp), 28248 (6 bp), & 28271 (1 bp). Interestingly, these 
mutations were not seen in the samples from Sep/Nov 2020 but did appear before the massive second wave of 
COVID-19 cases, which in India started in early April 2021. In fact, genetic traces of the Delta variant were found 
in samples of early Feb 2021, more than a month before the first clinically confirmed case of this in March 2021 
in Ahmedabad, Gujarat. The present work describes the circulating of SARS-CoV-2 variants in Ahmedabad and 
confirms the consequential value of wastewater surveillance for the early detection of variants of concerns 
(VOCs). Such monitoring must be included as a major component of future health protection systems.   

1. Introduction 

The Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV- 
2) has had a disastrous impact on human life (Hu et al., 2021). It con
tinues to disrupt healthcare systems worldwide since the first declara
tion of the COVID-19 pandemic by the World Health Organization 
(WHO) on Mar 11, 2020. SARS-CoV-2 has infected over 37 million 
people and caused ~0.48 million deaths in India alone by Jun 18, 2022. 
Governments are taking considerable steps to expedite the vaccination 
drive to control the pandemic everywhere in the world, which has had 
great successes (Oliu-Barton et al., 2022). However, a public health 
challenge still exists due to continuing mutation of SARS-CoV-2 owing to 
its positive-sense single-stranded RNA genetic core and high circulation. 

Mutations in the SARS-CoV-2 genome has led to the emergence of 

different highly infectious variants of concern (VOCs). For example, the 
B.1.1.7 lineage of SARS-CoV-2 (VOC-20-DEC-01), which was detected in 
the United Kingdom (UK) in Nov 2020, is supposed to be 40–80% more 
contagious compared to the original strain (Davies et al., 2020; Volz 
et al., 2021). Likewise, other SARS-CoV-2 lineages from Brazil (P.1; 
VOC-21JAN-02), Southern African countries (B.1.351; VOC-20DEC-02), 
India (B.1.617.2; VOC-21APR-02) are more transmissible than the var
iants reported in early 2020. Recently, a new SARS-CoV-2 variant viz., 
Omicron (B.1.1.529), was reported from South Africa on Nov 24, 2021. 
The Omicron variant is highly transmissible compared to the earlier 
lineages, having significantly lower neutralization titers by 
post-vaccination sera (Dejnirattisai et al., 2022). The variants of concern 
(VOCs) are important in terms of viral pathogenicity, virulence, and 
transmission. The variants of concern (VOCs) can be more transmissible, 
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resulting in likely greater disease severity outcomes, and are also known 
for reduced sensitivity to antibody neutralization (Davies et al., 2020; 
Wang et al., 2020). 

Multiple mutations in the spike protein and other important genomic 
areas are common in these variants, leading to attenuated efficacy of 
SARS-CoV-2 therapeutic interventions. For example, E484K mutation is 
found in the receptor binding ridge of the spike protein, which has been 
identified in many lineages, including B.1.351 (VOC-20DEC-02), P.1 
(VOC-21JAN-02), A.23.1 (VUI-21FEB-01), B.1.525, B.1.1.318, P.2 (VUI- 
21JAN-01), B.1.324.1, a subclade of B.1.526, and P.3 (VUI-21MAR-02). 
This mutation reduces virus binding to polyclonal sera (Greaney et al., 
2021a, 2021b) and evades virus from the treatment with monoclonal 
antibody REGN10933, which is one of the antibodies in the REGN-COV2 
cocktail (Starr et al., 2021). Mutation E484K also leads to avoidance 
from class 2 antibodies and results in a 5-fold (approx.) reduction in 
neutralization by COV47 plasma (Greaney et al., 2021a, 2021b). Simi
larly, P681H and P681R mutations are present in the proximity of the 
furin cleavage site in the viral spike glycoprotein. P681H mutation has 
been reported in B.1.1.7 (VOC-20DEC-01), B.1.1.318, and P.3 
(VUI-21MAR-02) lineages, while P681R mutation has been witnessed in 
A23.1 and all B.1.617 lineages. Both P681H and P681R mutations are 
supposed to enhance the spike protein cleavage and augment viral 
fusion to the host cell (Brown et al., 2021; Saito et al., 2021). Though the 
latter implication of P681H mutation is not clear; however, it is assumed 
to be responsible for the enhanced transmissibility of the B.1.1.7 variant 
similar to the P681R. Also, D614G mutation in spike protein is known to 
be responsible for augmented transmissibility of the SARS-CoV-2 
(Korber et al., 2020). Therefore, it is imperative to track existing 
circulating variants and dominant mutations to quickly identify devel
oping novel variants to ensure a better decision-making system for 
public health policies and management of COVID-19 outbreaks. 

Since COVID-19 patients excrete virus particles in the feces (Crank 
et al., 2022), RT-qPCR has been used to detect and quantify SARS-CoV-2 
RNA in wastewater around the world (Kumar et al., 2021a, b; 2022; 
Hata et al., 2021; Albastaki et al., 2021; Fitzgerald et al., 2021; 
Chavarria-Miró et al., 2021; Ahmed et al., 2021; Wu et al., 2022; Wade 
et al., 2022). The wastewater-based epidemiology surveillance is getting 
recognition worldwide due to its potential for early detection, larger 
population coverage, coverage of asymptomatic carriers, and reduced 
expense compared to large-scale clinical testing (Polo et al., 2020). The 
WHO recognized the environmental wastewater surveillance strategies 
to monitor and detect the viral pathogens in circulation. The tracking of 
SARS-CoV-2 genomic variants from wastewater could also provide a 
better insight into their origin, pathogenicity, and transmission. How
ever, variant screening in wastewater is challenging due to the hetero
geneity (different sources) and complex nature (pollutant load, drug 
residues, and physicochemical properties) of the wastewater from which 
very specific fragmented nucleic acids must be accurately identified. 
Genomic surveillance of wastewater may prove its worthiness as a 
powerful tool for detecting, identifying, predicting, and developing an 
early warning system for identifying VOCs in circulation to support 
public health interventions. Only a few reports are available that have 
sequenced the SARS-CoV-2 genome from wastewater samples to identify 
variants in different parts of the world, including Montana, USA 
(Nemudryi et al., 2020), California, USA (Crits-Christoph et al., 2021), 
Switzerland (Jahn et al., 2021), London (Wilton et al., 2021), Canada 
(Landgraff et al., 2021), etc. However, none have been performed in 
India, which we report. The goal here is to show the value of wastewater 
variant screening to flag the early appearance of new VOCs and circu
lation of known variants as a key component of future health care pro
tection and management systems. 

The second wave of COVID-19 badly affected all of India, but Gujarat 
was one of the most affected states, with a total of ~0.5 million new 
cases and deaths of ~5 thousand people from Apr 1, 2021 to Jun 1, 2021 
(COVID 19 INDIA). To address this emergency, we performed SARS- 
CoV-2 genome sequencing in freshwater/wastewater samples during 

the first wave and before the second wave of COVID-19 in India and 
compared sequences with the reference variant (Wuhan/Hu-1/2019, 
EPI_ISL_402125), with three objectives: i) determine existing circulating 
variants and prevalent mutations among Gujarat populations; ii) relate 
dominant variants and pandemic in the region; iii) assess the potential of 
genomic surveillance sequencing of wastewater as an early warning 
system to detect rapidly emerging new variants. 

2. Methodology 

2.1. Study area and sample collection 

Ahmedabad is the seventh-largest city in India and the second 
biggest trade center in the western Indian region, with an estimated 
population of ~8.25 million in 2021 (UN world urbanization prospects, 
2018). In the present study, six samples were collected, including 
freshwater and wastewater for analysis. Two samples were collected 
from the Sabarmati River in the month of Sep 2020. Likewise, two un
treated wastewater samples were collected from the Vinzol wastewater 
treatment plant (70 MLD, Activated Sludge Process) in Ahmedabad in 
Nov 2020. In Feb 2021, two samples (Untreated and treated WW) from 
the Vinzol treatment plant were collected for analysis. The operational 
parameters of the Vinzol WWTP have been provided in a tabular form as 
supplementary (Table S1). 

The samples were collected by grab hand sampling using 250 mL 
sterile bottles (Tarsons, PP Autoclavable, Wide Mouth Bottle, Cat No. 
582240, India). Simultaneously, blanks in the same type of bottle were 
examined to know any contamination during the transport. The samples 
were kept cool in an ice-box until further process. The analysis was 
performed on the same day after bringing the samples to the laboratory. 
All the analyses were performed in Gujarat Biotechnology Research 
Center (GBRC), a Gujarat state government-funded research Institute 
equipped with high-end Next generation sequencing (NGS) and 
computing facility. Further, GBRC is also an Indian Council of Medical 
Research (ICMR), New Delhi approved SARS-CoV-2 testing laboratory. 

It should be noted that a single composite sample was prepared by 
pooling equal concentrations of extracted RNA of Sabarmati River 
samples (Sept 2020). Likewise, another composite sample was prepared 
for wastewater samples of Nov 2020. Therefore, four final samples were 
used for library preparation, sequencing, and data analysis (Table 1). 

2.2. SARS-CoV-2 RNA concentration method 

The concentration method consisted of a PEG 9000 and NaCl pre
cipitation protocol previously described by Kumar et al. (2020) for 
wastewater samples. 30 mL wastewater sample was centrifuged (Model: 
Sorvall ST 40 R, Thermo Scientific) at 4000 g for 30 min in a 50 mL 
falcon tube, followed by the filtration of the supernatant with a syringe 
filter of 0.2μ (Mixed cellulose esters syringe filter, Himedia). The 25 mL 
sample filtrated was then treated with NaCl (17.5 g/L) and PEG 9000 
(80 g/L) and incubated at 17 ◦C, 100 rpm overnight (Model: Incu-Sh
aker™ 10LR, Benchmark). The sample was then transferred in an oak 

Table 1 
Wastewater genomic surveillance of COVID-19 in Gujarat, India.  

Sample Code/ 
Location 

Mapped 
Reads 

On 
Target 

Mean 
Depth 

Uniformity Sample 
Collection 
Date 

A_Sabarmati 13,13,151 99.82% 5073 62.45% 8/22-Sept- 
2020 

E_Vinzol_Raw 8,57,886 99.12% 4770 80.09% 19/26-Nov- 
2020 

P_Vinzol_Inlet 10,91,811 99.98% 7204 80.43% 08-Feb- 
2021 

T_Vinzol_Outlet 9,85,094 99.80% 4902 92.63% 08-Feb- 
2021  
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ridge tube for further centrifugation (Model: Incu-Shaker™ 10LR, 
Benchmark) at 14000 g for 90 min, ultimately forming the pellets. 
RNase-free water (300 μL) was used for the resuspension of the viral 
particles after discarding the supernatant. The concentrated virus sam
ples (300 μL) were then stored in a 1.5 mL Eppendorf tube at a tem
perature of − 40 ◦C for RNA isolation. 

2.3. RNA extraction, library preparation, sequencing, and data analysis 

RNA was extracted as described by the author’s earlier studies 
(Kumar et al., 2021a,b) using the NucleoSpin® RNA Virus isolation kit 
(Macherey-NagelGmbH & Co. KG, Germany). The extraction process 
involved lysis of virus particles, binding of viral RNA to the column, 
washing, and elution of viral RNA using buffer solution. MS2 phage was 
used as an internal control to check any bias in the RNA extraction and 
the presence of inhibitors that may hinder the subsequent processes. The 
extracted RNA (30 μL) was subjected to cDNA synthesis using 
SuperScript-III First-Strand Synthesis System (Invitrogen/Thermo Fisher 
Scientific). We used the Ion AmpliSeq Community SARS-CoV-2 research 
panel and Ion AmpliSeq library kit Plus (Invitrogen/Thermo Fisher 
Scientific) for library preparation. The quality of the library was eval
uated on Bioanalyzer (Agilent 2100) using DNA High Sensitivity (HS) 
Kit manufactured by the Agilent. Further, sequencing was carried out on 
Ion GeneStudio S5 Plus System (Thermo Fisher Scientific) on 530 Chip 
and 400 bp chemistry. 

2.4. Data filtering, trimming, and genome assembly 

All raw reads were processed using the PRINSEQ-lite v.0.20.4 pro
gram for data filtering (Schmieder and Edwards, 2011). Reads were 
trimmed from the right where the average quality of the 5 bp window 
was lower than QV25 and 5 bp from the left end was trimmed. Reads 
with lengths lower than 50 bp with average quality QV25 were also 
removed. Quality filtered data were assembled using reference-based 
mapping using CLC Genomics Workbench version 12.0.3. Mapping 
tracks were used for variant calling and identification of the mutations. 
Haplotyping of the assembled genomes was carried out based on the 
80% (Major allele) and 20% (Minor allele) frequency. These variants 
were verified and confirmed using Integrative Genomics Viewer (IGV) 
after manual curation. Further, Pango-Lineages were identified using 
the Pango-lineage classification system (https://cov-lineages.org/). 

3. Results and discussion 

Non-random selection of samples for sequencing and nonhomoge
neous result reporting might lead to skewed results that may fail to 
represent actual circulating variants concern (VOCs) and interest (VOIs). 
Presently, a decrease in COVID-19 diagnostic testing is predicted to 
delay the tracking of SARS-CoV-2 variants (Vo et al., 2022). Significant 
delays may also occur between sampling, sequencing, and dissemination 
of results to public health authorities. 

Identifying the circulating variants from water and wastewater 
samples can provide key information about the possible origin, trans
mission, and epidemiology of SARS-CoV-2 at the local, national, and 
regional levels. Owing to its speed, representativeness, and low cost, 
pooled wastewater monitoring can expedite the detection of circulating 
variants among communities (Wang et al., 2022). Against this backdrop, 
we tried to identify SARS-CoV-2 genomic variants from freshwater and 
wastewater samples during the first COVID-19 wave (Sep/Nov 2020) 
and from samples prior to the second wave in India (Feb 2021) (Table 1). 
Specific focus was on identifying spike protein mutations in SARS-CoV-2 
genome assembly compared to the reference Wuhan/Hu-1/2019 (EPI_
ISL_402125) variant. 

The analysis showed a total of 34 mutations in the spike protein 
across four samples categorized into 23 types. The key mutations 
included Thr19Arg, Asp614Gly (D614G) in both river water and 

wastewater samples of Sep and Nov 2020 (Table S2). Likewise, main 
mutations comprising C21618G/Thr19Arg (T19R), T22917G/ 
Leu452Arg (L452R), C22995A/Thr478Lys (T478K), A23403G/ 
Asp614Gly (D614G), and C23604G/Pro681Arg (P681R) were noticed in 
the SARS-CoV-2 genomes from the samples collected in Feb 2021 
(Table 2). In addition, deletions at 22029 (6 bp), 28248 (6 bp), and 
28271 (1 bp) were identified in wastewater samples collected in Feb 
2021. These mutations in the SARS-CoV-2 genome were found like that 
of VOC-21APR-02; B.1.617.2 lineage (Delta variant). Interestingly, these 
mutations were absent in the samples analyzed during the first wave but 
showed their presence (in Feb 2021) just before the devastating second 
wave of COVID-19, which started in late March 2021 in India. It is worth 
mentioning that the present study revealed the genetic signs of the 
B.1.617.2 (Delta variant) in wastewater earlier in Feb 2021, more than a 
month in advance of the first case of novel B.1.617.2 variant (clinical 
sample) in the month of Mar 2021 in Gujarat. 

Our results are similar to Dharmadhikari et al. (2022), who per
formed MinION sequencing of SARS-CoV-2 fragments in wastewater of 
Pune, West India, from December 2020–March 2021. The results sug
gested 108 mutations in six samples grouped into 39 categories and were 
associated with Delta variant lineage in March-2021 clinical samples. 
Also, S:P1140del mutation was noticed in wastewater samples in 
December 2020, whereas reported in clinical samples in February 2021, 
demonstrating the utility of wastewater data in early detection. 

Jahn et al. (2021), who performed deep shotgun sequencing of 
wastewater samples and found key mutations corresponding to the 
novel B.1.1.7 variant in Switzerland two weeks before the first 
COVID-19 case due to this variant among the population. Similarly, 
sequencing by the Houston Health Department detected six 
Omicron-associated mutations from seven sewer sheds in Houston, 
Texas, on November 29, 2021, while the city’s first clinical confirmation 
of Omicron was announced on December 1, 2021 (Kirby et al., 2022). 
Likewise, Vo et al. (2022) performed Amplicon-based whole-genome 
sequencing (WGS) of SARS-CoV-2 in wastewater samples in Southern 
Nevada. Results showed the presence of Alpha (B.1.1.7) and Epsilon 
(B.1.429) lineages in December 2020, while clinical data failed to report 
them until January 2021. Surprisingly, high-throughput genome 
sequencing can detect spike mutations (S884F, G404V, and A372T) 4 
and 5 months before their clinical detections (Alba Pérez-Cataluña et al., 
2022). Therefore, genomic surveillance of wastewater can clearly pro
vide early information about novel SARS-CoV-2 variants within com
munities, even before the first clinical sample analysis. 

A number of international studies attempted to identify SARS-CoV-2 
variants from wastewater (Table 3); For example, Nemudryi et al. 
(2020) identified 11 single-nucleotide variants (SNVs) in the assembled 
genome from wastewater samples in Bozeman, Montana (USA). These 
SNVs were distinct from the Wuhan-Hu-1/2019 reference sequence. 
Likewise, Landgraff et al. (2021) identified a near-complete SARS-CoV-2 
consensus level genome sequence from untreated wastewater in Canada 
and reported many mutations designating the B.1.1.7 SARS-CoV-2 VOC 
in the sample. 

Apart from the early information on VOCs in wastewater, it is 
important to note that we observed SARS-CoV-2 variants from the 
treated wastewater sample, indicating that the wastewater treatment 
plant (WWTP) unable to remove the virus. This finding was like those of 
Kumar et al. (2021a, 2021b), who reported SARS-CoV-2 RNA fragments 
in treated wastewater samples. Surprisingly, a low mutation rate was 
found in untreated wastewater compared to the treated sample in Feb 
2021 (Table 2). This might be due to the high load of pollutants, 
resulting in high BOD, COD, TDS, TSS, etc., in untreated wastewater that 
might have affected the RNA quality (presence of impurities) and caused 
hindrance during the detection process via RT-PCR (Table S1). These 
pollutants may also cause PCR biases during the amplification process. 
Moreover, the damaged and fragmented genomes and impurities could 
be the possible reason that might have affected the precision of the 
analysis. 

M. Joshi et al.                                                                                                                                                                                                                                   

https://cov-lineages.org/


Environmental Pollution 310 (2022) 119757

4

Overall, the genomic surveillance of SARS-CoV-2 variants in waste
water samples offers the information of circulating novel variants and 
their cryptic transmission in advance with the following advantages:  

a) It is useful for detecting and identifying VOCs, variants of interest 
(VOIs), and variants under investigation (VUIs) within a population.  

b) A continuous and large-scale time-series monitoring of wastewater 
can identify disease outbreaks and clustering of VOCs, VOIs & VUIs, 
and explain their genesis, virulence, transmission, and spread within 
a population.  

c) It can give more detailed and less biased data as it covers a broader 
population, whereas clinical samples only represent a subset of those 
who went through sequencing tests.  

d) Wastewater sequencing data can also reveal genomic variants which 
are not reported as dominant (low frequencies) in clinical data 
(Pérez-Cataluña et al., 2022).  

e) It can give information about novel muations that are not previously 
described/reported (Pérez-Cataluña et al., 2022).  

f) It can help in identifying regions with a greater prevalence of the 
virus/variants in circulation among populations which may help in 
zoning the city. This data can further be used to help with non- 
pharmaceutical interventions (NPIs).  

g) It can help in assessing the success of containment and the efficacy of 
NPIs  

h) This approach is comparatively less time-consuming, low budget, 
and less manpower requiring than large-scale clinical testing and 
sequencing. 

Although among the primary goals of this work is to show the value 
of wastewater sampling in health protection, there are challenges in 
SARS-CoV-2 genomic surveillance. For example, enrichment and con
centration are needed for wastewater samples because SARS-CoV-2 
concentration can be low, resulting in potentially damaged and frag
mented RNA. Further, sample collection timing, methods, and intervals 
are critical for optimal surveillance, some of which have not been 
optimized. Physicochemical phenomena in wastewater can lead to false- 
positive and negative signals, and primer biases and sensitivity issues 

exist. Poor amplification of target amplicons and partial genome 
coverage are also possible and false negatives in variants with subtle 
mutations. 

Despite such reservations, work here shows the huge value of 
wastewater for VOC identification and early detection, which grossly 
overweighs any limitations, and, in fact, such limitations will diminish 
as more information and methods are developed. In our case, early 
warning data was not available early enough, but we suggest that our 
approaches be considered on a wide scale as part of the global health 
protection infrastructure in the future. 

4. Conclusion 

Genomic surveillance of wastewater enables researchers to identify 
recent introductions of SARS-CoV-2 lineages prior to their detection by 
local clinical sequencing. All along, the monitoring and presence of 
SARS-CoV-2 variants in wastewater offer a better picture of the domi
nant variant, transmission, and epidemiology. In the present study, a 
total of 34 mutations in the spike protein across four samples were 
noticed, categorized into 23 types. The study concludes that this 
approach is not only beneficial for detecting and identifying VOCs, VUIs, 
transmission, and epidemiology of SARS-CoV-2 but also aids in assuring 
adequate and resilient public health responses. The study concludes that 
wastewater monitoring for VOCs using high-throughput sequencing can 
provide more timely surveillance data than clinical sequencing data. 
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Table 2 
Variants of the spike protein from fresh and wastewater samples: a) Sabarmati River (water sample dated 8th and Sep 22, 2020); b) Vinzol STP (untreated dated 19th 
and Nov 26, 2020); c) Vinzol STP (untreated dated February 8, 2021); d) Vinzol STP (treated dated February 8, 2021).  

Sr 
No 

Reference 
Position 

Type Length Reference Allele Amino acid change A_Sabarmati 
(8/22 Sept 
2020) 

E_Vinzol_Raw 
(19/26-Nov- 
2020) 

P_Vinzol_Inlet 
(08-02-2021) 

T_Vinzol_Outlet 
(08-02-2021) 

1 21618 SNV 1 C G Thr19Arg 109 2309 2968 2823 
2 21754 SNV 1 G T Trp64Cys 10 0 0 0 
3 21757 INS  – C His 66- 9 0 0 0 
4 21975 SNV 1 A C Asp138Ala 8878 0 0 0 
5 21987 SNV 1 G A Gly142Asp 0 0 0 1859 
6 22029 DEL 6 AGTTCA – Glu156_Arg158delinsGly 0 0 0 1713 
7 22227 SNV 1 C T Ala222Val 0 0 8 733 
8 22444 SNV 1 C T – 8314 0 0 0 
9 22917 SNV 1 T G Leu452Arg 0 5507 12103 5410 
10 22995 SNV 1 C A Thr478Lys 0 0 0 3151 
11 23002 MNV 2 TA GG Cys480_Asn481delinsTrpAsp 6 0 0 0 
12 23164 SNV 1 T C – 17 0 0 0 
13 23403 SNV 1 A G Asp614Gly 6833 5050 10612 5362 
14 23436 SNV 1 A G His625Arg 2918 0 0 0 
15 23604 SNV 1 C G Pro681Arg 0 11425 13271 7587 
16 23784 SNV 1 A G Tyr741Cys 30 0 0 0 
17 23927 SNV 1 T G Tyr789Asp 0 10 0 0 
18 24144 SNV 1 T G Leu861Trp 0 22 0 0 
19 24173 SNV 1 G T Ala871Ser 8623 0 0 0 
20 24410 SNV 1 G A Asp950Asn 0 0 0 2427 
21 24532 SNV 1 A G – 3475 0 0 0 
22 24775 SNV 1 A T Gln1071His 0 0 0 285 
23 25101 DEL 1 A – Glu 1182- 0 23 0 0 

Note: Apart from Spike protein, Vinzol STP treated WW sample dated Feb 8, 2021 showed mutations in N-Gene; Key mutations: Asp63Gly (D63G), Arg203Met 
(R203M), Asp377Tyr (D377Y). Where, SNV: single nucleotide variant; MNV: multi-nucleotide variants; INS: insertion; DEL: deletion. 
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