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Nanopore sequencing depends on the FAST5 file format,
which does not allow efficient parallel analysis. Here we intro-
duce SLOWS5, an alternative format engineered for efficient
parallelization and acceleration of nanopore data analysis.
Using the example of DNA methylation profiling of a human
genome, analysis runtime is reduced from more than two
weeks to approximately 10.5h on a typical high-performance
computer. SLOWS5 is approximately 25% smaller than FAST5
and delivers consistent improvements on different computer
architectures.

The emergence of nanopore sequencing is reshaping the land-
scape of genomics. Devices from Oxford Nanopore Technologies
(ONT) enable sequencing of native DNA and RNA molecules
with no theoretical upper limit on read length'. This supports the
accurate assembly and phasing of repetitive genomes and metage-
nomes*; enhanced resolution of structural variation”"" and spliced
RNA transcripts'’; and profiling of epigenetic and RNA modifi-
cations'”'®. High-throughput ONT instruments (GridION and
PromethION) have recently enabled cost-effective sequencing of
large eukaryotic genomes”*". However, large data volumes and
computational bottlenecks have become a major impediment.

ONT devices measure the displacement of ionic current asa DNA
or RNA strand passes through a biological nanopore, recording
time series signal data in FAST5 format (Fig. 1a and Supplementary
Note 1). These data are translated, or ‘base-called, into sequence
reads (FASTQ format) before downstream analysis. Many bioinfor-
matics tools also directly access the signal data to improve the accu-
racy of assembled genomes or detect fine signal perturbations that
are indicative of DNA/RNA modifications, genetic variants or other
features (Fig. 1a)>'*'*"'s. However, nanopore signal data are large
(~1.3-TB FASTS5 files for ~30X human genome; Supplementary
Table 1), and both base-calling and downstream analysis steps are
computationally expensive.

Currently, the most popular signal-level analysis is DNA methyl-
ation profiling with the software Nanopolish/f5¢'”*. We selected this
example use case as the basis for an analysis of FAST5 data analysis
on high-performance computing (HPC) systems (Supplementary
Note 2). FASTS5 is a hierarchical data format 5 (HDF5) file with a
specific schema defined by ONT. HDFS5 is a generic file format for
storing large data that can only be read and written using a single
software library first developed in 1998. Our analysis showed that:
(1) the use of increasing numbers of parallel CPU threads resulted
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in a relatively small reduction in the overall run time of a typical
methylation calling job (Extended Data Fig. 1a); (2) this was due
to inefficient data access (file reading) rather than inefficient data
processing (Extended Data Fig. 1a-d); and (3) the underlying bot-
tleneck was a limitation in the software library for reading HDF5
files, whereby parallel input/output (I/O) requests from multiple
CPU threads are serialized, preventing efficient use of parallel CPU
resources (Extended Data Fig. 1e and Supplementary Note 2).

Parallel computing enables scalable analysis of large datasets
and is central to modern genomics. Unfortunately, our analysis
shows that the FAST5 format suffers from an inherent inefficiency
that ensures, even with access to advanced HPC systems, that the
analysis of nanopore signal data will be prohibitively slow (Fig. 1b).
For example, with the maximum resource allocation available on
Australia’s National Computing Infrastructure (among the world’s
largest academic supercomputers; see Supplementary Table 2—
HPC-Lustre), genome-wide DNA methylation profiling on a ~30%
human genome dataset runs for more than 14 days. Moreover,
given that the vast majority (>90%) of the overall run time is spent
simply reading FASTS5 files, the performance benefits of further
software optimization would be small compared to the time taken
for file reading.

To overcome the inherent limitations in FAST5 format, we cre-
ated SLOWS, a file format designed for efficient, scalable analysis
of nanopore signal data (Fig. 1b). SLOWS5 encodes all information
found in FAST5 but is not dependent on the HDF5 library required
to read FASTS5 files. The human readable version of SLOW5 format
is a tab-separated values (TSV) file encoding metadata and time
series signal data for one nanopore read per line, with global meta-
data stored in a file header (Table 1 and Supplementary Note 3).
Parallel file access is facilitated by an accompanying binary index
file that specifies the position of each read (in bytes) within the
main SLOWS file (Supplementary Note 3). SLOW5 can be encoded
in human readable ASCII format or a compact and efficient
binary format, BLOWS5, which is analogous to the seminal SAM/
BAM format for storing sequence alignments®'. The binary format
optionally supports compression with zlib and ‘vbz’ (Z-standard +
StreamVByte) algorithms, thereby minimizing the storage footprint
while permitting efficient parallel access (Methods).

BLOWS5 format is smaller than FAST5 format due to simpler
space allocation and reduced metadata redundancy. Comparison
of equivalent files with matched compression (FAST5-zlib versus
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Fig. 1| SLOWS5 format enables efficient parallel analysis of nanopore signal data. a, Schematic diagram illustrating the typical life cycle of nanopore
data. Raw current signal data are generated on an ONT sequencing device and written in FAST5 format. Raw data are base-called into sequence reads
(FASTQ/FASTA format). Downstream analysis involving both base-called reads and raw signal data is used to identify genetic variants, epigenetic
modifications (for example, 5mC) and other features. b, Schematic diagram illustrating the bottleneck in ONT signal data analysis. FASTS file reading
requires the HDF5 software library, which serializes file access requests by multiple CPU threads, preventing efficient parallel analysis. SLOWS files are
not dependent on the HDF5 library and are amenable to efficient parallel analysis. A more detailed mechanistic diagram is provided in Extended Data
Fig. 1e. ¢, Bar chart shows the relative file sizes (bytes per base) of a typical human genome sequencing dataset in ASCII SLOWS5 (purple), binary BLOW5S
format with no compression (orange), zlib compression (red) and vbz compression (pink), compared to FAST5 format with zlib compression (blue) and
vbz compression (teal). d, Dot plots show the rate of file access (reads per second) for the above file types, as a function of CPU threads used on two HPC
systems: HPC-HDD (left) or HPC-Lustre (right). e, Dot plots show the rate of execution (reads per second) for DNA methylation calling for the same file
types on HPC-HDD (left) and HPC-Lustre (right). For the instance of maximum CPU threads, bar charts show the time consumed by individual workflow
components: FAST5/SLOWS data access (pink), FASTA data access (teal), BAM data access (orange) and data processing (navy). f, Bar charts show
the time consumed by data access (pink) and data processing (navy) during DNA methylation calling on a range of different computer systems. Full
specifications are provided in Supplementary Table 2.

BLOWS5-zlib or FAST5-vbz versus BLOW5-vbz) revealed space  systems (HPC-HDD and HPC-Lustre; Supplementary Table 2). The
savings that ranged from 18% to 69%, depending on the dataset rate of SLOWS5 data access (reads per second) was faster than FAST5
(Supplementary Table 3). The largest savings were observed for across the board and increased with the use of additional CPU
datasets with short read lengths, and this effect was independent  threads, whereas FAST5 access was largely unchanged (Fig. 1d).
of compression type (Extended Data Fig. 2a,b). On a ~30x human  This trend, which reflects the capacity of SLOWS5 to be efficiently
genome dataset, BLOWS5 was approximately 25% smaller (Fig. 1c), accessed by multiple CPU threads in parallel, was observed for
equating to a reduction of ~300 GB. SLOW5, BLOWS5 and compressed BLOWS format, with the latter

To determine the performance benefits of SLOWS5, we first mea-  exhibiting the most efficient data access (Fig. 1d). As a result, we
sured data access using a small human DNA sequencing dataset observed substantial improvements in data access rates when using
of ~500,000 reads (Supplementary Table 1) on two different HPC  many CPUs on both HPC systems. Using 48 CPU threads on the
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Table 1| Example of a SLOWS5 ASCII file with a single read group

#slow5_version 1.0.0

#num_read_groups 1

@asic_id 0004A30B00232BEC

@exp_start_time 2020-01-01T00:00:00Z

@flow_cell_id FAHOOO00

@run_id 855cdb

#char* uint32_t double double  double  double uint64_t int16_t*
#read_id read_group digitisation offset range sampling_rate len_raw_signal raw_signal
readO 0 8192 6 1467.6 4000 123456 498,492,...
read1 0 8192 5 1467.6 4000 2000 491,491,...
readN 0 8192 3 1467.6 4000 3000 400,400,...

A SLOWS file contains a header (rows with ‘@' and ‘#' prefixes) that stores metadata regarding the contents of the file and the ONT experiment(s) contained within, followed by data records (rows with
no prefixes) for sequencing reads, with one read per line. SLOWS5 format uses tabs ("\t') and newlines ("\n’) as column and row delimiters, respectively. Complete format specifications are provided in

Supplementary Note 3.

HPC-Lustre system, ~7h were required to read this small dataset
in FASTS5 format, compared to just ~13 min in compressed BLOW5
(~32-fold improvement) (Fig. 1d).

This improvement in data access manifested in performance
gains during DNA methylation profiling. When using SLOW5
input, the Nanopolish/f5c runtime was reduced in proportion
to the number of CPUs available (Fig. le). This is indicative of
efficient parallel computation and was not observed when using
FAST5 (Fig. le). As a result, substantial improvements were
observed when using many CPUs, with a maximum ~15-fold
reduction in runtime with 48 CPUs on the HPC-Lustre system
(Fig. le). The improvement is the result of efficient data access,
with no difference observed in data processing among the differ-
ent file formats (Extended Data Fig. 3a,b). Whereas data access
was the major bottleneck during FASTS5 analysis, it constituted
a negligible fraction of the total run time during SLOW5 analy-
sis (Extended Data Fig. 3c,d). Put simply, this means that overall
performance is dictated by the efficiency of the program rather
than the time taken to read the input data, thereby enabling opti-
mization through further engineering. For example, using GPU
acceleration available in f5¢*° with compressed BLOWS input, we
ran methylation profiling on a 30X human genome in ~10.5h with
48 threads (>30-fold improvement compared to standard analysis
with FAST5) (Supplementary Table 2).

Although the SLOWS5 format is designed for scalable analysis
on HPC systems, we reasoned that improved data access would be
beneficial on almost any computer. To test this, we benchmarked
DNA methylation profiling, as above, on a range of architectures
(Supplementary Table 2). In all cases, the time consumed by data
access was reduced, leading to improvements in overall execution
time (Fig. 1f). As expected, improvements were greatest on systems
with larger numbers of CPUs, such as a cloud-based virtual machine
on Amazon AWS (~7-fold improvement at 32 CPU threads).
However, benefits were observed even on miniature devices for
portable computing, such as an Nvidia Xavier embedded module
(~60% improvement) (Fig. 1f). In summary, SLOWS5 delivered per-
formance improvements during methylation profiling on a diverse
range of hardware.

To ensure that FAST5 to SLOWS file conversion is not a bar-
rier to SLOW5 adoption (given that ONT devices currently write
data in FAST5 format), we implemented software (slow5tools)
for efficient, parallelizable, loss-less conversion from FAST5 to
SLOWS5 (Methods). File conversion times are proportionally
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reduced with high CPU availability and are trivial compared
to execution times for typical FAST5 analysis (Extended Data
Fig. 4a,b). For example, conversion of a ~30X human genome
dataset from FAST5 to compressed BLOWS5 takes just ~3 h with
48 CPUs. We additionally implemented software for live FAST5 to
SLOWS file conversion during a sequencing run, using the inter-
nal computer on an ONT PromethION device (Extended Data
Fig. 4c). This means that the user can obtain raw data in com-
pressed BLOWS format with effectively zero additional workflow
hours required for file conversion.

The inefficiency of FAST5 data access creates delays and
expenses, limiting the feasibility of ONT sequencing for many
applications in research and clinical genomics. Arguably, these fric-
tions also discourage the development of bioinformatics software
that directly accesses nanopore signal data. This is in stark contrast
to the simple, efficient and open-source SAM/BAM sequence align-
ment format, developed in 2009 (ref. *'), which was a key catalyst in
the growth of genome informatics.

The SLOWS5 format provides the framework for efficient, paral-
lelizable analysis of nanopore signal data for any intended applica-
tion. SLOW5 reading and writing is managed by efficient software
application programming interfaces (APIs) for both the C (slow-
5lib) and Python (pyslow5) languages (Methods). This facilitates
integration of SLOWS5 into third-party software, including with
existing packages, by replacing the existing FAST5 APIL Notably,
just ~70 lines of code were required for adoption of SLOWS5 by the
third-party software Sigmap?*, compared to ~2,600 lines of code for
FASTS5 access within the same tool. This shows the simplicity of the
SLOWS5 API, which is fully open source and not dependent on the
HDF5 library required to read FAST5. Along with the simple, intui-
tive structure of SLOW5 format, this will support active and open
software development for nanopore data analysis.
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Methods
Reading and writing SLOWS5 files with slow5lib and pyslow5. Slow5lib (https://
hasindu2008.github.io/slow5lib/) is implemented using the C programming
language. To maximize portability, the slow5lib code follows the C99 standard
with X/Open 7 POSIX 2008 extensions. Sequential access to SLOW5 ASCII files
and SLOWS5 binary files is performed using the getline() and fread() functions,
respectively. For performing random disk accesses to SLOWS5, the SLOW5 index is
first loaded to a hash table in RAM. The read identifier serves as the hash table key.
For a given read identifier, the file offset and the record length are obtained from
this hash table, and pread() system call is used to load the record to the memory.
Pread() allows multiple threads to perform I/O on the same file descriptor in
parallel without any locking.

Pyslow5 (https://hasindu2008.github.io/slow5lib/pyslow5_api/pyslow5.html) is
a Python wrapper built on top of slow5lib (interfaced using Cython) to allow easy
access to SLOW5 for Python programmers.

BLOWS5 file compression. Currently, three separate compression/decompression
schemes have been implemented in slow5lib, namely: (1) Z-Library (zlib, also
referred to as gzip or DEFLATE), which is an established library that is available by
default on almost all systems; (2) Zstandard (zstd), which is a recent, open-source
compression algorithm developed by Facebook; and (3) StreamVByte (svb),
which is a recent integer compression technique that uses Google’s Group Varint
approach®. Zlib and zstd are used for compressing SLOWS5 records (a record is
the collection of all primary and auxiliary fields of a particular read), whereas

svb is for compressing the raw signal field alone. Our implementation supports
first compressing the raw signal using svb and then compressing the SLOW5
record (now with the raw signal that svb compressed) using zlib or zstd, at the
user’s discretion. Each read is compressed/decompressed independently from one
another by using an individual compression stream for each read. Thus, multiple
reads can be accessed and decompressed in parallel using multiple threads.

The use of zstd on top of svb compression is equivalent to ONT’s custom
‘vbz’ scheme (https://github.com/nanoporetech/vbz_compression), which uses
these two open-source algorithms for FAST5 compression. For simplicity, we
have adopted the ‘vbz’ terminology in this paper. However, we are careful to
acknowledge the developers of the underlying algorithms, and slow5lib and
slow5tools treat these as separate utilities. We also note that slow5lib was designed
such that any other suitable compression scheme can be easily integrated if
necessary, making it future proof.

FAST5/SLOWS5 conversion with slow5tools. Slow5tools (https://github.com/
hasindu2008/slow5tools) is implemented on top of slow5lib using the C/C++
programming language and follows ISO C++ 2011 standard. Both slow5lib and
slow5tools support Unix systems (Linux and MacOS) or even Windows using the
Windows subsystem for Linux. They can be compiled using GNU C/C++ compiler
(gcc/g++), LLVM C/C++ compiler (clang/clang++) or Intel C/C++ Compiler
(icc/icpc). We have thoroughly tested both slow5lib and slow5tools on older
systems (for example, Ubuntu 14) as well as modern systems (Ubuntu 20). We have
also tested both slow5lib and slow5tools on Intel, AMD and ARM (both 32-bit and
64-bit) processors.

The fast5toslow5 (f2s) and slow5tofast5 (s2f) modules in slow5tools were
implemented using a heavy multi-process approach (described in Supplementary
Note 2) to circumvent the HDF5 multi-threading bottleneck, whereas other
modules in slow5tools, such as view, merge and split, were implemented using
lightweight POSIX threads.

SLOWS5 benchmarking experiments. The benchmarking datasets described in
Supplementary Table 1 were generated by sequencing genomic DNA from the
human NA12878 reference sample on an ONT PromethION device. Unsheared
DNA libraries were prepared using the ONT LSK109 ligation library prep, and
two flow cells were used to generate ~30X genome coverage. All benchmarking
experiments were performed using multi-FASTS5 files, as generated by MinKNOW
(distribution v.20.06.9, core v.4.0.3, and configuration v.4.0.13). FASTS5 files were
originally generated with zlib compression. For benchmarking experiments where
FAST5-vbz files were used, these were created using ONT'’s file compress_fast5
tool (v.4.0.0), which is part of the ont_fast5_api (https://github.com/nanoporetech/
ont_fast5_api).

Although slow5tools is compatible with single-FAST5 format, meaning these
can be easily converted to SLOW5 format, we did not consider single-FAST5
files during the benchmarking experiments described above. Data access to
single-FASTS5 format is slower than multi-FAST5 format because the many
file-opening and file-closing operations are computationally expensive.
Similarly, single-FASTS5 files are larger than multi-FAST5 files due to greater
metadata redundancy. We, therefore, chose not to consider single-FAST5
format here, because it would exaggerate the performance benefits of SLOW5.
Given that single-FAST5 format is no longer supported by ONT, this is a
reasonable omission.

To perform computational benchmarking experiments at realistic workloads,
we integrated slow5lib to f5¢ v.0.2 CPU version, which is a restructured version
of Nanopolish that enables accurate measurement of the time for each individual

component of a methylation calling job. FAST5 benchmarks were performed
using the same version of f5¢ that uses HDF5 (v.1.10.4) built with the
threadsafe option enabled (see ‘Data availability’ and ‘Code availability’).
POSIX threads are used in f5¢ to perform multi-threaded access to FAST5
and SLOWS5.
To obtain FASTQ files for methylation calling, Guppy 4.0.11 was used for
base-calling under the dna_r9.4.1_450bps_hac_prom base-calling profile.
To obtain the BAM file for methylation calling, the reads were mapped to the
hg38 reference genome (with no alternate contigs) using minimap2 v.2.17-r941
(with -x map-ont -a --secondary =no options) and sorted using SAMtools v.1.9.
Measurements and calculations were performed as follows:

(1) The overall execution time (wall clock time) and the CPU time (user mode
+ kernel mode) of the program were measured by running the program
through the GNU time utility in Linux.

(2) The CPU utilization percentage is computed as:

cpu_utilisation = cpu_time/(execution_time X n_cpu_threads) x 100

(3) Note that this CPU utilization percentage is a normalized value based on the
number of CPU threads that the program was executed with.

(4) Execution time for individual components (I/O operations and data
processing) was measured by inserting gettimeofday() function calls into
appropriate locations in the software source code. To prevent the operating
system disk cache from affecting the accuracy of I/O results, we cleared the
disk cache (pagecache, dentries and inodes) each time before a program
execution except on the NCI cluster where this was not permitted. On
NCI, disk cache could not be cleaned as we did not have root access, so we
implemented a custom program that writes and reads back hundreds of
gigabytes of data (several times the size of RAM) to the storage after each
experiment so the cache is filled with these mock data. Despite the effect of
the hardware disk controller cache (8 GB) being negligible due to the large
dataset size (>100 GB), we still executed a mock program run before each
experiment.

(5) ‘Core-hours’ is calculated as the product of the number of processing threads
employed and the number of hours (wall clock time) spent on the job. This
metric is inspired by the metric ‘man-hours’ used in the labor industry and is
used in the cloud computing domain to calculate the data processing cost. In
an ideally parallel program, this metric remains constant with the number of
cores and threads.

(6) The disk usage for different files was measured using the du command.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Datasets used in benchmarking experiments are described in Supplementary

Table 1 and are available in the NCBI Sequence Read Archive (SRA) at Bioproject
PRJNA744329. External datasets used in file size comparisons are publicly available
at various SRA accessions, as detailed in Supplementary Table 3. Source data are
provided with this paper.

Code availability

The SLOWS5 format and all associated software are free and open source. SLOW5
format specification documents can be accessed at https://hasindu2008.github.io/
slow5specs. Slow5lib and pyslow5 can be accessed at https://hasindu2008.github.io/
slowslib/. Slow5tools can be accessed at https://hasindu2008.github.io/slow5tools/.
Custom branches of f5c used to measure internal operation times during
benchmarking experiments are available at https://github.com/hasindu2008/f5¢/
tree/slow5-ioprof and https://github.com/hasindu2008/f5¢/tree/fastt-ioprof.
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Extended Data Fig. 1| Inefficient parallel access is a major bottleneck in analysis of FASTS5 files. (a) Bar chart shows the time consumed by individual
components of a Nanopolish DNA methylation calling job with signal data input in FAST5 format: FAST5 data access (pink), FASTA data access (teal),
BAM data access (orange) and data processing (navy). To assess the impact of multi-threading, the analysis was run with various numbers of CPU threads
on the HPC-HDD system (see Supplementary Table 2). The analysis was run on a downsampled human genome sequencing dataset of 500,000 reads
(see Supplementary Table 1). (b) Dot plots show the rate of file access and processing (reads / second) during the DNA methylation calling job above, as
a function of CPU threads used. (c,d) Bar charts show the proportional CPU utilisation (c) and total core hours (d) during the DNA methylation calling jobs
above. The definition of core-hours is provided in the Methods section. (e) The upper schematic illustrates the architecture of a job with multi-threaded
synchronous file access (1/0). The lower schematic illustrates the bottleneck created by the HDF5 library that is required to read FASTS5 files. The HDF5
library serialises /0 requests, making multi-threaded analysis highly inefficient and causing the observed decline in CPU utilisation with increasing
numbers of CPU threads. (f) Schematic illustrates the architecture of a multi-processing approach that was implemented to circumvent this limitation in
the HDF5 library. The multi-processing approach is viable but requires challenging software engineering and is not a generalisable, long-term solution.
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Extended Data Fig. 2 | Impact of read length on file sizes for FAST5 vs BLOWS files. (a,b) Dot plot show relative file sizes (bytes / base) of various
datasets (see Supplementary Table 3) as a function of mean read length (shown on a log?2 scale). File sizes are shown separately for FAST5-zlib vs
BLOWS5-zlib (a) and FAST5-vbz vs BLOWS5-vbz (b) formats. File sizes are highly variable among different FASTS5 files and largely stable among BLOW5
files. Libraries that have the shortest read lengths exhibit the largest space-savings, regardless of compression type.
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Extended Data Fig. 3 | Performance metrics for DNA methylation profiling with FAST5 / SLOWS files. (a,b) Dot plots show the rate of data processing
(reads / second) during DNA methylation calling with ASCII SLOWS (purple), binary BLOWS5 (orange), BLOWS5-zlib (red) and FAST5-zlib (blue) files as
a function of CPU threads. Analysis was performed on two HPC architectures: HPC-HDD (a) or HPC-Lustre (b; see Supplementary Table 2). (c,d) Dot
plots show the ratio of data-processing time relative to total execution time for the jobs above. (e,f) Bar charts show the proportional CPU utilisation (e)
and total core hours (f) during the DNA methylation calling with BLOWS5-zlib on the HPC-HDD system. The definition of core-hours is provided in the

Methods section.
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compressed BLOWS5-zlib (red) formats as a function of CPU threads used on the HPC-HDD system (see Supplementary Table 2). Parallel file conversion
was achieved using a multi-processing approach described in the Methods section. (b) Dot plot shows the time taken to merge the individual files from
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a sequencing run on an ONT PromethlON device with live conversion enabled. As evident, all reads are converted within minutes of availability and the
entire dataset is converted to BLOWS5-zlib format at the sequencing run completion.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed
X |:| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
A description of all covariates tested
X A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X
Oddg d 0O dgod

X X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Raw-signal data for the benchmarking datasets described in Supplementary Table 1 were collected as multi-FASTS files (zlib compression),
using MinKNOW (distribution version 20.06.9, core version 4.0.3, configuration version 4.0.13). For benchmarking experiments where FASTS-
vbz files were used, these were created using ONT’s file compress_fast5 tool (version 4.0.0), which is part of the ont_fast5_api (https://
github.com/nanoporetech/ont_fast5_api). FASTS files were converted to SLOW5/BLOWS files using slow5tools v0.3.0 built on top of slow5lib
v0.3.0.

Data analysis To perform computational benchmarking experiments at realistic workloads, we integrated slow5lib to f5c v0.2 CPU version (available:
https://github.com/hasindu2008/f5c/tree/slow5-ioprof), which is a restructured version of Nanopolish that enables us to accurately measure
the time for each individual component of a methylation calling job. FASTS benchmarks were performed using the same version of f5c that
uses HDF5 (1.10.4) built with the threadsafe option enabled (available: https://github.com/hasindu2008/f5c/tree/fastt-ioprof
). POSIX threads are used in f5c to perform multithreaded access to FASTS and SLOWS. To obtain FASTQ files for methylation calling, Guppy
4.0.11 was used for base-calling under the dna_r9.4.1_450bps_hac_prom base-calling profile. To obtain the BAM file for methylation calling,
the reads were mapped to the hg38 reference genome (with no alternate contigs) using minimap2 version 2.17-r941 (with -x map-ont -a --
secondary=no options) and sorted using samtools v1.9.

SLOWS format and all associated software are free and open source:

SLOWS format specification documents can be accessed at: https://hasindu2008.github.io/slow5specs
Slow5lib/pyslow5 can be accessed at: https://hasindu2008.github.io/slow5lib/

Slow5tools can be accessed at: https://hasindu2008.github.io/slow5tools/

Custom branches of f5c used to measure internal operation times during benchmarking experiments are available at:
https://github.com/hasindu2008/f5c/tree/slow5-ioprof

https://github.com/hasindu2008/f5c/tree/fastt-ioprof
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Datasets used in benchmarking experiments are described in Supplementary Table 1 and are available on NCBI Sequence Read Archive at Bioproject PRINA744329
with the following SRA accession numbers.

SRX11368473: ~30X human genome (NA12878) raw-signal data

SRX11368474: ~30X human genome (NA12878) alignments

SRX11368472: ~30X human genome (NA12878) basecalled sequences

SRX11368475: Downsampled human dataset (NA12878)

External datasets used in file-size comparisons are publicly available at various SRA accessions, as detailed in Supplementary Table 3.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size n =1. Benchmarking experiments were performed with a single dataset comprising ONT sequencing reads from human genomic DNA. for
different experiments, the full 30X dataset or a small, downsampled version of 500 million reads (see Supplementary Table 1). These datasets
are typical of what would be encountered in ONT data analysis. A range of other datasets, each n=1, were used in file size comparisons, as
detailed in Supplementary Table 3.
n=1 samples are sufficient for computational benchmarking experiments because these are deterministic by their nature, and not affected by
biological/experimental variables.

Data exclusions  No data was excluded.
Replication n=1. No biological conclusions are drawn and no statistical tests were performed. This is a computational benchmarking / proof-of-priniciple
study, and replication is not relevant/necessary. n=1 replication is sufficient for computational benchmarking experiments because these are

deterministic by their nature, and not affected by biological/experimental variables.

Randomization  No biological conclusions are drawn and no statistical tests were performed. This is a computational benchmarking / proof-of-priniciple study,
and randomisation is not relevant/necessary.

Blinding No biological conclusions are drawn and no statistical tests were performed. This is a computational benchmarking / proof-of-priniciple study,
and blinding is not relevant/necessary.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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