
Brief Communication
https://doi.org/10.1038/s41587-021-01147-4

1Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia. 2School of Computer Science  
and Engineering, University of New South Wales, Sydney, New South Wales, Australia. 3CHU Sainte-Justine Research Centre, Montreal, Quebec, 
Canada. 4Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal,  Quebec, Canada. 5St Vincent’s 
Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia. ✉e-mail: hasindu@garvan.org.au;  
i.deveson@garvan.org.au

Nanopore sequencing depends on the FAST5 file format, 
which does not allow efficient parallel analysis. Here we intro-
duce SLOW5, an alternative format engineered for efficient 
parallelization and acceleration of nanopore data analysis. 
Using the example of DNA methylation profiling of a human 
genome, analysis runtime is reduced from more than two 
weeks to approximately 10.5 h on a typical high-performance 
computer. SLOW5 is approximately 25% smaller than FAST5 
and delivers consistent improvements on different computer 
architectures.

The emergence of nanopore sequencing is reshaping the land-
scape of genomics. Devices from Oxford Nanopore Technologies 
(ONT) enable sequencing of native DNA and RNA molecules 
with no theoretical upper limit on read length1. This supports the 
accurate assembly and phasing of repetitive genomes and metage-
nomes2–6; enhanced resolution of structural variation7–11 and spliced 
RNA transcripts12; and profiling of epigenetic and RNA modifi-
cations13–18. High-throughput ONT instruments (GridION and 
PromethION) have recently enabled cost-effective sequencing of 
large eukaryotic genomes7,8,19. However, large data volumes and 
computational bottlenecks have become a major impediment.

ONT devices measure the displacement of ionic current as a DNA 
or RNA strand passes through a biological nanopore, recording 
time series signal data in FAST5 format (Fig. 1a and Supplementary  
Note 1). These data are translated, or ‘base-called’, into sequence 
reads (FASTQ format) before downstream analysis. Many bioinfor-
matics tools also directly access the signal data to improve the accu-
racy of assembled genomes or detect fine signal perturbations that 
are indicative of DNA/RNA modifications, genetic variants or other 
features (Fig. 1a)5,14,16–18. However, nanopore signal data are large 
(~1.3-TB FAST5 files for ~30× human genome; Supplementary 
Table 1), and both base-calling and downstream analysis steps are 
computationally expensive.

Currently, the most popular signal-level analysis is DNA methyl-
ation profiling with the software Nanopolish/f5c17,20. We selected this 
example use case as the basis for an analysis of FAST5 data analysis 
on high-performance computing (HPC) systems (Supplementary 
Note 2). FAST5 is a hierarchical data format 5 (HDF5) file with a 
specific schema defined by ONT. HDF5 is a generic file format for 
storing large data that can only be read and written using a single 
software library first developed in 1998. Our analysis showed that: 
(1) the use of increasing numbers of parallel CPU threads resulted 

in a relatively small reduction in the overall run time of a typical 
methylation calling job (Extended Data Fig. 1a); (2) this was due 
to inefficient data access (file reading) rather than inefficient data 
processing (Extended Data Fig. 1a–d); and (3) the underlying bot-
tleneck was a limitation in the software library for reading HDF5 
files, whereby parallel input/output (I/O) requests from multiple 
CPU threads are serialized, preventing efficient use of parallel CPU 
resources (Extended Data Fig. 1e and Supplementary Note 2).

Parallel computing enables scalable analysis of large datasets 
and is central to modern genomics. Unfortunately, our analysis 
shows that the FAST5 format suffers from an inherent inefficiency 
that ensures, even with access to advanced HPC systems, that the 
analysis of nanopore signal data will be prohibitively slow (Fig. 1b). 
For example, with the maximum resource allocation available on 
Australia’s National Computing Infrastructure (among the world’s 
largest academic supercomputers; see Supplementary Table 2—
HPC-Lustre), genome-wide DNA methylation profiling on a ~30× 
human genome dataset runs for more than 14 days. Moreover, 
given that the vast majority (>90%) of the overall run time is spent 
simply reading FAST5 files, the performance benefits of further 
software optimization would be small compared to the time taken 
for file reading.

To overcome the inherent limitations in FAST5 format, we cre-
ated SLOW5, a file format designed for efficient, scalable analysis 
of nanopore signal data (Fig. 1b). SLOW5 encodes all information 
found in FAST5 but is not dependent on the HDF5 library required 
to read FAST5 files. The human readable version of SLOW5 format 
is a tab-separated values (TSV) file encoding metadata and time 
series signal data for one nanopore read per line, with global meta-
data stored in a file header (Table 1 and Supplementary Note 3). 
Parallel file access is facilitated by an accompanying binary index 
file that specifies the position of each read (in bytes) within the 
main SLOW5 file (Supplementary Note 3). SLOW5 can be encoded 
in human readable ASCII format or a compact and efficient 
binary format, BLOW5, which is analogous to the seminal SAM/
BAM format for storing sequence alignments21. The binary format 
optionally supports compression with zlib and ‘vbz’ (Z-standard + 
StreamVByte) algorithms, thereby minimizing the storage footprint 
while permitting efficient parallel access (Methods).

BLOW5 format is smaller than FAST5 format due to simpler 
space allocation and reduced metadata redundancy. Comparison 
of equivalent files with matched compression (FAST5-zlib versus 

Fast nanopore sequencing data analysis with 
SLOW5
Hasindu Gamaarachchi   1,2 ✉, Hiruna Samarakoon1,2, Sasha P. Jenner1, James M. Ferguson   1, 
Timothy G. Amos   1, Jillian M. Hammond   1, Hassaan Saadat2, Martin A. Smith3,4, Sri Parameswaran2 
and Ira W. Deveson   1,5 ✉

Nature Biotechnology | VOL 40 | July 2022 | 1026–1029 | www.nature.com/naturebiotechnology1026

mailto:hasindu@garvan.org.au
mailto:i.deveson@garvan.org.au
http://orcid.org/0000-0002-9034-9905
http://orcid.org/0000-0002-6192-6937
http://orcid.org/0000-0002-5829-6655
http://orcid.org/0000-0002-4045-4571
http://orcid.org/0000-0003-3861-0472
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-021-01147-4&domain=pdf
http://www.nature.com/naturebiotechnology


Brief CommunicationNature Biotechnology

BLOW5-zlib or FAST5-vbz versus BLOW5-vbz) revealed space 
savings that ranged from 18% to 69%, depending on the dataset 
(Supplementary Table 3). The largest savings were observed for 
datasets with short read lengths, and this effect was independent 
of compression type (Extended Data Fig. 2a,b). On a ~30× human 
genome dataset, BLOW5 was approximately 25% smaller (Fig. 1c), 
equating to a reduction of ~300 GB.

To determine the performance benefits of SLOW5, we first mea-
sured data access using a small human DNA sequencing dataset 
of ~500,000 reads (Supplementary Table 1) on two different HPC 

systems (HPC-HDD and HPC-Lustre; Supplementary Table 2). The 
rate of SLOW5 data access (reads per second) was faster than FAST5 
across the board and increased with the use of additional CPU 
threads, whereas FAST5 access was largely unchanged (Fig. 1d).  
This trend, which reflects the capacity of SLOW5 to be efficiently 
accessed by multiple CPU threads in parallel, was observed for 
SLOW5, BLOW5 and compressed BLOW5 format, with the latter 
exhibiting the most efficient data access (Fig. 1d). As a result, we 
observed substantial improvements in data access rates when using 
many CPUs on both HPC systems. Using 48 CPU threads on the 

0 4 8 12 16
0

200

400

600

800

1,000

A
cc

es
s 

ra
te

 (
re

ad
s 

pe
r 

se
co

nd
)

0 8 16 24 32 40 48
0

200

400

600

800

0 8 16 24 32 40 48
0

100

200

300

CPU threads
E

xe
cu

tio
n 

tim
e 

(h
)

Read-1
Read-2
Read-3
Read-4

HDF5 libraryFAST5
file:

Thread-1
Thread-2
Thread-3
Thread-4

Ouput-1
Ouput-2
Ouput-3
Ouput-4

Ouput-1
Ouput-2
Ouput-3
Ouput-4

Read-1
Read-2
Read-3
Read-4

slow5libSLOW5
file:

Thread-1
Thread-2
Thread-3
Thread-4

Data access Data processing

Time

C
ur

re
nt

Base-calling

Raw signal (FAST5/SLOW5 format)

Modified
bases
(for example, 5mC )

Genetic
variation

Signal-level analysis

ONT device (for example, PromethION)
a

C
ur

re
nt

b ONT data access

0

1

2

3

4

E
xe

cu
tio

n 
tim

e 
(h

)

1

2

3

4

1

2

3

0.2

0.4

0.6

2

4

6

2

4

6

8

CPU threads CPU threads

0 0 0 0 0

BLO
W

5-
zli

b

FAST5-
zli

b

File sizec Parallel data accessd

e

Performance improvement on a variety of hardwaref

HPC-LustreHPC-HDD

0 4 8 12 16 20 24 28 32
0

100

200

300

400

CPU threads

E
xe

cu
tio

n 
ra

te
 (

re
ad

s 
pe

r 
se

co
nd

) DNA methylation profiling

0

1

2

3

0

2

4

6

8

E
xe

cu
tio

n 
tim

e 
(h

)

E
xe

cu
tio

n 
ra

te
 (

re
ad

s 
pe

r 
se

co
nd

)

A
cc

es
s 

ra
te

 (
re

ad
s 

pe
r 

se
co

nd
)

FAST5-zlib
BLOW5-zlib

CPU
threads

Signal access
FASTA access
BAM access
Data processing

Signal access
FASTA access
BAM access
Data processing

FAST5-
zlib

BLOW5-
zlib

Data access Data processing

CPU
threads

32-fold
improvement

in I/O rate

15-fold
improvement

in run-time

SLO
W

5

BLO
W

5

BLO
W

5-
zli

b

FAST5-
zli

b

BLO
W

5-
vb

z

FAST5-
vb

z
0

10

20

30

40

50

F
ile

 s
iz

e 
(b

yt
es

 p
er

 b
as

e)

~25%
reduction ~25%

reduction

BLO
W

5-
zli

b

FAST5-
zli

b

BLO
W

5-
zli

b

FAST5-
zli

b

BLO
W

5-
zli

b

FAST5-
zli

b

BLO
W

5-
zli

b

FAST5-
zli

b

BLO
W

5-
zli

b

FAST5-
zli

b

FAST5-
zlib

BLOW5-
zlib

FAST5-zlib

BLOW5
SLOW5

BLOW5-zlib

FAST5-zlib

BLOW5
SLOW5

BLOW5-zlib
FAST5-zlib
BLOW5-zlib

HPC-HDD HPC-Lustre

Cloud-EBS Workstation-NFS Workstation-SSD Laptop-HDD Embedded SystemsCloud-FsX

Fig. 1 | SLOW5 format enables efficient parallel analysis of nanopore signal data. a, Schematic diagram illustrating the typical life cycle of nanopore 
data. Raw current signal data are generated on an ONT sequencing device and written in FAST5 format. Raw data are base-called into sequence reads 
(FASTQ/FASTA format). Downstream analysis involving both base-called reads and raw signal data is used to identify genetic variants, epigenetic 
modifications (for example, 5mC) and other features. b, Schematic diagram illustrating the bottleneck in ONT signal data analysis. FAST5 file reading 
requires the HDF5 software library, which serializes file access requests by multiple CPU threads, preventing efficient parallel analysis. SLOW5 files are 
not dependent on the HDF5 library and are amenable to efficient parallel analysis. A more detailed mechanistic diagram is provided in Extended Data 
Fig. 1e. c, Bar chart shows the relative file sizes (bytes per base) of a typical human genome sequencing dataset in ASCII SLOW5 (purple), binary BLOW5 
format with no compression (orange), zlib compression (red) and vbz compression (pink), compared to FAST5 format with zlib compression (blue) and 
vbz compression (teal). d, Dot plots show the rate of file access (reads per second) for the above file types, as a function of CPU threads used on two HPC 
systems: HPC-HDD (left) or HPC-Lustre (right). e, Dot plots show the rate of execution (reads per second) for DNA methylation calling for the same file 
types on HPC-HDD (left) and HPC-Lustre (right). For the instance of maximum CPU threads, bar charts show the time consumed by individual workflow 
components: FAST5/SLOW5 data access (pink), FASTA data access (teal), BAM data access (orange) and data processing (navy). f, Bar charts show 
the time consumed by data access (pink) and data processing (navy) during DNA methylation calling on a range of different computer systems. Full 
specifications are provided in Supplementary Table 2.

Nature Biotechnology | VOL 40 | July 2022 | 1026–1029 | www.nature.com/naturebiotechnology 1027

http://www.nature.com/naturebiotechnology


Brief Communication Nature Biotechnology

HPC-Lustre system, ~7 h were required to read this small dataset 
in FAST5 format, compared to just ~13 min in compressed BLOW5 
(~32-fold improvement) (Fig. 1d).

This improvement in data access manifested in performance 
gains during DNA methylation profiling. When using SLOW5 
input, the Nanopolish/f5c runtime was reduced in proportion 
to the number of CPUs available (Fig. 1e). This is indicative of 
efficient parallel computation and was not observed when using 
FAST5 (Fig. 1e). As a result, substantial improvements were 
observed when using many CPUs, with a maximum ~15-fold 
reduction in runtime with 48 CPUs on the HPC-Lustre system 
(Fig. 1e). The improvement is the result of efficient data access, 
with no difference observed in data processing among the differ-
ent file formats (Extended Data Fig. 3a,b). Whereas data access 
was the major bottleneck during FAST5 analysis, it constituted 
a negligible fraction of the total run time during SLOW5 analy-
sis (Extended Data Fig. 3c,d). Put simply, this means that overall 
performance is dictated by the efficiency of the program rather 
than the time taken to read the input data, thereby enabling opti-
mization through further engineering. For example, using GPU 
acceleration available in f5c20 with compressed BLOW5 input, we 
ran methylation profiling on a 30× human genome in ~10.5 h with 
48 threads (>30-fold improvement compared to standard analysis 
with FAST5) (Supplementary Table 2).

Although the SLOW5 format is designed for scalable analysis 
on HPC systems, we reasoned that improved data access would be 
beneficial on almost any computer. To test this, we benchmarked 
DNA methylation profiling, as above, on a range of architectures 
(Supplementary Table 2). In all cases, the time consumed by data 
access was reduced, leading to improvements in overall execution 
time (Fig. 1f). As expected, improvements were greatest on systems 
with larger numbers of CPUs, such as a cloud-based virtual machine 
on Amazon AWS (~7-fold improvement at 32 CPU threads). 
However, benefits were observed even on miniature devices for 
portable computing, such as an Nvidia Xavier embedded module 
(~60% improvement) (Fig. 1f). In summary, SLOW5 delivered per-
formance improvements during methylation profiling on a diverse 
range of hardware.

To ensure that FAST5 to SLOW5 file conversion is not a bar-
rier to SLOW5 adoption (given that ONT devices currently write  
data in FAST5 format), we implemented software (slow5tools) 
for efficient, parallelizable, loss-less conversion from FAST5 to 
SLOW5 (Methods). File conversion times are proportionally 

reduced with high CPU availability and are trivial compared 
to execution times for typical FAST5 analysis (Extended Data  
Fig. 4a,b). For example, conversion of a ~30× human genome 
dataset from FAST5 to compressed BLOW5 takes just ~3 h with 
48 CPUs. We additionally implemented software for live FAST5 to 
SLOW5 file conversion during a sequencing run, using the inter-
nal computer on an ONT PromethION device (Extended Data 
Fig. 4c). This means that the user can obtain raw data in com-
pressed BLOW5 format with effectively zero additional workflow 
hours required for file conversion.

The inefficiency of FAST5 data access creates delays and 
expenses, limiting the feasibility of ONT sequencing for many 
applications in research and clinical genomics. Arguably, these fric-
tions also discourage the development of bioinformatics software 
that directly accesses nanopore signal data. This is in stark contrast 
to the simple, efficient and open-source SAM/BAM sequence align-
ment format, developed in 2009 (ref. 21), which was a key catalyst in 
the growth of genome informatics.

The SLOW5 format provides the framework for efficient, paral-
lelizable analysis of nanopore signal data for any intended applica-
tion. SLOW5 reading and writing is managed by efficient software 
application programming interfaces (APIs) for both the C (slow-
5lib) and Python (pyslow5) languages (Methods). This facilitates 
integration of SLOW5 into third-party software, including with 
existing packages, by replacing the existing FAST5 API. Notably, 
just ~70 lines of code were required for adoption of SLOW5 by the 
third-party software Sigmap22, compared to ~2,600 lines of code for 
FAST5 access within the same tool. This shows the simplicity of the 
SLOW5 API, which is fully open source and not dependent on the 
HDF5 library required to read FAST5. Along with the simple, intui-
tive structure of SLOW5 format, this will support active and open 
software development for nanopore data analysis.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41587-021-01147-4.

Received: 29 June 2021; Accepted: 2 November 2021;  
Published online: 3 January 2022

Table 1 | Example of a SLOW5 ASCII file with a single read group

#slow5_version 1.0.0

#num_read_groups 1

@asic_id 0004A30B00232BEC

@exp_start_time 2020-01-01T00:00:00Z

@flow_cell_id FAH00000

@run_id 855cdb

… …

#char* uint32_t double double double double uint64_t int16_t* …

#read_id read_group digitisation offset range sampling_rate len_raw_signal raw_signal …

read0 0 8192 6 1467.6 4000 123456 498,492,… …

read1 0 8192 5 1467.6 4000 2000 491,491,… …

… … … … … … … … …

readN 0 8192 3 1467.6 4000 3000 400,400,… …

A SLOW5 file contains a header (rows with ‘@’ and ‘#’ prefixes) that stores metadata regarding the contents of the file and the ONT experiment(s) contained within, followed by data records (rows with 
no prefixes) for sequencing reads, with one read per line. SLOW5 format uses tabs (‘\t’) and newlines (‘\n’) as column and row delimiters, respectively. Complete format specifications are provided in 
Supplementary Note 3.

Nature Biotechnology | VOL 40 | July 2022 | 1026–1029 | www.nature.com/naturebiotechnology1028

https://doi.org/10.1038/s41587-021-01147-4
https://doi.org/10.1038/s41587-021-01147-4
http://www.nature.com/naturebiotechnology


Brief CommunicationNature Biotechnology

References
	1.	 Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore 

sequencing. Nat. Biotechnol. 34, 518–524 (2016).
	2.	 Ashton, P. M. et al. MinION nanopore sequencing identifies the position and 

structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 
296–300 (2015).

	3.	 Charalampous, T. et al. Nanopore metagenomics enables rapid clinical diagnosis 
of bacterial lower respiratory infection. Nat. Biotechnol. 37, 783–792 (2019).

	4.	 Jain, M. et al. Nanopore sequencing and assembly of a human genome with 
ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

	5.	 Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome 
assembled de novo using only nanopore sequencing data. Nat. Methods 12, 
733–735 (2015).

	6.	 Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X 
chromosome. Nature 585, 79–84 (2020).

	7.	 Alonge, M. et al. Major impacts of widespread structural variation on gene 
expression and crop improvement in tomato. Cell 182, 145–161 (2020).

	8.	 Beyter, D. et al. Long-read sequencing of 3,622 Icelanders provides insight 
into the role of structural variants in human diseases and other traits.  
Nat. Genet. 53, 779–786 (2021).

	9.	 Cretu Stancu, M. et al. Mapping and phasing of structural variation in patient 
genomes using nanopore sequencing. Nat. Commun. 8, 1326 (2017).

	10.	Giesselmann, P. et al. Analysis of short tandem repeat expansions and  
their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 
1478–1481 (2019).

	11.	Sedlazeck, F. J. et al. Accurate detection of complex structural variations using 
single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

	12.	Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in 
chronic lymphocytic leukemia reveals downregulation of retained introns. 
Nat. Commun. 11, 1438 (2020).

	13.	Ewing, A. D. et al. Nanopore sequencing enables comprehensive transposable 
element epigenomic profiling. Mol. Cell 80, 915–928 (2020).

	14.	Begik, O. et al. Quantitative profiling of pseudouridylation dynamics in native 
RNAs with nanopore sequencing. Nat. Biotechnol. 39, 1278–1291 (2021).

	15.	Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 
914–921 (2020).

	16.	Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation 
on human cell lines with nanopore sequencing. Nat. Methods 17,  
1191–1199 (2021).

	17.	Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore 
sequencing. Nat. Methods 14, 407–410 (2017).

	18.	Aw, J. G. A. et al. Determination of isoform-specific RNA structure with 
nanopore long reads. Nat. Biotechnol. 39, 336–346 (2021).

	19.	Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable  
efficient de novo assembly of eleven human genomes. Nat. Biotechnol. 38, 
1044–1053 (2020).

	20.	Gamaarachchi, H. et al. GPU accelerated adaptive banded event alignment 
for rapid comparative nanopore signal analysis. BMC Bioinformatics 21,  
343 (2020).

	21.	Li, H. et al. The Sequence Alignment/Map format and SAMtools. 
Bioinformatics 25, 2078–2079 (2009).

	22.	Zhang, H. et al. Real-time mapping of nanopore raw signals. Bioinformatics 
37, i477–i483 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© Crown 2022

Nature Biotechnology | VOL 40 | July 2022 | 1026–1029 | www.nature.com/naturebiotechnology 1029

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturebiotechnology


Brief Communication Nature Biotechnology

Methods
Reading and writing SLOW5 files with slow5lib and pyslow5. Slow5lib (https://
hasindu2008.github.io/slow5lib/) is implemented using the C programming 
language. To maximize portability, the slow5lib code follows the C99 standard 
with X/Open 7 POSIX 2008 extensions. Sequential access to SLOW5 ASCII files 
and SLOW5 binary files is performed using the getline() and fread() functions, 
respectively. For performing random disk accesses to SLOW5, the SLOW5 index is 
first loaded to a hash table in RAM. The read identifier serves as the hash table key. 
For a given read identifier, the file offset and the record length are obtained from 
this hash table, and pread() system call is used to load the record to the memory. 
Pread() allows multiple threads to perform I/O on the same file descriptor in 
parallel without any locking.

Pyslow5 (https://hasindu2008.github.io/slow5lib/pyslow5_api/pyslow5.html) is 
a Python wrapper built on top of slow5lib (interfaced using Cython) to allow easy 
access to SLOW5 for Python programmers.

BLOW5 file compression. Currently, three separate compression/decompression 
schemes have been implemented in slow5lib, namely: (1) Z-Library (zlib, also 
referred to as gzip or DEFLATE), which is an established library that is available by 
default on almost all systems; (2) Zstandard (zstd), which is a recent, open-source 
compression algorithm developed by Facebook; and (3) StreamVByte (svb), 
which is a recent integer compression technique that uses Google’s Group Varint 
approach23. Zlib and zstd are used for compressing SLOW5 records (a record is 
the collection of all primary and auxiliary fields of a particular read), whereas 
svb is for compressing the raw signal field alone. Our implementation supports 
first compressing the raw signal using svb and then compressing the SLOW5 
record (now with the raw signal that svb compressed) using zlib or zstd, at the 
user’s discretion. Each read is compressed/decompressed independently from one 
another by using an individual compression stream for each read. Thus, multiple 
reads can be accessed and decompressed in parallel using multiple threads.

The use of zstd on top of svb compression is equivalent to ONT’s custom 
‘vbz’ scheme (https://github.com/nanoporetech/vbz_compression), which uses 
these two open-source algorithms for FAST5 compression. For simplicity, we 
have adopted the ‘vbz’ terminology in this paper. However, we are careful to 
acknowledge the developers of the underlying algorithms, and slow5lib and 
slow5tools treat these as separate utilities. We also note that slow5lib was designed 
such that any other suitable compression scheme can be easily integrated if 
necessary, making it future proof.

FAST5/SLOW5 conversion with slow5tools. Slow5tools (https://github.com/
hasindu2008/slow5tools) is implemented on top of slow5lib using the C/C++ 
programming language and follows ISO C++ 2011 standard. Both slow5lib and 
slow5tools support Unix systems (Linux and MacOS) or even Windows using the 
Windows subsystem for Linux. They can be compiled using GNU C/C++ compiler 
(gcc/g++), LLVM C/C++ compiler (clang/clang++) or Intel C/C++ Compiler 
(icc/icpc). We have thoroughly tested both slow5lib and slow5tools on older 
systems (for example, Ubuntu 14) as well as modern systems (Ubuntu 20). We have 
also tested both slow5lib and slow5tools on Intel, AMD and ARM (both 32-bit and 
64-bit) processors.

The fast5toslow5 (f2s) and slow5tofast5 (s2f) modules in slow5tools were 
implemented using a heavy multi-process approach (described in Supplementary 
Note 2) to circumvent the HDF5 multi-threading bottleneck, whereas other 
modules in slow5tools, such as view, merge and split, were implemented using 
lightweight POSIX threads.

SLOW5 benchmarking experiments. The benchmarking datasets described in 
Supplementary Table 1 were generated by sequencing genomic DNA from the 
human NA12878 reference sample on an ONT PromethION device. Unsheared 
DNA libraries were prepared using the ONT LSK109 ligation library prep, and 
two flow cells were used to generate ~30× genome coverage. All benchmarking 
experiments were performed using multi-FAST5 files, as generated by MinKNOW 
(distribution v.20.06.9, core v.4.0.3, and configuration v.4.0.13). FAST5 files were 
originally generated with zlib compression. For benchmarking experiments where 
FAST5-vbz files were used, these were created using ONT’s file compress_fast5 
tool (v.4.0.0), which is part of the ont_fast5_api (https://github.com/nanoporetech/
ont_fast5_api).

Although slow5tools is compatible with single-FAST5 format, meaning these 
can be easily converted to SLOW5 format, we did not consider single-FAST5 
files during the benchmarking experiments described above. Data access to 
single-FAST5 format is slower than multi-FAST5 format because the many 
file-opening and file-closing operations are computationally expensive. 
Similarly, single-FAST5 files are larger than multi-FAST5 files due to greater 
metadata redundancy. We, therefore, chose not to consider single-FAST5  
format here, because it would exaggerate the performance benefits of SLOW5. 
Given that single-FAST5 format is no longer supported by ONT, this is a 
reasonable omission.

To perform computational benchmarking experiments at realistic workloads, 
we integrated slow5lib to f5c v.0.2 CPU version, which is a restructured version 
of Nanopolish that enables accurate measurement of the time for each individual 

component of a methylation calling job. FAST5 benchmarks were performed 
using the same version of f5c that uses HDF5 (v.1.10.4) built with the  
threadsafe option enabled (see ‘Data availability’ and ‘Code availability’).  
POSIX threads are used in f5c to perform multi-threaded access to FAST5  
and SLOW5.

To obtain FASTQ files for methylation calling, Guppy 4.0.11 was used for 
base-calling under the dna_r9.4.1_450bps_hac_prom base-calling profile.  
To obtain the BAM file for methylation calling, the reads were mapped to the  
hg38 reference genome (with no alternate contigs) using minimap2 v.2.17-r941 
(with -x map-ont -a --secondary = no options) and sorted using SAMtools v.1.9.

Measurements and calculations were performed as follows:

	(1)	 The overall execution time (wall clock time) and the CPU time (user mode 
+ kernel mode) of the program were measured by running the program 
through the GNU time utility in Linux.

	(2)	 The CPU utilization percentage is computed as:

cpu_utilisation = cpu_time/(execution_time × n_cpu_threads) × 100

	(3)	 Note that this CPU utilization percentage is a normalized value based on the 
number of CPU threads that the program was executed with.

	(4)	 Execution time for individual components (I/O operations and data 
processing) was measured by inserting gettimeofday() function calls into 
appropriate locations in the software source code. To prevent the operating 
system disk cache from affecting the accuracy of I/O results, we cleared the 
disk cache (pagecache, dentries and inodes) each time before a program 
execution except on the NCI cluster where this was not permitted. On 
NCI, disk cache could not be cleaned as we did not have root access, so we 
implemented a custom program that writes and reads back hundreds of 
gigabytes of data (several times the size of RAM) to the storage after each 
experiment so the cache is filled with these mock data. Despite the effect of 
the hardware disk controller cache (8 GB) being negligible due to the large 
dataset size (>100 GB), we still executed a mock program run before each 
experiment.

	(5)	 ‘Core-hours’ is calculated as the product of the number of processing threads 
employed and the number of hours (wall clock time) spent on the job. This 
metric is inspired by the metric ‘man-hours’ used in the labor industry and is 
used in the cloud computing domain to calculate the data processing cost. In 
an ideally parallel program, this metric remains constant with the number of 
cores and threads.

	(6)	 The disk usage for different files was measured using the du command.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Datasets used in benchmarking experiments are described in Supplementary 
Table 1 and are available in the NCBI Sequence Read Archive (SRA) at Bioproject 
PRJNA744329. External datasets used in file size comparisons are publicly available 
at various SRA accessions, as detailed in Supplementary Table 3. Source data are 
provided with this paper.

Code availability
The SLOW5 format and all associated software are free and open source. SLOW5 
format specification documents can be accessed at https://hasindu2008.github.io/
slow5specs. Slow5lib and pyslow5 can be accessed at https://hasindu2008.github.io/
slow5lib/. Slow5tools can be accessed at https://hasindu2008.github.io/slow5tools/. 
Custom branches of f5c used to measure internal operation times during 
benchmarking experiments are available at https://github.com/hasindu2008/f5c/
tree/slow5-ioprof and https://github.com/hasindu2008/f5c/tree/fastt-ioprof.

References
	23.	Lemire, D., Kurz, N. & Rupp, C. Stream VByte: faster byte-oriented integer 

compression. Inf. Process. Lett. 130, 1–6 (2018).

Acknowledgements
We thank our colleagues D. Lin, D. Degrave and W. Kaplan for providing excellent 
technical support and, most importantly, freedom to use the institute’s high-performance 
computing system in some quite exotic ways. We thank the Embedded Systems Lab at 
UNSW Sydney where the feasibility study was conducted during the PhD candidatures 
of H.G. and H. Saadat. We thank F. Brennen and P. Florez de Sessions from ONT for 
providing definitions of unknown attributes in FAST5 format. We thank L. Goldstein 
and G. Faulkner for critical feedback during manuscript preparation. Resources from 
the Australian National Computational Infrastructure were used during benchmarking 
experiments. We acknowledge the following funding support: Medical Research Future 
Fund Investigator Grant MRF1173594 (to I.W.D.) and philanthropic support from the 
Kinghorn Foundation.

Nature Biotechnology | www.nature.com/naturebiotechnology

https://hasindu2008.github.io/slow5lib/
https://hasindu2008.github.io/slow5lib/
https://hasindu2008.github.io/slow5lib/pyslow5_api/pyslow5.html
https://github.com/nanoporetech/vbz_compression
https://github.com/hasindu2008/slow5tools
https://github.com/hasindu2008/slow5tools
https://github.com/nanoporetech/ont_fast5_api
https://github.com/nanoporetech/ont_fast5_api
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA744329/
https://hasindu2008.github.io/slow5specs
https://hasindu2008.github.io/slow5specs
https://hasindu2008.github.io/slow5lib/
https://hasindu2008.github.io/slow5lib/
https://hasindu2008.github.io/slow5tools/
https://github.com/hasindu2008/f5c/tree/slow5-ioprof
https://github.com/hasindu2008/f5c/tree/slow5-ioprof
https://github.com/hasindu2008/f5c/tree/fastt-ioprof
http://www.nature.com/naturebiotechnology


Brief CommunicationNature Biotechnology

Author contributions
All authors (H.G., H. Samarakoon, S.P.J., J.M.F., T.G.A., J.M.H., H. Saadat, M.A.S., 
S.P. and I.W.D.) contributed to the conception, design and testing of the SLOW5 
format. H.G., H. Samarakoon, S.P.J. and J.M.F. implemented the SLOW5 format and 
associated software. J.M.H. generated the ONT sequencing data used in this study. 
H.G., H. Samarakoon, S.P.J. and J.M.F. performed benchmarking experiments. H.G., H. 
Samarakoon and I.W.D. prepared the figures. H.G. and I.W.D. prepared the manuscript, 
with support from all authors.

Competing interests
I.W.D. manages a fee-for-service nanopore sequencing facility at the Garvan Institute 
of Medical Research, which is a customer of Oxford Nanopore Technologies but has 
no further financial relationship. H.G., H. Samarakoon, J.M.F., J.M.H. and M.A.S. have 

received travel and accommodation expenses to speak at Oxford Nanopore Technologies 
conferences. The authors declare no other competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41587-021-01147-4.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41587-021-01147-4.

Correspondence and requests for materials should be addressed to 
Hasindu Gamaarachchi or Ira W. Deveson.

Peer review information Nature Biotechnology thanks Miles Benton and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Biotechnology | www.nature.com/naturebiotechnology

https://doi.org/10.1038/s41587-021-01147-4
https://doi.org/10.1038/s41587-021-01147-4
http://www.nature.com/reprints
http://www.nature.com/naturebiotechnology


Brief Communication Nature Biotechnology

4 8 16 24 32
0

1

2

3

4

5

6

Ex
ec

ut
io

n 
tim

e 
(h

ou
rs

)

FASTA access
FAST5 accessData processing

BAM access

0 4 8 12 16 20 24 28 32 36
0

100

200

300

400

CPU threads

Ex
ec

ut
io

n 
ra

te
 (r

ea
ds

 / 
se

c.
) Data-access

Data-processing

CP
U

 u
til

is
at

io
n 

(%
)

4 8 16 24

32
0

25

50

75

100

Co
re

 h
ou

rs

CPU threads CPU threads CPU threads

a b c dDNA methylation profiling
on multi-CPU system

Data access vs processing CPU utilisation Core hours

e

HDF5 library

Thread-1

Thread-2
...

Thread-4

I/O request

I/O request

I/O request

Disk
controller 

& disks

O/S disk
request
queue

Single process

Thread-1

Thread-2
...

Thread-4

I/O request

I/O request

I/O request

Single process

I/O requests
serialised

Multi-threaded synchronous Input/Output

HDF5 multi-threading bottleneck

HPC-HDD HPC-HDD

Disk
controller 

& disks

O/S disk
request
queue

HPC-HDD

f Multi-processing as a possible alternative to multi-threading

HDF5
library

Data process
thread-1

Parent process

Disk
controller 

& disks

O/S disk
request
queue

Thread-1

I/O
request

I/O
request

Thread-2

Thread- K

I/O
request

I/O
request

I/O
request

I/O
request

Data process
thread-2

Data process
thread- K

...

Child process 1

Child process 2

Child process 3

4 8 16 24 32
0

25

50

75

100
HPC-HDD

Extended Data Fig. 1 | Inefficient parallel access is a major bottleneck in analysis of FAST5 files. (a) Bar chart shows the time consumed by individual 
components of a Nanopolish DNA methylation calling job with signal data input in FAST5 format: FAST5 data access (pink), FASTA data access (teal), 
BAM data access (orange) and data processing (navy). To assess the impact of multi-threading, the analysis was run with various numbers of CPU threads 
on the HPC-HDD system (see Supplementary Table 2). The analysis was run on a downsampled human genome sequencing dataset of 500,000 reads 
(see Supplementary Table 1). (b) Dot plots show the rate of file access and processing (reads / second) during the DNA methylation calling job above, as 
a function of CPU threads used. (c,d) Bar charts show the proportional CPU utilisation (c) and total core hours (d) during the DNA methylation calling jobs 
above. The definition of core-hours is provided in the Methods section. (e) The upper schematic illustrates the architecture of a job with multi-threaded 
synchronous file access (I/O). The lower schematic illustrates the bottleneck created by the HDF5 library that is required to read FAST5 files. The HDF5 
library serialises I/O requests, making multi-threaded analysis highly inefficient and causing the observed decline in CPU utilisation with increasing 
numbers of CPU threads. (f) Schematic illustrates the architecture of a multi-processing approach that was implemented to circumvent this limitation in 
the HDF5 library. The multi-processing approach is viable but requires challenging software engineering and is not a generalisable, long-term solution.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


Brief CommunicationNature Biotechnology

8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

Mean read length (log2)

Fi
le

 s
iz

e 
(b

yt
es

/b
as

e)

0

10

20

30

40

Fi
le

 s
iz

e 
(b

yt
es

/b
as

e)

8 9 10 11 12 13 14 15 16

Mean read length (log2)

a bImpact of read length on file size
with zlib compression

Impact of read length on file size
with ‘vbz’ compression

FAST5-zlib
BLOW5-zlib

FAST5-vbz
BLOW5-vbz

Extended Data Fig. 2 | Impact of read length on file sizes for FAST5 vs BLOW5 files. (a,b) Dot plot show relative file sizes (bytes / base) of various 
datasets (see Supplementary Table 3) as a function of mean read length (shown on a log2 scale). File sizes are shown separately for FAST5-zlib vs 
BLOW5-zlib (a) and FAST5-vbz vs BLOW5-vbz (b) formats. File sizes are highly variable among different FAST5 files and largely stable among BLOW5 
files. Libraries that have the shortest read lengths exhibit the largest space-savings, regardless of compression type.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


Brief Communication Nature Biotechnology

0 4 8 12 16 20 24 28 32
0

20

40

60

80

100

CPU threads

Pr
oc

es
si

ng
 : 

ex
ec

ut
io

n 
ra

tio

0 8 16 24 32 40 48
0

20

40

60

80

100

CPU threads

Pr
oc

es
si

ng
 : 

ex
ec

ut
io

n 
ra

tio

0 4 8 12 16 20 24 28 32
0

100

200

300

400

CPU threads

Pr
oc

es
si

ng
 ra

te
 (r

ea
ds

 / 
se

c.
)

0 8 16 24 32 40 48
0

100

200

300

400

500

CPU threads

Pr
oc

es
si

ng
 ra

te
 (r

ea
ds

 / 
se

c.
)

a b

c d

Data-processing rate (HPC-HDD) Data-processing rate (HPC-Lustre)

Processing ratio (HPC-HDD) Processing ratio (HPC-Lustre)

e fCPU utilisation (HPC-HDD) Core hours (HPC-HDD)

4 8 16 24 32
0

5

10

15

20

4 8 16 24 32
0

25

50

75

100

CP
U

 u
til

is
at

io
n 

(%
)

Co
re

 h
ou

rs

HPC-HDD

FAST5-zlib

BLOW5
SLOW5

BLOW5-zlib

HPC-Lustre

FAST5-zlib
BLOW5-zlib

HPC-HDD

FAST5-zlib

BLOW5
SLOW5

BLOW5-zlib

HPC-Lustre

FAST5-zlib
BLOW5-zlib

Extended Data Fig. 3 | Performance metrics for DNA methylation profiling with FAST5 / SLOW5 files. (a,b) Dot plots show the rate of data processing 
(reads / second) during DNA methylation calling with ASCII SLOW5 (purple), binary BLOW5 (orange), BLOW5-zlib (red) and FAST5-zlib (blue) files as 
a function of CPU threads. Analysis was performed on two HPC architectures: HPC-HDD (a) or HPC-Lustre (b; see Supplementary Table 2). (c,d) Dot 
plots show the ratio of data-processing time relative to total execution time for the jobs above. (e,f) Bar charts show the proportional CPU utilisation (e) 
and total core hours (f) during the DNA methylation calling with BLOW5-zlib on the HPC-HDD system. The definition of core-hours is provided in the 
Methods section.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


Brief CommunicationNature Biotechnology

0 4 8 12 16 20 24 28 32
0

50

100

150

200

250

CPU threads

Co
nv

er
si

on
 ti

m
e 

(m
in

ut
es

)

0 4 8 12 16 20 24 28 32
0

50

100

150

200

CPU threads
M

er
gi

ng
 ti

m
e 

(m
in

ut
es

)
0 20 40 60 80

0

2

4

6

8

Sequencing run-time (hours)

N
um

be
r o

f r
ea

ds
 (m

ill
io

ns
) Sequenced

Converted

a bFAST5 > SLOW5 conversion SLOW5 file merging c Live file conversion:
FAST5 > BLOW-zlib

PromethION
HPC-HDD

BLOW5
SLOW5

BLOW5-zlib

HPC-HDD

BLOW5
SLOW5

BLOW5-zlib

Extended Data Fig. 4 | FAST5 to SLOW5 data conversion performance. (a) Dot plot shows the time take to convert a downsampled human genome 
sequencing dataset of 500,000 reads (see Supplementary Table 1) from FAST5 format to ASCII SLOW5 (purple), binary BLOW5 (orange) and 
compressed BLOW5-zlib (red) formats as a function of CPU threads used on the HPC-HDD system (see Supplementary Table 2). Parallel file conversion 
was achieved using a multi-processing approach described in the Methods section. (b) Dot plot shows the time taken to merge the individual files from 
(a) into a single SLOW5/BLOW5 file. (c) Curves show the progress of data generation (purple) and FAST5 to BLOW5-zlib conversion (orange) during 
a sequencing run on an ONT PromethION device with live conversion enabled. As evident, all reads are converted within minutes of availability and the 
entire dataset is converted to BLOW5-zlib format at the sequencing run completion.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology







	Fast nanopore sequencing data analysis with SLOW5

	Online content

	Fig. 1 SLOW5 format enables efficient parallel analysis of nanopore signal data.
	Extended Data Fig. 1 Inefficient parallel access is a major bottleneck in analysis of FAST5 files.
	Extended Data Fig. 2 Impact of read length on file sizes for FAST5 vs BLOW5 files.
	Extended Data Fig. 3 Performance metrics for DNA methylation profiling with FAST5 / SLOW5 files.
	Extended Data Fig. 4 FAST5 to SLOW5 data conversion performance.
	Table 1 Example of a SLOW5 ASCII file with a single read group.




