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Recent advances in nucleic acid detection have enriched infec-
tious disease diagnostics and surveillance1–8. Yet there has 
been limited progress in enriching diagnostics and surveil-

lance through computational design. That is surprising in light of 
machine learning and optimization capabilities, and the explosion 
of viral genomic data. Designing viral assays from genomic data is 
done largely by hand, without well-defined objectives.

Machine learning and optimization methods would benefit viral 
detection by designing assays that are more sensitive than exist-
ing ones. These methods could also enable a proactive resource of 
assays that are broadly effective across viral variation and provide 
rapid design of new assays. Here, we demonstrate these capabili-
ties by developing and experimentally validating an approach that 
combines a deep learning model with combinatorial optimization.

We provide advances in three areas: (1) predicting the enzymatic 
activity of a diagnostic; (2) integrating a virus’s variation optimally 
into the design of a diagnostic; and (3) designing diagnostics rapidly 
at scale.

The first challenge we address is predicting a diagnostic’s activity 
when detecting a nucleic acid target. The most advanced methods, 
which focus on quantitative PCR (qPCR)9–15, usually make binary 
predictions—an assay will detect a viral target or will not—accord-
ing to thermodynamic criteria and heuristics. Heuristics include 
constraining the number and positions of assay–target mismatches. 
Yet binary predictions are rudimentary because they still call for 
experimental assay comparisons and probably miss the optimum. 
Quantitative predictions of an enzyme’s activity when detecting a 

target could enhance sensitivity. In contrast to current paradigms, 
our approach uses experimental data and machine learning to pre-
dict enzymatic activity from nucleotide sequences. We form the 
largest dataset on diagnostic performance to our knowledge, con-
centrated on CRISPR-based diagnostics. We train a neural network 
to predict a CRISPR enzyme’s activity during detection, correspond-
ing to diagnostic sensitivity.

Machine learning models have been built for CRISPR sys-
tems16–18 to predict a guide’s cis cleavage activity (for example, 
knockdown efficacy). Several18,19 models focus on CRISPR–Cas13 
using handcrafted features, including one model18 applied20,21 to 
Cas13d guides for antiviral RNA knockdown. Cas13a, by contrast, 
has diagnostic applications and is our focus in this paper. Its col-
lateral (trans) cleavage activity, triggered by target recognition, 
enables diagnostics yet that activity is more challenging to screen 
in high-throughput than cis cleavage, which can be measured by 
sequencing. Also, to the best of our knowledge, no previous study 
has applied deep learning to predict Cas13 guide activity. While 
we concentrate on CRISPR-based viral diagnostics, our approach 
applies to other nucleic acid technologies and to non-viral targets.

The second challenge we confront is viral variation. Influenza 
A virus (FLUAV) quantitative PCR with reverse transcription  
(RT–qPCR) tests often have false-negative rates over 10% (nearly 
100% on some strains) owing to variation22–24, and the issue besets 
other viruses25–29. Diagnostic design methods that account for varia-
tion generally follow one of two paradigms. One10,12,13 identifies 
conserved genomic regions and designs an assay targeting them, 
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usually matching one reference sequence: this is inadequate because 
conserved regions are rarely free of variation, and targeting them 
may not provide optimal sensitivity and antagonizes specificity 
among viruses. The second paradigm9,11,14,15 minimizes an assay’s 
complexity, constrained to detecting a sufficient extent of variation: 
by handling variation through a constraint, it does not expressly 
optimize sensitivity. We integrate a virus’s variation into an objec-
tive function and, using our predictive model, maximize sensitivity 
across that variation.

The third challenge we tackle is scalability. The number of viral 
genome sequences is growing exponentially30,31, reflecting viral evo-
lution and emergence (Supplementary Fig. 1). This growth impels 
periodic assay redesign. FLUAV subtyping assays lose sensitivity 
over time (Extended Data Fig. 1a and Supplementary Fig. 2). In 
the case of COVID-19, mutations accumulated on early genome 
sequences (Extended Data Fig. 1b) and some created failures in 
widely used diagnostic targets32,33. Yet current design paradigms, 
which require curating input data, are laborious. To overcome this 
obstacle, we introduce ADAPT (https://adapt.run), a system that 
implements our approach using the latest viral genomes from public 
databases. ADAPT is fully automated and operates at scale.

We applied ADAPT to design maximally sensitive, species- 
specific diagnostics for the 1,933 viral species known to infect verte-
brates. We experimentally test ADAPT’s designs on several viruses 
using synthetic targets designed to encompass known variation. 
The results demonstrate that ADAPT provides designs with com-
prehensive detection and lineage-level specificity. ADAPT outper-
forms standard techniques that are based on conventional CRISPR 
diagnostic design heuristics and sequence conservation.

Results
Predicting activity of a CRISPR-based diagnostic. We first aim to 
predict a diagnostic’s enzymatic activity when detecting a viral tar-
get, which corresponds to its sensitivity, using a measurement-driven 
approach. We generated a dataset of fluorescence readout during 
detection reactions. From this dataset, we trained a machine learn-
ing model to predict enzymatic activity.

We focus on CRISPR–Cas13a1,2, in which Cas13a enzymes use 
guide RNAs to locate a target and subsequently exhibit collateral 
activity that cleaves fluorescent reporters, leading to a diagnostic 
readout. Earlier studies characterized reporter sequence require-
ments2,34 and established Cas13a guide design principles—such 
as the importance of the protospacer flanking site (PFS) and the 
mismatch-sensitive ‘seed’ region35–37—but have not measured col-
lateral activity in high-throughput nor modeled it.

We designed a library of 19,209 unique LwaCas13a guide–tar-
get pairs (Fig. 1a and Supplementary Fig. 3a) to be tested using 
CARMEN8 (Combinatorial Arrayed Reactions for Multiplexed 
Evaluation of Nucleic acids), a droplet-based platform that performs 

parallel detection reactions. The library has a sequence composi-
tion representative of viral diversity, an average of 2.9 mismatches 
between each guide and target, and a variety of PFS alleles (Methods 
and Supplementary Fig. 3b,c). During each pair’s reaction, the intact 
reporter decays exponentially owing to Cas13a cleavage, and thus 
we use the negative of the decay to model fluorescence over time 
and determine its growth rate (Fig. 1a and Methods). The fluores-
cence growth rate is proportional to the enzymatic efficiency and 
concentration of a guide–target–Cas13a complex, so we evalu-
ate the efficiency by holding the complex concentration constant 
(Supplementary Fig. 4). We define activity as the logarithm of the 
fluorescence growth rate. We measured the fluorescence arising from 
the library’s guide–target pairs every ~20 min and, from these mea-
surements, calculated each pair’s activity (Extended Data Fig. 2).

Using our dataset, we developed a model to predict Cas13a activ-
ity from a guide–target pair. We use a two-step hurdle model: clas-
sifying a pair as inactive or active, and then regressing activity for 
active pairs (Fig. 1b and Supplementary Fig. 4b; 86.8% of the full 
dataset is labeled active). For classification, we performed nested 
cross-validation—fitting models multiple times on separate splits of 
the training data—to evaluate our fitting procedure and compare 
nine models using different inputs, including one-hot encodings 
(representing sequences with binary vectors) and handcrafted fea-
tures. A deep convolutional neural network (CNN) classifier, using 
nucleotide sequences alone, outperforms the other models (Fig. 2a  
and Supplementary Fig. 5a). For regression, a CNN also outper-
forms other models, albeit with less improvement over simpler 
models (Supplementary Fig. 5b,c). The convolutional layers prob-
ably detect sequence motifs and mismatch patterns. In all model 
training, we accounted for measurement error (Methods). Our 
strategy for dividing data ensured that validation folds contained 
sets of cognate guide–target pairs, unrelated to data in the training 
folds, which mirrors real-world usage (Methods).

Our space of CNN models allows for both convolutional and 
locally connected filters of different widths (Supplementary Fig. 6). 
The latter learn distinct filters for different regions of the guide–tar-
get complex and our model search preferred to incorporate them 
together with convolutional filters (Supplementary Figs. 7 and 8). 
They may help the model uncover fixed spatial dependencies, such 
as mismatch-sensitive regions.

We evaluated our models’ performance on a hold-out test set of 
guide–target pairs (Methods) and against a standard Cas13a design 
heuristic. Our classifier performs well (area under the receiver oper-
ating characteristic curve (auROC) = 0.866; area under the preci-
sion–recall curve (auPR) = 0.972 with 85.6% of the test set being 
true positive; Fig. 2b and Extended Data Fig. 3a). When the guide 
and target are not identical, it yields a lower false-positive rate  
and higher precision than a heuristic classifying activity according 
to the PFS and guide–target divergence (Fig. 2b and Extended Data 
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Fig. 1 | Measuring and modeling CRISPR–Cas13a detection activity. a, The library consists of an 865-nt-long wild-type target sequence and 91 guide RNAs 
complementary to it, along with 225 unique targets containing mismatches and varying PFS alleles relative to the wild type (19,209 unique guide–target 
pairs). We measure fluorescence every ~20 min for each pair and use the growth rate to quantify activity. b, We model activity for a guide–target pair in two 
parts: a classifier on all pairs and a regression model on the active pairs.
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Fig. 3b). Our regression predicts the activity of active guide–target 
pairs (Spearman’s ρ = 0.687; Fig. 2c), accurately binning pairs into 
quartiles (Fig. 2d). Regression on both active and inactive pairs per-
forms well (Spearman’s ρ = 0.774; Extended Data Fig. 4), but is less 
suited here than a hurdle model.

Further exploring our models, we considered that two features, 
the PFS and number of mismatches, could explain much of the 
performance. Yet the classification and regression CNNs retain 
accuracy when evaluated on individual PFS alleles and mismatch 
counts (Supplementary Figs. 9 and 10), albeit sometimes with lower  
performance than on the full dataset. Additional data similar to 

our current dataset would not be expected to improve performance 
(Supplementary Fig. 11).

We tested our model on two independent datasets36,37. The com-
parisons provide independent validation of its accuracy (Spearman’s 
|ρ| = 0.816 and 0.826) and demonstrate its generalizability to other 
uses, such as predicting RNA knockdown (Supplementary Note 1 
and Extended Data Fig. 5).

Precision matters greatly because we want confidence that 
designs predicted to be active are indeed active. In our design pro-
cess, we set the classifier’s decision threshold to yield a precision of 
0.975 (Methods, Figs. 1b and 2b, and Extended Data Fig. 3a).
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network with parallel convolutional filters and a locally connected layer. One-hot (1D), one-hot encoding of target and guide sequence independently, 
that is, without pairing of nucleotides; One-hot MM, one-hot encoding of target sequence nucleotides and mismatches in guide relative to the target; 
Handcrafted, curated features (Methods); One-hot (2D), one-hot encoding of target and guide sequence with encoded guide–target pairing. b, ROC 
curve, on a hold-out test set, of CNN classifying pairs as inactive or active. Points indicate sensitivity and false-positive rate (FPR) for baseline heuristic 
classifiers: a guide–target pair is active if it has a non-G PFS and the Hamming distance is within the specified threshold (color). Inset; comparison of the 
FPR between CNN (black) and baseline classifiers at equivalent sensitivity. The red plus indicates selected decision threshold. c, Results, on the hold-out 
set, of CNN predicting activities of active guide–target pairs. Contour color, point density. ρ, Spearman correlation. Extended Data Fig. 4 shows regression 
including inactive pairs. d, Same data as c. Each row contains one quartile of pairs divided by predicted activity (top row is predicted most active; light gray 
row combines all active pairs). Smoothed density estimates and interquartile ranges show the true activities. P values are from Mann–Whitney U tests 
(one-sided). e, Top 20 feature coefficients in L1 logistic regression model classifying activity with ‘One-hot MM + Handcrafted’ features. The dot is the 
mean over training on n = 5 splits and the error bar is the 95% confidence interval. Mismatch features indicate a mismatch with the indicated base being 
the complement of the spacer nucleotide; positions (Pos.) are relative to the target (28 is 5′ end of spacer).
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Beyond modeling activity, we examined our dataset to under-
stand LwaCas13a preferences. Previous studies identified weaker 
LwaCas13a activity when the PFS is G1 and characterized the pref-
erence in other orthologs35–37. In our data, G also reduces activity 
and, extending a position, GA, GC and GG provide higher activ-
ity than GT (Extended Data Fig. 6a), suggesting a more subtle PFS 
preference. Mechanistically, GT may reduce activity by preventing 
guide–target duplex separation38. Mismatches are another impor-
tant consideration given viral variation, and increasing numbers 
generally reduce activity (Extended Data Fig. 6b). U-g mismatches 
(U in target, G in spacer) rescue activity in our data, though G-u 
mismatches do not (Extended Data Fig. 6c); while RNA binding 
might tolerate both wobble pairings, the asymmetry could stem 
from how they affect nuclease activation. Our dataset also clarifies, 
for LwaCas13a, the mismatch-sensitive region previously identified 
for LbuCas13a37 and LshCas13a35. Weak guide–target pairs are rela-
tively likely to contain mismatches in positions 6–11 of the spacer, 
concordant with the known region, and there is high tolerance for 
mismatches on the 3′ end of the spacer (Extended Data Fig. 6d,e). 
Coefficients from linear models are consistent with these findings 
(Fig. 2e and Supplementary Fig. 12).

While our dataset and model focus on CRISPR–Cas13a, a simi-
lar measurement-driven approach could be applied to other viral 
nucleic acid detection technologies. The remainder of our work is 
model-agnostic.

Designing maximally active assays across variation. Our model 
provides quantitative predictions that can be used within an opti-
mization framework. We sought to design assays that are maxi-
mally active in detecting a virus’s variation. This formulation more 
explicitly optimizes sensitivity than design approaches9–15 that 
target conserved regions or handle sequence variation through  
a constraint.

We first formulate the problem of designing probe sequences 
across variation. We rely on all known sequences (S) within a 
genomic region (for example, amplicon) and our model that pre-
dicts activity between a probe and a targeted sequence. In the case of 
CRISPR-based diagnostics, probe sequences are guide RNAs; later, 
we address how to identify regions. We initially construct a ground 
set of possible probes, which are representative subsequences in S, 
using locality-sensitive hashing39. Our objective is to find the set P 
of probes, a subset of the ground set, that maximizes the expected 
activity when P detects S (Fig. 3a and Supplementary Note 2a). The 
expectation is over the sequences in S. Larger numbers of probes 
would require more detection reactions or, if they are multiplexed 
in one reaction, may interfere40, with the kinetic impact harming 
sensitivity41; thus, we impose a penalty and a hard constraint on the 
number of probes.

Having formulated an objective function, we developed an 
approach to maximize it using combinatorial optimization. We 
apply a fast randomized combinatorial algorithm42 for maximizing 
a non-negative and non-monotone submodular function under a 
hard constraint on the number of probes, which provides a probe 
set having an objective value near the optimal (Supplementary Note 
2a). A more simple, canonical greedy algorithm43 for submodular 
maximization returns similar results in practice (Supplementary 
Fig. 13), though does not offer provable guarantees in our case.

We benchmarked our approach’s comprehensiveness across 
sequence variation. To make this benchmarking interpretable and 
independent from the predictive model, we chose an activity func-
tion that equals 1 if a probe is within 1 mismatch of a target (detected) 
and 0 otherwise (not detected); expected activity is equivalent to the 
fraction of genomes detected. Two simple but common strategies 
for constructing probes—using the consensus or most abundant 
sequence in a region—fail to capture diversity for Lassa virus and 
other diverse viruses (Fig. 3b and Supplementary Fig. 14a).

Our approach yields greater comprehensiveness than the simple 
strategies. Its designs detect more variation—even with one probe—
across the genome, and the extent detected increases as we permit 
more probes (Fig. 3b and Supplementary Fig. 14a). If we compare 
against a combination of the most abundant subsequences—gener-
alizing the baseline strategy that selects the single most abundant, to 
now use multiple probes—our approach still detects more variation 
(Supplementary Fig. 14b). That is expected because our approach 
explicitly maximizes detection over the sequences. A different 
objective function can minimize the number of probes subject to 
comprehensiveness constraints (Supplementary Note 2b, Fig. 3c 
and Supplementary Fig. 14c). On species with less diversity, simple 
strategies perform well (Supplementary Fig. 14a,b), suggesting that 
our approach is not always necessary. Nevertheless, options to target 
many regions of a genome facilitate genuine activity predictions and 
taxon-specificity, which constrain designs.

Viral detection assays must often distinguish between species 
or strains that are genetically similar. In patient diagnostics, related 
viruses can cause similar symptoms and a highly specific assay helps 
to identify the infection or rule out possibilities. Taxon-specificity 
is also essential to routine surveillance that tests for many  
viruses. We avoid cross-reactivity by constraining the ground 
set of probes to only ones deemed taxon-specific. Determining 
whether a probe is taxon-specific ought to tolerate multiple mis-
matches between probes and potential off-targets and, when the 
probes and targets are RNA (as with Cas13), G-U wobble base 
pairs (Supplementary Fig. 15). We developed a data structure and 
query algorithm that are fully tolerant of high divergence and G-U 
wobble base pairing (Extended Data Fig. 7). Evaluating a probe’s 
taxon-specificity is a computational bottleneck, and this method 
runs 10–100 times faster than a baseline simple data structure with 
the same capability (Supplementary Fig. 16). Supplementary Note 3 
provides details.

Designing comprehensive diagnostics at scale. To accommodate 
ever-growing viral genomic data, we built ADAPT. ADAPT designs 
assay options using our model-based optimization approach, while 
interfacing with viral genome databases to incorporate the latest 
available data (Fig. 4a).

ADAPT searches a viral genome to identify regions to target, 
scoring them according to their amplification potential and the 
activity of an optimal probe set. In the process, ADAPT designs 
amplification primers to achieve high coverage of sequence diver-
sity. ADAPT’s genome-wide search follows the branch and bound 
paradigm and identifies the best N design options; users specify 
N, for which smaller values speed the search. Providing diverse 
design options allows for assays that target multiple distinct regions 
of a genome. ADAPT memoizes computations during its search, 
which decreases runtime by over 99% (Supplementary Fig. 17). 
Supplementary Note 4a,b details primer design and the search 
algorithm. ADAPT downloads and curates all near-complete or 
complete genomes from public databases31 for a specified virus tax-
onomy to use for design (Supplementary Note 4c). Fully automated 
assay design helps keep pace with viral evolution and emergence.

For some viruses there are few genome sequences, especially 
early in an outbreak, and therefore little data on their variation. We 
developed a scheme that uses the general time-reversible (GTR) 
nucleotide substitution model44 to forecast likely genome substitu-
tions in the region a probe detects, allowing us to estimate a proba-
bility that a probe’s activity will drop over time (Supplementary Note 
5 and Extended Data Fig. 8a). A drop may result from mutations 
at mismatch-sensitive sites or at other sites within or around the 
binding region. Applied to severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), we found that, for some Cas13a designs, 
there is a low probability (~10%) their predicted activity will drop 
over 5 years (Extended Data Fig. 8b,c). This forecasting may help in 
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risk-averse situations, but it has only a minor effect overall on assay 
rankings (Extended Data Fig. 8d).

We computationally evaluated ADAPT’s output on seven RNA 
viruses with differing degrees of diversity. Precise outputs are affected 
by algorithmic randomness, but are generally consistent in targeting 
the same genomic regions (Supplementary Fig. 18). Cross-validation 
confirms that ADAPT’s designs generalize to unobserved data: 
designs are predicted to detect >85% of held-out genomes for all 
seven species and exhibit, in all but one species (Rhinovirus A), ‘high 
activity’ (defined as top 25% of our dataset’s activities) in detecting 
the majority of held-out genomes (Fig. 4b). Relaxed design crite-
ria, which permit more complex assays (Methods), achieve an even 
higher sensitivity, with designs predicted to detect >96% of held-out 
genomes for all seven species (Supplementary Fig. 19). Thus, 
ADAPT’s outputs are robust across different viruses.

We applied ADAPT to design species-specific assays, including 
amplification primers and Cas13a guides, for the 1,933 viral spe-
cies known to infect vertebrates. The designs have short amplicons 
and use 1–3 guides for all species (Fig. 4c and Supplementary Fig. 
20). Thus, the assays are practical. For 95% of species, the guides 
detect the majority of known genomes with high predicted activity  
(Fig. 4d; for 88% of species, they detect >95% with high activity).

Our assays—designed to comprehensively detect species-level 
diversity—could detect novel viruses that are nested within known 
species. We simulated the design of assays in 2018 for detecting the 
SARS-related coronavirus (SARS-related CoV) species and then 
evaluated their detection of SARS-CoV-2, a lineage of the species that 
did not emerge until a year later. ADAPT’s second-highest-ranked 
design is predicted to detect SARS-CoV-2 well, while other designs 
are predicted to exhibit weak or no detection (Supplementary Fig. 
21a,b). Detection is facilitated by bat SARS-like viral genomes, similar 
to SARS-CoV-2, that were available in 2018. Nevertheless, heavy sam-
pling biases hinder the designs’ efficacies: in 2018, SARS-CoV-1 was 
overrepresented in the species (85%) relative to bat SARS-like viruses, 

and its divergence from SARS-CoV-2 weakens detection of the novel 
virus. If we downweigh consideration to SARS-CoV-1 (Methods), 
four of ADAPT’s five highest-ranked 2018 assays are predicted to 
detect SARS-CoV-2 well (Supplementary Fig. 21c,d). Such broadly 
effective assays constitute a proactive toolkit for detection.

We examined the computational requirements of designing 
assays for 1,933 species. ADAPT’s end-to-end design completed 
quickly: under 2 h for 80% of species, under 24 h for all but three 
species (human cytomegalovirus, SARS-related CoV and FLUAV) 
and under 38 h for all (Fig. 4e). Details on memory usage and other 
design considerations are in Supplementary Figs. 20c–f and 22 and 
Supplementary Note 4d.

Experimental evaluation of ADAPT’s designs. We experimen-
tally benchmarked our approach. We first considered the United 
States Centers for Disease Control and Prevention’s (US CDC’s) 
SARS-CoV-2 RT–qPCR diagnostic amplicons, a target of both RT–
qPCR and CRISPR-based assays. As baselines in the N1 amplicon, 
we selected a Cas13a guide at the site of the qPCR probe and ten 
random guides in the amplicon, all having an active (non-G) PFS; 
selecting guides according to the PFS is the canonical design strategy, 
and the distribution of their activity in this amplicon is a benchmark 
representing previous strategies for CRISPR-based SARS-CoV-2 
diagnostics45,46. The guide designed by our approach exhibits greater 
and faster-growing fluorescence at low target concentrations than 
all 11 of the baseline guides (Fig. 5a,b and Extended Data Fig. 9a). 
We observed similar results using the N2 amplicon (Extended Data 
Fig. 9b,c). Background activity does not impact these comparisons 
because all guides exhibit similarly low no-template fluorescence 
(Supplementary Fig. 23). These findings indicate that our designs 
permit better sensitivity against a known target sequence than the 
canonical approach focused on the PFS.

Next, we validated the comprehensiveness and specificity offered 
by our approach by considering taxa comprising the SARS-related 
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CoV species (Fig. 5c). We tested ADAPT’s designs against represen-
tative targets within each taxon, which we identified systematically 
according to sequence composition (Methods). Our testing directly 
measures the fluorescent signal yielded by the Cas13a guides at 
varying target concentrations. We started with precise targeting of 
SARS-CoV-2. Using ADAPT, we generated lineage-specific designs 
for detecting SARS-CoV-2 that should not detect bat or pangolin 
SARS-like coronaviruses, including the RaTG13 genome (96% iden-
tity to SARS-CoV-247), nor SARS-CoV-1 and other coronaviruses 
(Fig. 5c). All three of our approach’s best design options (ranked 
by predicted activity) detect SARS-CoV-2 with complete specificity: 
we observed no fluorescent signal for the related lineages (Fig. 5d).

We then broadened the targeted space within SARS-related CoV. 
We designed assays for the SARS-CoV-2-related lineage48, which 
consists of SARS-CoV-2 and its related bat and pangolin CoVs. Our 
approach’s three top-ranked designs sensitively and specifically detect 
all representative targets within SARS-CoV-2-related (Fig. 5e). Unlike 
the SARS-CoV-2 designs, we observed low off-target SARS-CoV-1 
signal because the added comprehensiveness antagonizes specificity; 
this is unlikely to affect diagnostic results that use an adequate signal 
threshold for detection. We also designed species-specific assays for 
the full SARS-related CoV species, and all three top-ranked designs 
detect all representative targets within the species without any signal 
for three other betacoronaviruses (Fig. 5f).

Overall, all top-ranked designs perform as desired across the 
SARS-related CoV taxa. For each taxon, ADAPT also generated  
additional design options (25 total) that generally exhibit the desired 
activity (Supplementary Fig. 24). Four of the designs use two Cas13a 

guides and, in these cases, our combinatorial optimization algorithm 
selects guides that detect distinct lineage groupings to maximize 
their collective sensitivity for the taxon (Extended Data Fig. 10).

We also evaluated limits of detection across extensive genomic 
variation. We focused on enteroviruses, which are estimated to 
cause millions of symptomatic infections yearly and frequent out-
breaks49,50. Testing increasingly relies on pan-enterovirus RT–qPCR 
by targeting a highly conserved region, which has clinical value but 
limited surveillance utility51; species-specific assays would provide 
higher resolution than pan-enterovirus assays, and thus could aid 
surveillance.

We applied ADAPT to design species-specific assays for 
Enterovirus B (EVB), which is widespread52 and exceptionally 
diverse, with 63 known types50. ADAPT’s three top-ranked designs 
detect the spectrum of genomic variation with specificity for EVB, 
as desired (Fig. 5g). To benchmark our approach, we targeted con-
served sites by designing a guide within each ADAPT-selected 
amplicon at the site with minimal Shannon entropy and an active 
PFS (Methods). Targeting conserved sites is a standard, widely used 
strategy for managing sequence diversity: conserved sites are a tar-
get of CRISPR-based diagnostics3,53 for diverse viruses and, in par-
ticular, entropy commonly steers the design of qPCR assays12,54,55. 
The entropy-based strategy fails to detect many targets representa-
tive of EVB’s genomic diversity (Fig. 5g). By contrast, our approach 
provides a higher fluorescent signal in nearly all representative  
targets, enabling a lower limit of detection in about half of them  
(Fig. 5h and Supplementary Fig. 25a–c). In many design options 
that we tested below the top three, the entropy-based strategy is 
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more sensitive than our approach; however, in these cases the 
entropy-based strategy lacks species-specificity (Supplementary 
Fig. 26). Though ADAPT’s designs incorporate 1–3 guides and the 

entropy-based strategy uses one, we tested multiple entropy-based 
guides in five designs and found they exhibit similar activity at low 
target concentrations (Supplementary Figs. 25d–f and 27). Our 
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results indicate that model-based optimization enables diagnos-
tics that sensitively detect vast genomic diversity, including with 
improved sensitivity over a conservation-based strategy.

To further evaluate specificity in clinically relevant conditions, 
we compared, in silico, all experimentally tested guides with the 
human transcriptome and 11 common bacterial pathogen genomes 
(Methods). All ADAPT-designed guides are at least five mismatches 
different from human transcripts and these bacterial genomes, 
indicating they are unlikely to exhibit off-target effects (Extended  
Data Fig. 6b).

Discussion
We developed an approach that combines a deep learning model 
with combinatorial optimization to design viral diagnostics. We 
applied our approach using CRISPR-based diagnostics, for which 
we generated a dataset on diagnostic signal and learned a model 
that predicts enzymatic activity during detection. Our approach 
integrates viral variation into an objective function to create designs 
that are maximally active across variants. Alongside achieving 
comprehensive sensitivity, the approach enforces specificity at 
any taxonomic level, so its outputs can be used in clinical assays 
to specifically detect viruses, including related subspecies. We built 
ADAPT, which runs our approach at scale.

We experimentally validated ADAPT’s designs across extensive 
target variation. ADAPT’s designs (1) exhibit higher fluorescence for 
SARS-CoV-2 at low concentrations than designs from previous strat-
egies; (2) are sensitive and specific to the lineage level across closely 
related taxa; and (3) specifically identify a diverse species, EVB, with 
lower limits of detection across its genomic diversity, compared with 
a strategy focused on sequence conservation. While we tested exten-
sively across viral variation, we used synthetic targets. Validation 
on patient and environmental samples would be important before 
deploying ADAPT’s assays in practice, although previous studies8,53,56 
have demonstrated that they work well on such samples.

Days after SARS-CoV-2 was first sequenced, we applied an early 
version of ADAPT to design CRISPR-based assays for SARS-CoV-2 
and other respiratory viruses57. Though designed from only the 
20 genomes available then58, we predict this SARS-CoV-2 assay 
to detect 99.8% of the ~5.2 million genomes sequenced through 
December 2021. Early versions of ADAPT also designed assays for 
169 human viruses and influenza subtyping8, and for Lassa virus53.

We envision running ADAPT regularly for thousands of viruses, 
so that designs continually reflect evolution. That will provide 
broadly effective designs in advance of an outbreak. ADAPT’s 
designs perform well for known viruses and can even be useful for 
novel viruses not yet known during the design. For novel viruses, 
however, genome sampling biases can hinder ADAPT’s perfor-
mance. Our simulation of this application—in which we designed 
for SARS-related CoV before SARS-CoV-2’s emergence—motivates 
preparing several highly ranked assays rather than one, and hav-
ing them ready to test on a novel virus. Relatedly, ADAPT’s assays 
could struggle for viruses with few sequences in genome databases; 
ADAPT’s forecasting of genome substitutions and their impact on 
designs (Supplementary Note 5 and Extended Data Fig. 8) may help, 
but is limited to the sequence space around known genomes.

There is room for methodological improvements in ADAPT. 
Integrating a learned model for amplification primers, rather 
than using conventional heuristics, could improve amplification 
steps of CRISPR-based diagnostics. However, such a model would 
require constructing a training dataset and recent developments in 
amplification-free CRISPR-based detection46,59,60 may negate moti-
vation for such work. Another area is algorithmic. For instance, 
rather than maximizing detection over a uniform distribution of 
genomes, an approach to weigh genomes could correct for sampling 
biases and improve the chances that ADAPT’s designs detect under-
sampled emerging and novel viruses.

Our Cas13a dataset and modeling could illuminate guide design 
principles. While we extracted design considerations from linear 
models, a more thorough modeling of predefined features—similar 
to that performed for Cas13d18—may reveal additional Cas13a prin-
ciples. Our CNN models may also learn novel features, and inter-
preting these models61 could identify elements of the input sequences 
that promote high activity and underlie new design principles.

Though we trained a deep neural network for CRISPR–Cas13a, 
ADAPT accommodates models for other nucleic acid technologies. 
An example is qPCR. SARS-CoV-2 qPCR assays exhibit variability 
in their reported sensitivities62 and many target regions that have 
acquired mutations32,33,63, motivating a learned model and an appli-
cation of ADAPT.

Beyond viral diagnostics, our approach could benefit other tasks 
that require maximally active sequences across genomic variation. As 
examples, variation impacts short interfering RNA64, antibody65 and 
CRISPR-based antiviral66 therapeutic efficacy. With appropriate mod-
els, model-based optimization could also enhance sequence-based 
vaccine selection67–69 by designing vaccine antigens that drive immune 
responses to be maximally active across viral diversity.

ADAPT’s web frontend is available at https://adapt.run. This 
resource, which includes annotated design visualizations, also pro-
vides pre-made designs against vertebrate-associated viruses. Using 
ADAPT, those proactive designs can continually update to reflect 
recent variation. ADAPT is also available as a software package at 
https://github.com/broadinstitute/adapt.

Our approach, together with the introduction of ADAPT, 
improves the development and efficacy of viral diagnostics, and has 
the potential to do so for other sequence-based technologies.
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Methods
ADAPT. Supplementary Notes describe ADAPT’s algorithms, data structures 
and implementation details. Supplementary Note 2 defines objective functions 
and describes how ADAPT optimizes them. Supplementary Note 3 describes how 
ADAPT enforces specificity. Supplementary Note 4 describes how ADAPT searches 
for genomic regions to target and links with sequence databases. Supplementary 
Note 5 describes how ADAPT forecasts relatively likely genome substitutions.

Introductory analyses. To illustrate viral database growth, we charted the 
growth in the number of viral genomes and their unique 31-mers over time 
(Supplementary Fig. 1). We first curated a list of viral species known to infect 
humans from a National Center for Biotechnology Information (NCBI) database70 
(November 2019). For each, we took all NCBI genome neighbors31 (influenza 
sequences from the Influenza Virus resource71), which represent near-complete or 
complete genomes. To assign a date for each, we used the GenBank entry creation 
date rather than sample collection date for several reasons, including that this date 
more directly represents our focus in the analysis (when the sequence becomes 
present in the database) and that every entry on GenBank contains a value for this 
field. To control for some viruses having multiple segments (and thus sequences), 
we only used counts for one segment for each species, namely the segment that has 
the greatest number of sequences.

We used FLUAV subtyping as an example to demonstrate the effect of 
evolution on diagnostics (Extended Data Fig. 1a and Supplementary Fig. 2). We 
selected the most conserved k-mers—representing probe or guide sequences—
from the sequences available at different years. Here, for simplicity, we ignored 
all other constraints, such as detection activity and specificity (the latter of which 
is critical for subtyping), which may further degrade the temporal performance 
of the selected k-mers. In particular, for each design year Y, we selected the 15 
non-overlapping 30-mers found in the largest number of sequences taken from the 
two most recent years (Y − 1 and Y). We then measured the fraction of sequences 
in subsequent test years (Y, Y + 1, …) that exactly contain each of these k-mers. We 
performed the design strategy over ten resamplings of the sequences and use the 
mean fraction. We repeated this four times: for segment 4 (HA) sequences of H1 
and H3 subtypes, and segment 6 (NA) sequences of N1 and N2 subtypes.

To visualize mutations accumulating on a genome during the course of an 
outbreak (Extended Data Fig. 1b), we used complete SARS-CoV-2 genomes from 
Global Initiative on Sharing All Influenza Data (GISAID)58. We called variants 
in all genomes, through 2020, against the reference genome ‘hCoV-19/Wuhan/
IVDC-HB-01/2019’ (GISAID accession ‘EPI_ISL_402119’). For every date d 
between 1 February 2020 and 1 January 2021, spaced apart by 1 month, at every 
position we calculated the fraction of all genomes collected up to d that have a 
variant against the reference. We called all variants present between 0.1% and 1% 
frequency on some d as ‘low’ frequency and variants at ≥1% frequency on some 
d as ‘high’ frequency. We ignored all variants present at ≥1% frequency on the 
initial d (ancestral) or that were both low frequency on the initial d and stayed low 
frequency by the final d—that is, we kept the variants that transitioned to low or 
high frequency by the final d. We show the d when the variant first becomes called 
as low (light purple) or high (dark purple) frequency. If a variant transitions both 
to low and then to high frequency by the final d, we only show it for the d when it 
becomes high frequency.

Cas13a library design and testing. We designed a collection of CRISPR–Cas13a 
CRISPR RNA (crRNA) guides and target molecules to evaluate guide–target 
activity, focusing on assessing likely active guide–target pairs. First, we designed 
a target (the wild-type target) that is 865 nucleotides (nt) long (design details for 
the wild-type target are in the subsequent paragraph). We then created 94 guides 
(namely, the 28-nt spacers) tiling this wild-type target (Fig. 1a and Supplementary 
Fig. 3a). In the tiling scheme there are 30-nt blocks, each having four overlapping 
guides, in which the starts of the three guides, from the start of the most 5′ guide, 
are 4 nt, 13 nt and 23 nt. Of the 94 guides, 87 are experimental, three are negative 
controls and four are positive controls. We created 229 unique target sequences: 
one of them is the wild-type sequence (guides should exhibit activity against this 
target), 225 are experimental (mismatches and varying PFS alleles against the 
guides) and three are negative controls. All guides exactly match the wild-type 
target and should detect this, except the three negative control guides, which are 
not intended to detect any targets except one of the three negative control targets 
each. The four positive control guides target four 30-nt regions with a perfectly 
complementary sequence and non-G PFS that are held constant across all targets, 
with the exception of the three negative control targets. Across the experimental 
targets, the mismatches profile varying choices of positions and alleles against 
the guide. For the experimental targets, we generated single mismatches evenly 
spaced every 30 nt along the experimental region such that every guide targeting 
this region has either a single mismatch or an altered PFS at +1 or +2 nt from the 
protospacer; we created a total of 45 (3 × 15) such targets to probe all three possible 
mismatch alleles and 15 of 30 of the possible phasings. In the remainder of the 
experimental targets, we generated targets with two, three or four mismatches 
per 30-nt block with respect to the guide RNA in phase with the block. For these 
targets, we randomly selected mismatch positions to uniformly sample (or, when 
possible, exhaustively enumerate) average mismatch spacing and average mismatch 

distance to the center of the spacer, and randomly selected mismatch alleles. The 87 
experimental guides may detect up to 226 unique target sequences (the wild type 
and 225 experimental targets), providing 19,662 experimental guide–target pairs.

To construct the wild-type target sequence, we aimed to produce a 
composition spanning viral genomic sequence diversity. In particular, we started 
with a previously described dataset of genomes from human-infecting viral 
species72, constructed a vector of the dinucleotide frequencies for each species 
and performed principal component analysis of the species from these vectors. 
For each 30-nt block of the wild-type target, we selected a point from the space 
of the first three principal components (uniformly at random), reconstructed a 
corresponding vector of dinucleotide frequencies (that is, transformed the point 
back to the original space) and then iteratively selected every next nucleotide in the 
block according to the distribution of dinucleotides. A goal of this scheme is for 
dinucleotides that are variable across viral species to also vary in frequency across 
the wild-type target: a dinucleotide that explains considerable variance across viral 
species (for example, is rich in some viral species and poor in others) ought to 
be rich in some blocks of the wild-type target and poor in other blocks, whereas 
a dinucleotide that explains little variance across species ought to have similar 
frequency along the target. In positions that would serve as a PFS for a guide, we 
disallowed G, and proportionately adjusted upwards the probability of choosing a 
G in non-PFS positions to maintain the total dinucleotide frequency in accordance 
with the randomly selected distribution (mismatches in experimental targets can 
still introduce a G PFS).

We synthesized the targets as DNA, in vitro transcribed them to RNA and 
synthesized the crRNAs as RNA. On all crRNAs, we used the same direct repeat 
(‘GAUUUAGACUACCCCAAAAACGAAGGGGACUAAAAC’). To determine 
a reasonable concentration for measuring fluorescence over time points, we 
tested eight concentrations of two targets and two guides in a pilot experiment 
(Supplementary Fig. 4a) and proceeded with 6.25 × 109 copies per µl. We tested the 
library using CARMEN; we followed the methodology described in ref. 8, which 
also contains the protocol. Briefly, a guide–target pair is enclosed in a droplet, 
together with the Cas13a enzyme, that may result in a detection reaction and thus 
fluorescence. We took an image of each location on each chip roughly every 20 min 
to measure this fluorescence. To alleviate the presence of microdroplets in this 
experiment (that is, an irregular pairing of target and guide; about one-third of 
the droplets), we trained and applied a CNN on hand-labeled data to identify and 
remove these.

Quantifying activity. In our Cas13a detection experiments, a fluorescent reporter 
is cleaved over time and its cleavage follows first-order kinetics:

d[R]
dt = −

kcat
KM

[E] [R]

⇒ [R] = [R]0e
−

kcat
KM

[E]t

where [R] is the concentration of the not-yet-cleaved reporter, [E] is the 
concentration of the Cas13a guide–target complex, kcatKM

 is the catalytic efficiency of 
the particular guide–target complex and t is time. The fluorescence measurements 
that we make, y, are proportional to the quantity of cleaved reporter at some  
time point:

y ∝ [R]0 − [R] .

Therefore, for each guide–target complex we fit a curve of the form

y = C
(

1 − e−kt
)

+ B.

Here, C and B represent the saturation point and background fluorescence, 
respectively. k represents the rate at which the reporter is cleaved, and it is 
proportional to the catalytic efficiency of the particular guide–target complex:

k =
kcat
KM

[E] .

This relationship is validated by the linear relationship between k and [E] 
(Supplementary Fig. 4a) when we vary the concentration of target (the limiting 
component of the complex). In producing our dataset, we held [E] constant. We 
used log10(k) as our measurement of the overall enzymatic activity resulting from 
the guide–target pair (Figs. 1 and 2 and Supplementary Fig. 4a,b). Intuitively, 
each step-increase in log10(k) corresponds to a fold-decrease in the half-life of the 
reporter in the reaction.

Our experimental data incorporate multiple droplets for each guide–target 
pair (Extended Data Fig. 2a). Each droplet represents one technical replicate of a 
particular guide–target pair. Thus, we have fluorescence values for each replicate 
at different time points, and in practice we compute the activity log10(k) for each 
replicate.

We curated the data to obtain a final dataset. Namely, we discarded data 
from two guides that showed no activity between them and any targets, owing 
to low concentrations in their synthesis. We also did not use data from positive 
or negative control guides, or from the negative control targets. Our final dataset 
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contains 19,209 unique guide–target pairs (Supplementary Fig. 3b,c), counting 
20 nt of sequence context around each protospacer in the target (18,253 unique 
pairs when not counting context).

Most guide–target pairs show activity (Extended Data Fig. 2d), as expected. 
At small values of k on a limited time scale (t up to ~120 min), we do not observe 
reporter activation (Supplementary Fig. 4b). Moreover, the curve becomes 
approximately linear (first-order Maclaurin expansion: y ≈ Ckt + B). At such values 
of k, we cannot estimate both C and k together; intuitively, this is because there 
is too little detectable signal. Therefore, there is a cutoff at which we can estimate 
k; we labeled activities at log(k) > −4 as active, and the others as inactive. This 
phenomenon also implies that at smaller values of k, including ones we label as 
active, activity estimates might be less reliable.

Predicting detection activity. Measurement error. To account for measurement 
error, we sampled, with replacement, ten technical replicate measurements of 
activity for each guide–target pair (Extended Data Fig. 2a). We used this strategy 
to ensure that, although there are differing numbers of replicates per guide–target 
pair, each pair would be represented in the dataset with the same number of 
replicates. There are 19,209 × 10 = 192,090 points in total in our dataset that we use 
for training and testing. When plotting regression results on guide–target pairs in 
the hold-out test set (Fig. 2c, Extended Data Fig. 4a and Supplementary Fig. 10), 
we set the true activity of a pair to be the mean of the measured activities across the 
technical replicates for the pair.

Model and input descriptions. We approached prediction using a two-step hurdle 
model, reasoning that (1) separate processes govern whether a guide–target pair 
is active compared with the level of its activity; and (2) we could better predict 
the activity of active pairs if we excluded the inactive pairs from a regression. We 
developed a classifier to decide whether a pair is inactive or active, and a regression 
model to predict the activity of only active pairs.

We explored multiple models for classification (Fig. 2a and Supplementary Fig. 
5a), each with a space of hyperparameters:

•	 L1 logistic regression: regularization strength (logarithmic in [10−4, 104])
•	 L2 logistic regression: regularization strength (logarithmic in [10−4, 104])
•	 L1 + L2 logistic regression (elastic net): regularization strength (logarithmic in 

[10−4, 104]), L1/L2 mixing ratio (1.0 − 2x + 2−5 for x uniform in [−5, 0])
•	 Gradient-boosted trees (GBT): learning rate (logarithmic in [10−2, 1]), number 

of trees (logarithmic in [1, 28], integral), minimum number of samples for split-
ting a node (logarithmic in [2, 23], integral), minimum number of samples at a 
leaf node (logarithmic in [1, 22], integral), maximum depth of a tree (logarith-
mic in [2, 23], integral), number of features to consider when splitting a node 
(for n features, chosen uniformly among considering all, 0.1n, 

√n and log2 n)
•	 Random forest (RF): number of trees (logarithmic in [1, 28], integral), mini-

mum number of samples for splitting a node (logarithmic in [2, 23], integral), 
minimum number of samples at a leaf node (logarithmic in [1, 22], integral), 
maximum depth of a tree (chosen uniformly among not restricting the depth 
or restricting the depth to a value picked logarithmically from [2, 24] and 
made integral), number of features to consider when splitting a node (for n 
features, chosen uniformly among considering all, 0.1n, 

√n and log2 n)
•	 Support vector machine (SVM; linear): regularization strength (logarithmic in 

[10−8, 108]), penalty type (chosen uniformly among L1 and L2)
•	 Multilayer perceptron (MLP): number of layers excluding the output layer 

(uniform in [1, 3]), dimensionality of each layer excluding the output layer 
(each chosen uniformly in [4, 127]), dropout rate in front of each layer (uni-
form in [0, 0.5]), activation function (chosen uniformly among rectified linear 
unit (ReLU) and exponential linear unit (ELU)), batch size always 16

•	 Long short-term memory recurrent neural network (LSTM): dimensionality 
of the output vector (logarithmic in [2, 28], integral), whether to be bidirec-
tional (chosen uniformly among unidirectional and bidirectional), dropout 
rate in front of the final layer (uniform in [0, 0.5]), whether to perform an 
embedding of the one-hot encoded nucleotides and the dimensionality if so 
(chosen with 1/3 chance to not perform an embedding, and with 2/3 chance to 
perform an embedding with dimensionality chosen uniformly in [1, 8]), batch 
size is always 16

•	 CNN: number of parallel convolutional filters and their widths (chosen 
uniformly among not having a convolutional layer, 1 filter of width 1, 1 filter of 
width 2, 1 filter of width 3, 1 filter of width 4, 2 filters of widths {1, 2}, 3 filters 
of widths {1, 2, 3} and 4 filters of widths {1, 2, 3, 4}), convolutional dimension 
(uniform in [10, 249]), pooling layer width (uniform in [1, 3]), pooling layer 
computation (chosen uniformly among maximum, average and both), number 
of parallel locally connected layers and their widths (chosen uniformly among 
not having a locally connected layer, 1 filter of width 1, 1 filter of width 2 and 
2 filters of widths {1, 2}), locally connected filter dimension (uniform in [1, 
4]), number of fully connected layers and their dimensions (chosen uniformly 
among 1 layer with dimension uniform in [25, 74] and 2 layers each with 
dimension uniform in [25, 74]), whether to perform batch normalization in 
between the convolutional and pooling layers (uniform among yes and no), 
activation function (chosen uniformly among ReLU and ELU), dropout rate 
in front of the fully connected layers (uniform in [0, 0.5]), L2 regularization 

coefficient (lognormal with mean µ = −13, σ = 4), batch size (uniform in [32, 
255]), learning rate (logarithmic in [10−6, 10−1])

Similarly, for regression we explored multiple models (Supplementary Fig. 5b,c),  
each with a space of hyperparameters:
•	 L1 linear regression: regularization strength (logarithmic in [10−8, 108])
•	 L2 linear regression: regularization strength (logarithmic in [10−8, 108])
•	 L1 + L2 linear regression (elastic net): regularization strength (logarithmic in 

[10−8, 108]), L1/L2 mixing ratio (1.0 − 2x + 2−5 for x uniform in [−5, 0])
•	 GBT: same hyperparameter space as for classification
•	 RF: same hyperparameter space as for classification
•	 MLP: same hyperparameter space as for classification
•	 LSTM: same hyperparameter space as for classification
•	 CNN: same hyperparameter space as for classification

Model selection and evaluation describes the search process.
When training and testing the models, we used a 28-nt guide and target 

sequence, and include 10 nt of context in the target sequence on each side of the 
protospacer. We tested the following different inputs:
•	 ‘One-hot (1D)’: vector containing 4 bits to encode the nucleotide at each target 

position and 4 bits similarly for each guide position; with a 28-nt guide and 
10 nt of context in the target around the protospacer, there are (10 + 28 + 10 + 
28) × 4 = 304 bits

•	 ‘One-hot MM’: similar to ‘One-hot (1D)’ except explicitly encoding mis-
matches between the guide and target—that is, vector containing 4 bits to 
encode the nucleotide at each target position and 4 bits, at each guide position, 
encoding whether there is a mismatch (if not, all 0) and, if so, the guide allele; 
same length as ‘One-hot (1D)’

•	 ‘Handcrafted’: features are count of each nucleotide in the guide, count 
of each dinucleotide in the guide, GC count in the guide, total number of 
mismatches between the guide and target sequence, and a one-hot encod-
ing of the 2-nt PFS (coupling the 2 nucleotides); the number of features is 
4 + 16 + 1 + 1 + 16 = 38

•	 ‘One-hot MM + Handcrafted’: concatenation of features from ‘One-hot MM’ 
and ‘Handcrafted’, except removing from ‘One-hot MM’ the bits encoding the 
2-nt PFS because these are included in ‘Handcrafted’

We used these inputs for all models except the LSTM and CNN. For these two 
models, which can capture and extract spatial relationships in the input, we used an 
alternative input (labeled ‘One-hot (2D)’ in figures). Here, the input dimensionality 
is (48, 8) and consists of a concatenated one-hot encoding of the target and guide 
sequence. Namely, each element xi (i ∈ {1… 48}) is a vector [xi,t, xi,g]. Target context 
corresponds to i ∈ {1… 10} (5′ end) and i ∈ {39… 48} (3′ end); for these i, xi,t is 
a one-hot encoding of the target sequence and xi,g is all 0. The guide binds to 
the target at i ∈ {11… 38} and, for these i, xi,t is a one-hot encoding of the target 
sequence protospacer at position i − 10 of where the guide is designed to bind, 
while xi,g is a one-hot encoding of the guide at position i − 10.

We evaluated all models, except the MLP, LSTM and CNN, using scikit-learn 
0.22 (ref. 73). We implemented and evaluated the MLP, LSTM and CNN models in 
TensorFlow 2.1.0 (ref. 74).

For the MLP, LSTM and CNN models, we used binary cross-entropy as the 
loss function for classification and mean squared error for regression. For these 
three models, we used the Adam optimizer75 and performed early stopping during 
training (maximum of 1,000 epochs) with a held-out portion of the training data. 
Additionally, for the CNN we regularized the weights (L2). When training all 
classification models, we weighted the active and inactive classes equally.

Data splits and test set. When performing model cross-validation, we must 
determine folds of the data. Guides are tiled along the 865-nt wild-type target (Fig. 
1a and Supplementary Fig. 3a) and their positions along the RNA target enable 
dividing guide–target pairs into two sets in which each set consists of cognate 
guide–target pairs that are unrelated to the pairs in the other set. During k-fold 
cross-validation, we split the positions of the guide–target pairs into k consecutive 
folds (positions are ordered, that is, not shuffled). For each fold, the validation 
set consists of guide–target pairs where the guide’s position is from the validation 
range, and the training set consists of guide–target pairs where the guide’s position 
is from the position ranges in the remaining k − 1 folds. Note that the validation 
set consists of guide–target pairs from one contiguous region of the 865-nt RNA 
targets, while the training set is not necessarily contiguous. With this strategy 
alone, guides between the training and validation sets may overlap according to 
the position against which they were designed along the wild-type target. Although 
effects on activity might be position-dependent within the guide, this overlap can 
cause guides to have similar sequence composition or to be in regions of the target 
sequence with similar structure. To remove this possibility of leakage between a 
data split, after making a split of X into Xtrain and Xvalidate, we removed all guide–
target pairs from Xvalidate for which the guide has any overlap, in target sequence it is 
designed to detect, with a guide in Xtrain. We performed this data splitting strategy 
during all cross-validated analyses, including for determining outer and inner folds 
of nested cross-validation.

We also followed this strategy to choose a test set that we hold out from all 
analyses and use only for evaluating the final CNNs. This test set consists of the 
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30% of all guides (counted before removing overlaps between the test set and other 
data) that detect the 3′ end of the 865-nt targets.

Model selection and evaluation. We performed nested cross-validation to select 
models—both for classification and regression—and evaluate our selection of them 
(Fig. 2a and Supplementary Fig. 5). We used five outer folds of the data. For each 
outer fold, we searched for hyperparameters using a cross-validated (five inner 
folds) random search over the space defined in Model and input descriptions; we 
scored using the mean auROC (classification) or Spearman correlation (regression) 
over the inner folds. In each random search, we used 100 hyperparameter choices 
for all models, except for the LSTM and CNN models (50), which we found slower 
to train.

The CNN models outperformed others in the above analysis, so we selected 
a final CNN model for classification and another for regression. For each of 
classification and regression, we performed a random search across five folds of the 
data using 200 random samples. We selected the model with the highest auROC 
(classification) or Spearman correlation (regression) averaged over the folds. Our 
evaluations of these two models used the hold-out test set.

Incorporating into ADAPT. We integrated the CNN models into ADAPT. First, we 
set the decision threshold on the classifier’s output to be 0.577467. We chose the 
threshold, via cross-validation, to achieve a desired precision of 0.975. In particular, 
we took five folds of our data (excluding test data) and, for each fold, we calculated 
the threshold that achieves a precision of 0.975 on the validation data. Our decision 
threshold is the mean across the folds.

We then defined a piecewise function, incorporating the classification and 
regression models, as:

d(p, s) =

{ 0, ifC(p, s) < t

max (0, r + R(p, s)) , else

where d(p, s) is the predicted detection activity between a probe p and target 
sequence s (s includes 10 nt of context). C(p, s) is the output of the classifier, t is the 
classification decision threshold and R(p, s) is the output of the regression model. r 
is a shift that we add to regression outputs to ensure d(p, s) is non-negative; though 
a nice property, it is not strictly needed as long as we constrain the ground set as 
described in Supplementary Note 2a. The choice of r should depend on the range of 
activity values in the dataset; here, r = 4.

Comparison of predictions with independent Cas13a datasets. Supplementary Note 
1 describes how we evaluated our model’s predictions using independent Cas13a 
datasets from refs. 36,37. When reporting P values for Spearman’s test and Pearson’s 
test (Extended Data Fig. 5), the alternative hypothesis is that the true correlation is 
not 0 (Pearson’s test uses a t-distribution). Pearson’s r (Extended Data Fig. 5) was 
calculated as a sample correlation coefficient between our model’s predicted values 
and paired, independently measured values.

ADAPT analyses. Comparing algorithms for submodular maximization. 
To compare the canonical greedy algorithm for constrained monotone 
submodular maximization43 with the fast randomized combinatorial algorithm42 
(Supplementary Fig. 13), we ran ADAPT five times under each choice of 
parameter settings and species. For each run, we plotted the mean objective 
value taken across the best five design options. We used the arguments ‘-pm 
3 -pp 0.9 --primer-gc-content-bounds 0.3 0.7 --max-primers-at-site 10 -gl 28 
--max-target-len 250’ with our Cas13a activity model. We used the default 
objective function in ADAPT: 4 + A − 0.5 P − 0.25 L, where A is the objective value 
maximized by the submodular maximization algorithms, P is the number of 
primers and L is the target length.

Benchmarking comprehensiveness. To benchmark comprehensiveness (Fig. 3b,c and 
Supplementary Fig. 14), we ran ADAPT with three approaches. In all approaches, 
we decided that a probe detects a target sequence if and only if they are within one 
mismatch, counting G-U wobble pairs as matches, and used a sliding window of 
200 nt and a probe length of 30 nt. We used bootstrapping to estimate uncertainty 
around plotted values owing to viral genome sampling: five times, we randomly 
sampled with replacement from all NCBI genome neighbors31 for each species (if 
there are N neighbors, we randomly sampled N with replacement) and used each 
of these resamplings as input to five runs. In the first approach (baselines), we used 
ADAPT’s design_naively.py program to select probes within each window via three 
strategies: (1) the consensus probe, computed at every site within the window, that 
detects the most number of genome sequences (‘consensus’); (2) the most common 
probe sequence, determined at every site within the window, that detects the most 
number of genome sequences (‘mode’); and (3) the n most common subsequences, 
with all n determined at each site in the window, choosing the n from the site 
where they collectively detect the most number of genome sequences (doing this 
separately for n ranging from 1 to 10). In the second approach, we maximized 
expected activity using ADAPT across the target sequences with different 
numbers of probes (hard constraints) using a penalty strength of 0 (that is, no 
soft constraint). Here, we defined the activity to be binary: 1 for detection, and 0 

otherwise; this has the property that expected activity is equivalent to the fraction 
of sequences detected. In the third approach, we use the objective function in 
ADAPT that minimizes the number of probes subject to constraints on the fraction 
of sequences detected (specified via ‘-gp’; 0.9, 0.95 and 0.99).

Evaluating dispersion and generalization. We evaluated the dispersion, owing 
to randomness and sampling, in ADAPT’s designs (Supplementary Fig. 18). In 
all cases, we used all NCBI genome neighbors31 for each species and used the 
following arguments with ADAPT: ‘--obj maximize-activity --soft-guide-constraint 
1 --hard-guide-constraint 5 --penalty-strength 0.25 -gl 28 -pl 30 -pm 3 
-pp 0.98 --primer-gc-content-bounds 0.35 0.65 --max-primers-at-site 10 
--max-target-length 500 --obj-fn-weights 0.50 0.25’, with a cluster threshold such 
that there is only one cluster, and used our Cas13a activity model. We ran ADAPT 
in two ways: 20 times without changing the input (output differences are owing to 
algorithmic randomness) and 20 times with resampled input (output differences 
are owing both to randomness and to sampling of the input sequences). Then, we 
measured dispersion by treating the five highest-ranked design options from each 
run as a set and computing pairwise Jaccard similarities across the 20 runs. This 
computation requires us to evaluate overlap between two sets: in one comparison, 
we consider a design option x to be in another set if x is present exactly in that 
other set (same primers and probes) and, in the other comparison, we consider a 
design option x to be in another set if that other set has some design option with 
both endpoints within 40 nt of x’s endpoints.

To evaluate the generalization of ADAPT’s designs (Fig. 4b), we performed 
cross-validation via repeated random subsampling. For each species, we took 
all NCBI genome neighbors31 and, 20 times, randomly selected 80% of them 
to use as input for design and the remaining 20% to test against. For each split, 
we used the same arguments with ADAPT as when evaluating dispersion: 
‘--obj maximize-activity --soft-guide-constraint 1 --hard-guide-constraint 5 
--penalty-strength 0.25 -gl 28 -pl 30 -pm 3 -pp 0.98 --primer-gc-content-bounds 
0.35 0.65 --max-primers-at-site 10 --max-target-length 500 --obj-fn-weights 0.50 
0.25’, with a cluster threshold such that there is only one cluster, and used our 
Cas13a activity model. When computing the fraction of sequences in the test set 
that are detected, we required the sequence to be detected by a primer on the 5′ 
and 3′ ends of a region (within three mismatches) and a probe (here, guide) to 
detect the region; we used the analyze_coverage.py program in ADAPT for this 
computation. We labeled detection of a sequence as ‘active’ if a guide in the guide 
set is decided by our Cas13a classification model to be active against the target. We 
labeled the detection as ‘highly active’ if a guide in the guide set is both decided to 
be active by the Cas13a classification model and its predicted activity, according to 
the Cas13a regression model, is ≥2.7198637 (4 added to the output of the model, 
−1.2801363). This threshold corresponds to the top 25% of predicted values on the 
subset of our hold-out test set that is classified as active.

Using the same cross-validation strategy, we also evaluated generalization 
except with relaxed settings on constraints for the number of guides and 
more stringent settings on primer coverage (Supplementary Fig. 19): ‘--obj 
maximize-activity --soft-guide-constraint 3 --hard-guide-constraint 10 
--penalty-strength 0.05 -gl 28 -pl 30 -pm 3 -pp 0.995 --primer-gc-content-bounds 
0.20 0.80 --max-primers-at-site 15 --max-target-length 1000 --obj-fn-weights 
0.30 0.05’. These settings allow for more complex assay designs (for example, more 
guides and primers) to enable a higher sensitivity. Additionally, when deciding 
detection of the held-out genomes in this analysis, we adjusted thresholds to allow 
a higher sensitivity with lower precision: we allowed four mismatches for primers 
(instead of three) and lowered the decision threshold of our Cas13a classification 
model to 0.3 (instead of 0.577467).

Benchmarking trie-based specificity queries. We benchmarked the approach 
described in Supplementary Note 3d against a single, large trie (Supplementary  
Fig. 16). For this, we sampled 1.28% of all 28-mers from 570 viral species 
(~78.7 million 28-mers in total), and built data structures indexing these. We 
then randomly selected 100 species (here, counting each segment of a segmented 
genome as a separate species), and queried 100 randomly selected 28-mers 
from each of these for hits against the other 569 species. We performed this for 
varying choices of mismatches. We used the same approach to generate results in 
Supplementary Fig. 15, there comparing queries with and without tolerance  
of G-U base pairing.

Benchmarking runtime improvement with memoization. We benchmarked the 
effect on runtime of memoizing repeated computations (Supplementary Fig. 
17), as described in Supplementary Note 4b. We used all genome neighbors 
from NCBI’s viral genomes resource31 as input for each of the three species 
tested. To run ADAPT while memoizing computations, we used the arguments: 
‘--obj maximize-activity --soft-guide-constraint 1 --hard-guide-constraint 
5 --penalty-strength 0.25 --maximization-algorithm random-greedy -pm 3 
-pp 0.9 --primer-gc-content-bounds 0.3 0.7 --max-primers-at-site 10 -gl 28 
--max-target-len 250 --best-n-targets 10 --id-m 4 --id-frac 0.01 --id-method 
shard’. We also used our Cas13a predictive model and enforced specificity 
against all other species within each species’ family. To perform runs without 
memoizing computations, we did the same except added the argument 
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‘--do-not-memoize-guide-computations’, which skips all memoization steps during 
ADAPT’s search (except for calls to the predictive model).

Design of broadly effective SARS-related CoV assays in 2018 and their evaluation. To 
evaluate the efficacy of species-level assays on a novel virus (Supplementary Fig. 
21), we focused on SARS-related CoV. We simulated the 2018 design of assays for 
detecting the SARS-related CoV species, roughly a year before the initial detection 
of SARS-CoV-2. In particular, we used as input all genome neighbors from NCBI’s 
viral genomes resource31 for SARS-related CoV that were released on or before 
31 December 2018 (there are 311 genomes). For ADAPT’s designs, we used the 
same parameters used for the vertebrate-infecting viral species designs (‘Designs 
across vertebrate-infecting species’), except tolerating up to one mismatch between 
primer and target sequences; the specificity criteria were also the same as in those 
designs.

In 2018, SARS-related CoV was biased toward SARS-CoV-1 genomes (owing 
to SARS outbreak sequencing) relative to viruses sampled from animals. To 
alleviate this overrepresentation, we also produced designs using ADAPT in which 
the input downsampled SARS-CoV-1 to a single genome (Supplementary Fig. 
21c,d). We used the RefSeq, GenBank accession AY274119, as that genome.

To determine the performance of these designs on SARS-CoV-2, we used 
the 184,197 complete genomes (low-quality removed) available on GISAID58 as 
of 12 November 2020. For an assay to be predicted to detect a target sequence 
(Supplementary Fig. 21b,d), we require that (1) primers on both ends are within 
three mismatches of the target sequence; and (2) a guide in the guide set is 
classified by our Cas13a predictive model as active. We used these criteria for 
evaluating detection of SARS-CoV-2 and of the design’s input.

Designs across vertebrate-infecting species. We found all viral species in NCBI’s 
viral genomes resource31 that have a vertebrate as a host, as of April 2020. These 
are species ratified by the International Committee on Taxonomy of Viruses76. We 
added to this list others that may have been incorrectly labeled, as well as influenza 
viruses, which are separate from the resource. There were 1,933 species in total and 
we used ADAPT to design primers and Cas13a guides to detect them. As input, 
we used all genome neighbors from NCBI’s viral genomes resource31 (influenza 
database for influenza species71). We ran ADAPT in May–June 2020, and thus the 
input incorporates sequences available through those dates.

We constrained primers to have a length and GC content that are 
recommended for use with RPA77 (recombinase polymerase amplification), and 
thus are suitable for use with SHERLOCK1 (Specific High-Sensitivity Enzymatic 
Reporter UnLOCKing) detection. We enforced specificity at the species-level 
within each family. That is, we required that the guides for each species not have 
off-target hits to sequence from any other species in its same family. Restricting 
our specificity queries to one family at a time reduces ADAPT’s memory usage and 
runtime.

We used the following arguments when running ADAPT to maximize expected 
activity:
•	 Initial clustering: clustered with a maximum distance of 30% 

(‘--cluster-threshold 0.3’)
•	 Primers and amplicons: primer length of 30, primers must have GC content 

between 35% and 65%, at most 10 primers at a site (although high, this 
is only an upper bound and is meant to restrict the search space and thus 
restrict runtime), up to 3 mismatches between primers and target sequence 
for hybridization, primers must hybridize to ≥98% of sequences and 
length of a targeted genome region (amplicon) must be ≤250 nt (‘-pl 30 
--primer-gc-content-bounds 0.35 0.65 --max-primers-at-site 10 -pm 3 -pp 
0.98 --max-target-length 250’)

•	 Guides: Cas13a guide length of 28 nt, together with our Cas13a predictive 
model (‘-gl 28 --predict-activity-model-path models/classify/model-51373185 
models/regress/model-f8b6fd5d’)

•	 Guide activity objective: soft constraint of 1 guide, hard constraint of 5 
guides, guide penalty (λ) of 0.25, using the randomized greedy algorithm 
(‘--obj maximize-activity --soft-guide-constraint 1 --hard-guide-constraint 5 
--penalty-strength 0.25 --maximization-algorithm random-greedy’)

•	 Specificity: query up to 4 mismatches counting G-U pairs as matches, calling a 
guide non-specific if it hits ≥1% of sequences in another taxon (‘--id-method 
shard --id-m 4 --id-frac 0.01’)

•	 Objective function and search: weights λA = 0.5 and λL = 0.25 in the objective 
function (defined in Supplementary Note 4b) and finding the best 20 design 
options (‘--obj-fn-weights 0.5 0.25 --best-n-targets 20’)

We made some species-specific adjustments. For influenza A and dengue 
viruses, two especially diverse species, we decreased the number of tolerated primer 
mismatches to two and allowed at most five primers at a site (‘-pm 2 --max- 
primers-at-site 5’); while these further constrain the design, they decrease runtime. 
For Norwalk virus and Rhinovirus C, we relaxed the number of primers at a site and 
the maximum region length to identify designs (‘--max-primers-at-site 20 --max- 
target-length 500’). For Cervid alphaherpesvirus 2, which has a short genome, we 
changed the GC-content bounds on primers to be 20–80% (‘--primer-gc- 
content-bounds 0.2 0.8’) to allow more potential amplicons. For 42 species, we 
relaxed specificity constraints to identify designs (list and details in code).

Of the 1,933 species, seven could not produce a design while maximizing 
activity and enforcing specificity, even with species-specific adjustments. They are: 
Bat mastadenovirus, Bovine associated cyclovirus 1, Chiropteran bocaparvovirus 
4, Cyclovirus PKgoat21/PAK/2009, Finkel–Biskis–Jinkins murine sarcoma virus, 
Panine gammaherpesvirus 1 and Squirrel fibroma virus. Each of these seven 
species has just one genome sequence and ADAPT could not identify a guide set 
satisfying specificity constraints; it is possible they are misclassified or have very 
high genetic similarity to other species. When showing results for this objective, we 
report on 1,926 species.

In addition to using the above settings, which maximizes activity and enforces 
specificity, we ran ADAPT with three other approaches. We minimized the number 
of guides while enforcing specificity, requiring that guides be predicted to be 
highly active (as defined in ‘Evaluating dispersion and generalization’) in detecting 
98% of sequences. We also ran the objectives to maximize activity and minimize 
guides without enforcing specificity. In total, 67 of the 1,933 species did not yield 
a design when minimizing the number of guides and enforcing specificity, owing 
to the constraints with this objective: ADAPT could not identify a guide set that is 
predicted to be highly active and achieves the desired coverage and specificity.

For species with segmented genomes, we ran ADAPT and produced designs 
separately for each segment. We then selected the segment whose highest-ranked 
design option has the best objective value (if multiple clusters, according to the largest 
cluster). We expect the selected segment to generally be the most conserved one.

In all analyses showing results of the designs (for example, number of guides, 
guide activity and target length), we used the highest-ranked design option output 
by ADAPT. For the species with more than one cluster, we report the mean across 
clusters from the highest-ranked design option in each cluster.

For producing designs across vertebrate-infecting viral species, we ran ADAPT 
on Amazon Web Services using the ‘x1.16xlarge’ instance type. We ran ADAPT in 
parallel across multiple species to fully use the instance’s resources. We evaluated 
ADAPT’s computational requirements, namely the runtime and memory usage, as 
part of these runs on that instance type.

Designs for evaluating sensitivity and specificity. ADAPT design parameters. 
To generate designs with ADAPT for experimental testing, we used the following 
arguments unless otherwise noted:
•	 Initial clustering: force a single cluster (‘--cluster-threshold 1.0’)
•	 Primers and amplicons: primer length of 30, primers must have GC con-

tent between 35% and 65%, at most 5 primers at a site, up to 1 mismatch 
between primers and target sequence for hybridization, primers must 
hybridize to ≥98% of sequences and length of a targeted genome region 
(amplicon) must be ≤250 nt (‘-pl 30 --primer-gc-content-bounds 0.35 0.65 
--max-primers-at-site 5 -pm 1 -pp 0.98 --max-target-length 250’)

•	 Guides: Cas13a guide length of 28 nt, together with our Cas13a predictive 
model (‘-gl 28 --predict-activity-model-path models/classify/model-51373185 
models/regress/model-f8b6fd5d’)

•	 Guide activity objective: soft constraint of 1 guide, hard constraint of 5 
guides, guide penalty (λ) of 0.25, using the randomized greedy algorithm 
(‘--obj maximize-activity --soft-guide-constraint 1 --hard-guide-constraint 5 
--penalty-strength 0.25 --maximization-algorithm random-greedy’)

•	 Specificity: query up to 4 mismatches counting G-U pairs as matches, calling a 
guide non-specific if it hits ≥1% of sequences in another taxon (‘--id-method 
shard --id-m 4 --id-frac 0.01’)

•	 Objective function and search: weights λA = 0.5 and λL = 0.25 in the objective 
function (defined in Supplementary Note 4b) (‘--obj-fn-weights 0.5 0.25’)

For SARS-CoV-2 input sequences, we used the 9,054 complete genomes 
available on GISAID58 as of 28 April 2020. We also used genomes from GISAID 
for pangolin SARS-like CoV input sequences (isolates from Guangxi, China 
and Guandong, China). For all other input sequences—SARS-like CoV isolates 
RaTG13, ZC45 and ZXC21; other SARS-like CoVs; SARS-CoV-1 (also referred to 
as SARS-CoV); and other Coronaviridae species—we used all genome neighbors 
from NCBI from each taxon31. For input sequences to EVB designs, we also used 
genome neighbors from NCBI.

Generating test target sequences. Experimentally testing design options output 
by ADAPT also requires generating representative target sequences. We found 
representative sequences for a design option, using a collection of genomes 
spanning diversity of a taxon, as follows: (1) We extracted the amplicon (according 
to provided positions, for example, from primer sequences), while extending 
outward to achieve a minimum length (usually 500 nt). (2) We removed sequences 
that are too short, for example, owing to gaps in the alignment. (3) We computed 
pairwise Mash distances78 and performed hierarchical clustering (average linkage) 
to achieve a desired number of clusters or a maximum intercluster distance. (4) 
To avoid outliers, we greedily selected (in order of descending size) clusters that 
include a desired total fraction of sequences, or a particular number of targets, 
or ones representing particular taxa (specifics below). (5) We computed the 
medoid of each cluster—that is, the sequence with minimal total distance to all 
other sequences in the cluster. (6) We used the medoids of each of the clusters 
as representative target sequences. The pick_test_targets.py program in ADAPT 
implements the procedure and we used this program.
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Baseline distribution of activity. We established a baseline distribution of activity 
using Cas13a guides, to detect SARS-CoV-2, selected from the genomic regions 
targeted by the US CDC’s RT–qPCR assays79. In particular, we picked ten random 
28-mers from the US CDC’s N1 amplicon that have a non-G PFS and used these as 
Cas13a guides, according to the ‘hCoV-19/Wuhan/IVDC-HB-01/2019’ genome58. 
We also chose another Cas13a guide at the site of the TaqMan probe with a non-G 
PFS. We did the same from the US CDC N2 amplicon. In addition, in the N1 and 
N2 amplicons, we used ADAPT to design a single guide with maximal activity 
(ignoring specificity) from within the amplicon. This provides 24 guides in total.

Experimental designs with ADAPT. To evaluate the activity and lineage-level 
specificity of SARS-CoV-2 designs, we used ADAPT to produce ten design 
options for detecting SARS-CoV-2. We increased the specificity in ADAPT to 
call a guide non-specific if it hits any sequence outside SARS-CoV-2 and also 
used the greedy maximization to obtain more intuitive outputs because, in this 
case, we expect only a single Cas13a guide for each design option (‘--id-frac 0 
--maximization-algorithm greedy’). We enforced specificity to not detect any 
sequences outside of SARS-CoV-2 from the SARS-related CoV species (including 
related bat and pangolin coronavirus isolates) and also to not detect sequences 
from the other 43 species in the Coronaviridae family. Owing to experimental 
constraints, we tested the highest-ranked five. We generated targets for each 
design option against which to test, using the ones representative of SARS-CoV-2; 
pangolin SARS-like CoVs (isolates from Guangxi, China); bat SARS-like CoV 
isolates ZC45 and RaTG13; and SARS-CoV-1.

To further evaluate activity and subspecies-comprehensiveness, we used 
ADAPT to produce ten design options for detecting the SARS-CoV-2-related 
taxon. In referring to SARS-CoV-2-related, we use the definition given in Fig. 1b of 
ref. 48; it encompasses SARS-CoV-2 and several related bat and pangolin SARS-like 
coronaviruses. To correct for sampling biases, we used ten sampled SARS-CoV-2 
genomes as input so that they make up roughly half of sequences in the 
SARS-CoV-2-related taxon. We used the same adjusted arguments in ADAPT as 
used for the SARS-CoV-2 designs (‘--id-frac 0 --maximization-algorithm greedy’). 
We enforced specificity to not detect any sequences outside of SARS-CoV-
2-related from the SARS-related CoV species (including other bat SARS-like 
coronaviruses) and also to not detect sequences from the other 43 species in the 
Coronaviridae family. For each design option, we generated targets, and used the 
ones representative of SARS-CoV-2; pangolin SARS-like CoVs (isolates from 
Guangxi, China and Guangdong, China); bat SARS-like CoV isolates ZC45, 
ZXC21 and RaTG13; and SARS-CoV-1. For this experiment, the SARS-CoV-1 
target allows us to evaluate specificity, while the others allow us to evaluate activity 
and subspecies-comprehensiveness.

We used ADAPT to produce ten design options to detect the SARS-related 
CoV species, and we used these to evaluate activity, species-comprehensiveness 
and specificity. To correct for sampling biases, we used 300 sampled SARS-CoV-2 
genomes as input so that they make up roughly half of sequences in the species. 
We enforced specificity to not detect sequences from the other 43 species in the 
Coronaviridae family. For each design option, we generated representative targets 
that encompass SARS-CoV-2, SARS-CoV-1, bat SARS-like CoVs, pangolin 
SARS-like CoVs, MERS-CoV, Human coronavirus OC43 and Human  
coronavirus HKU1. There were eight or nine representative targets in total for  
each design option.

To evaluate species-comprehensiveness, we focused on EVB and used 
ADAPT to produce ten design options. Owing to its extensive diversity, we 
made several adjustments to arguments, which help to increase the space of 
potential design options (‘--primer-gc-content-bounds 0.30 0.70 -pm 4 -pp 0.80 
--max-primers-at-site 10 --id-frac 0.10 --penalty-strength 0.15’).

We enforced specificity to not detect the 18 other species in the Enterovirus 
genus. For each design option, we generated representative targets from clusters 
that encompass at least 90% of all sequences. There were between 1 and 15 targets 
for each design option (the precise number depends heavily on the location of 
the design option amplicon in the genome). We additionally tested specificity 
within the Enterovirus genus by generating a single representative target for each of 
Enterovirus A, Enterovirus C and Enterovirus D.

To benchmark ADAPT’s designs for EVB, we created baseline Cas13a 
guides using an entropy-based approach that identifies conserved sites. For each 
of ADAPT’s design options, we considered the amplicon it targets. Then, we 
computed the information-theoretic (Shannon) entropy, over alleles, at every 
site in the amplicon. (We counted an ambiguous base fractionally and a gap as a 
‘base’.) We define the average entropy of a 28-nt site to be the mean entropy across 
its 28 positions. The approach finds the site in the amplicon that has the minimal 
average entropy and an active (non-G) PFS in GenBank accession MK800120. Our 
entropy-based baseline guide is the sequence from GenBank accession MK800120 
at this site. We performed this process in the amplicon from each of ADAPT’s 
designs to generate and test one baseline guide; for five of the ten designs, we 
generated and tested two baseline guides, where the second was from the site with 
the second lowest entropy and an active PFS. The approach is implemented in 
ADAPT’s design_naively.py program.

We built a positive control into each target. In particular, we added the sequence 
5′-CACTATAGGGGCTCTAGCGACTTCTTTAAATAGTGGCTTAAAATAAC-3′ 

to the 5′ end of each target and included in our tests of every target a guide with 
protospacer sequence 5′-GCTCTAGCGACTTCTTTAAATAGTGGCT-3′.

Experiments evaluating sensitivity and specificity. Experimental procedure. We 
largely followed the CARMEN-Cas13 platform8 for experimentally validating 
ADAPT’s designs, with some key differences. DNA targets were ordered from 
Integrated DNA Technologies and in vitro transcribed using the HiScribe T7 High 
Yield RNA Synthesis Kit (New England Biolabs). Transcriptions were performed 
according to the manufacturer’s recommendations with a reaction volume of 20 µl 
that was incubated overnight at 37 °C. The transcribed RNA products were purified 
using RNAClean XP beads (Beckman Coulter) and quantified using NanoDrop 
One (Thermo Scientific). The RNA was serially diluted from 1011 to 104 copies 
per µl and used as input into the detection reaction. crRNAs were synthesized by 
Integrated DNA Technologies, resuspended in nuclease-free water and diluted 
to 1 µM for input into the detection reaction. The Cas13 detection reactions were 
made into two separate mixes for loading onto a 192.24 Dynamic Array integrated 
fluidic circuit (IFC) for Gene Expression (Fluidigm). The assay mix contained 
42.5 nM LwaCas13a, 42.5 nM crRNA, 2× Assay Loading Reagent (Fluidigm) and 
nuclease-free water. The sample mix contained 1 µl of RNAse Inhibitor (New 
England Biolabs), 1× ROX Reference Dye (Invitrogen), 1× GE Sample Loading 
Reagent (Fluidigm), 1.95 nM quenched synthetic fluorescent RNA reporter 
(FAM/rUrUrUrUrUrUrU/3IABkFQ/, Integrated DNA Technologies) and 9 nM 
MgCl2 in a nuclease assay buffer (40 mM Tris-HCl, 1 mM dithiothreitol pH 7.5). 
Syringe, Actuation Fluid, Pressure Fluid (Fluidigm) and 4 µl of assay and sample 
mixtures were loaded into their respective locations on a 192.24 IFC according to 
the manufacturer’s instructions. The IFC was loaded onto the IFC Controller RX 
(Fluidigm) where the ‘Load Mix’ script was run. After proper IFC loading, images 
over a 2-h period were collected using a custom protocol on Fluidigm’s  
Biomark HD.

Displaying experimental results. We plotted reference-normalized 
background-subtracted fluorescence for guide–target pairs. For a guide–target 
pair (at some time point t and target concentration), we first computed the 
reference-normalized value as

median
( Pt − P0
Rt − R0

)

where Pt is the guide signal (FAM) at the time point, P0 is its background 
measurement before the reaction, Rt is the reference signal (ROX) at the time 
point, R0 is its background measurement and the median is taken across Fluidigm’s 
replicates. We performed the same calculation for the no-template (water) control 
of the guide, providing a background fluorescence value for the guide at t (when 
there were multiple technical replicates of such controls, we took the mean value 
across them). The reference-normalized background-subtracted fluorescence 
for a guide–target pair is the difference between these two values. Note that, 
by definition, plotted values greater than 0 represent fluorescence that exceeds 
background and the no-template control (‘NC’ in figures) has value of 0. When 
plotting the no-template control separately (Supplementary Fig. 23), we show 
reference-normalized values without background-subtracting. In heatmaps 
showing fluorescence at a fixed time point, we used the middle time point (59 min). 
In kinetic curves that show fluorescence over time (for example, Fig. 5b), we 
smoothed the value by taking the rolling mean within a window of two time points.

When displaying the top-ranked design options from ADAPT (for example, 
in Fig. 5d–h), we ordered them according to the predicted activity of the Cas13a 
guides in expectation across the input genomes. ADAPT’s ranking incorporates 
additional factors (Supplementary Note 4b) that reflect amplification potential, and 
we used ADAPT’s objective function to identify the top N design options to test. 
But we ordered them according to only predicted fluorescent activity because our 
experimental testing did not involve amplification. When plotting fluorescence 
for a design that uses more than one guide, we plot the maximum fluorescence 
across the guides (computed separately at each target, target concentration and 
measurement time point). This is analogous to ADAPT’s model for measuring a 
probe set’s activity (Supplementary Note 2a), in which its activity in detecting a 
target sequence equals that of the best probe in the set for detecting that sequence.

Evaluating specificity against non-viral taxa. We performed an in silico comparison 
of all experimentally tested guides with human transcripts and bacterial 
pathogens to determine if there is potential cross-reactivity. We first built an 
index consisting of human transcript sequences from GENCODE v.38 (ref. 80) 
and NCBI reference genome sequences for 11 bacterial pathogens (Bordetella 
pertussis (NC_018518.1); Chlamydia pneumoniae (NC_005043.1); Haemophilus 
influenzae (NZ_CP009610.1); Legionella pneumophila (NZ_CP013742.1); 
Mycobacterium tuberculosis (NC_000962.3); Mycoplasma pneumoniae (NZ_
CP010546.1); Pseudomonas aeruginosa (NC_002516.2); Staphylococcus epidermidis 
(NZ_CP035288.1); Streptococcus pneumoniae (NZ_CP046357.1); Streptococcus 
pyogenes (NZ_CP010450.1); Streptococcus salivarius (NZ_CP066093.1)). We also 
included, as positive controls for the analysis, NCBI reference sequence genomes 
for SARS-CoV-1 (NC_004718.3) and SARS-CoV-2 (NC_045512.2).
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We sought to query guide sequences against this index while tolerating 
multiple mismatches over a short query length (that is, the guide length of 
28 nt). To enable this, we used Bowtie 2 (ref. 81) to align guide sequences to the 
index with the parameters ‘-a --end-to-end -N 1 -L 7 -i S,1,1 --ma 0 --mp 1,1 
--rdg 100,1 --rfg 100,1 --score-min L,-4,0’. These settings permit us to identify 
all alignments of guides, against our index, having four or fewer mismatches 
across the length of the guide without tolerating gaps. Such alignments represent 
potential non-specificity of the guides. Of all guides in our experimental testing, 
the only identified non-specificity was for one guide from the entropy-based 
strategy for benchmarking EVB detection (Design no. 8; four mismatches from a 
human transcript); thus, with this exception, all guides are at least five mismatches 
different from human transcripts and the included bacterial genomes.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available in several repositories: the CRISPR–Cas13a library and activity 
dataset is available at https://github.com/broadinstitute/adapt-seq-design/
tree/main/data; serialized trained models are available at https://github.com/
broadinstitute/adapt-seq-design/tree/main/models/cas13; experimentally tested 
designs and their measured data are available at https://github.com/broadinstitute/
adapt-designs/tree/main/experimentally-tested.

Code availability
Code is available in several repositories: ADAPT is freely available under the 
MIT license at https://github.com/broadinstitute/adapt; code to replicate the 
predictive modeling and analyses is available at https://github.com/broadinstitute/
adapt-seq-design; code to replicate the designs across the vertebrate-infecting viral 
species is available at https://github.com/broadinstitute/adapt-designs-continuous; 
code to replicate the other analyses in this paper is available at https://github.com/
broadinstitute/adapt-analysis.
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Extended Data Fig. 1 | Emerging viral variation over time and the effect on diagnostic performance. a, Diagnostic performance for influenza A virus 
subtyping may degrade over time, even considering conserved sites. At each year, we select the 15 most conserved 30-mers from recent sequences 
for segment 6 (N) for all N1 subtypes; each point is a 30-mer. Plotted value is the fraction of sequences in subsequent years (colored) that contain the 
30-mer; bars are the mean. To aid visualization, only odd years are shown. 2007 N1 30-mers are absent following 2007 owing to antigenic shift during 
the 2009 H1N1 pandemic. b, Variation along the SARS-CoV-2 genome emerging over time during 2020. Bottom row (‘Combined’) shows all 1,131 single 
nucleotide polymorphisms, among 361,460 genomes, that crossed 0.1% or 1% frequency between February 1, 2020 and the end of 2020—i.e., (i) at <0.1% 
frequency in genomes collected before February 1 and 0.1–1% frequency by December 31 (light purple); or (ii) at <1% frequency before February 1 and at 
≥1% frequency by December 31 (dark). Other rows show the month in which each polymorphism crosses the frequency threshold.
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Extended Data Fig. 2 | Dataset of CRISPR-Cas13a guide-target pairs. Measurements from the unique guide-target pairs in the dataset used for model 
training and testing. Activity is defined in Methods. a, Distribution of number of replicate activity measurements for each pair (including negative control 
pairs). b, Distribution of standard deviation across replicate activity measurements for each pair (including negative control pairs). c, Activity of each guide 
against the wild-type target (matching exactly), shown by their position along the target. Dot indicates the mean activity across n ≥ 40 wild-type target 
replicate measurements, shown with a 95% confidence interval. d, Variation in activity across guide-target pairs and among replicate measurements. Each 
row represents a guide-target pair. Purple dot indicates the mean activity across replicate measurements; pairs are sorted vertically by this value. Bars 
indicate the 95% confidence interval for the mean. e, Variation in activity between guides and across targets for each guide. Each row represents a guide. 
Black dot indicates the median activity across all targets and bars span the 20th and 80th percentiles of activity across all targets. Purple dot indicates the 
mean activity across the wild-type targets (matching the guide exactly). f, Distribution of activity across all guide-target pairs and only pairs with the 
wild-type target. g, Distribution of activity across all guide-target pairs in the training data and the pairs in the hold-out test data (the two sets do not 
overlap along the target or contain the same guides; Methods). In d–g, there are 10 resampled replicate activity measurements for each guide-target pair. 
We set a lower threshold of −4 on the activity owing to measurement limitations (see Supplementary Fig. 4b and Methods for details), so density shown 
at −4 includes guide-target pairs with true activity below this threshold. a, b, f, and g show kernel density estimates.
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Extended Data Fig. 3 | Precision-recall curve of classifier. a, Precision-recall (PR) curve of CNN model, which is used in ADAPT, classifying pairs as 
inactive or active on a hold-out test set. ROC curve is in Fig. 2b. Points indicate precision and recall for baseline heuristic classifiers, defined as choosing 
a guide-target pair to be active if and only if it has an active (non-G) PFS and the Hamming distance between the guide and target is within the specified 
threshold (color). Red ‘+’ indicates the decision threshold in ADAPT. Dashed line is precision of a random classifier (equivalently, the fraction of 
guide-target pairs that are active). b, Comparison of precision between CNN (black) and baseline classifiers (color as in a) at equivalent recall.
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Extended Data Fig. 4 | Regression results using all guide-target pairs. Results, on the hold-out test set, of a CNN trained to regress activity using all 
guide-target pairs (other regression data are trained and tested only on active pairs). We set a lower threshold of −4 on the activity owing to measurement 
limitations (see Supplementary Fig. 4b and Methods for details), so activities are bounded below at −4. a, Contour color, point density. ρ, Spearman 
correlation. b, Same data as a. Each row contains one quartile of pairs divided by predicted activity (top row is predicted most active), with the bottom row 
showing all guide-target pairs. Smoothed density estimates and interquartile ranges show the distribution of true activity for the pairs from each quartile. 
P-values are calculated from Mann-Whitney U tests (one-sided). The excess of inactive guide-target pairs in our data distorts the performance of this 
model and we do not use this model in ADAPT. We instead use the two-step hurdle model (Figs. 2c and 2d), as described in Methods, owing to the data’s 
distribution and the process we aim to model.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


Articles Nature Biotechnology

Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Comparisons with independent CRISPR-Cas13a datasets. a, Each point is a guide-target pair from experiments in ref. 37 measuring 
LbuCas13a nuclease activity. Horizontal axis is the measured, normalized percent cleavage rate relative to no mismatches and dashed line at 100 shows 
the value for no mismatches. Vertical axis is our model’s predicted LwaCas13a collateral cleavage activity. Colors indicate the number of mismatches in the 
guide-target pair. ρ, Spearman correlation; r, Pearson correlation coefficient. b, Same as a, but only for points where mismatches decrease the LbuCas13a 
cleavage rate—that is, points to the left of the dashed line. Considering this subset helps to mitigate differences arising from LbuCas13a’s higher overall 
collateral activity compared to LwaCas13a. c, Each point is a guide-target pair from experiments in ref. 37 measuring LbuCas13a–RNA binding affinity. 
Horizontal axis is the measured, regularized fold-change enrichment for binding to a target. Vertical axis is our model’s predicted LwaCas13a collateral 
cleavage activity. d, Same as c, but only for points where mismatches decrease the binding affinity compared to no mismatches. e, Same data as c. Each 
row contains one quartile of pairs divided by our model’s predicted activity (top row, 4, is predicted most active). Colors in each bar indicate the fraction 
of pairs belonging to each quartile of the binding affinity measurements (4 is highest binding). f, Same data as c. Each row contains one quartile of pairs 
divided by binding affinity measurements (top row, 4, is highest binding). Colors in each bar indicate the fraction of pairs belonging to each quartile of the 
predicted activities (4 is predicted most active). We do not expect a high correlation in c–f owing to differences between the variables being compared and 
between LbuCas13a and LwaCas13a; nevertheless, the relationship is consistent with binding being necessary, though not sufficient, to achieve collateral 
activity. g, Each point is a guide-target pair from experiments in ref. 36 measuring knockdown levels from LwaCas13a on-target cis cleavage. Horizontal axis 
is the measured knockdown level. In the normalized measurements, the non-targeting guide was set to a knockdown level of 1. Vertical axis is our model’s 
predicted LwaCas13a activity.
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Extended Data Fig. 6 | CRISPR-Cas13a guide-target activity. a, Fraction of guide-target pairs that are active for each 2-nt protospacer flanking site allele 
(PFS; i.e., the canonical Cas13a PFS together with the nucleotide adjacent on the 3′ side of the protospacer). For a pair to be active here, the median log(k) 
value across its replicates is > −2. Error bars represent 95% exact binomial confidence intervals. This analysis considers only matching guide-target pairs 
(i.e., 0 mismatches) and, when determining unique data points, includes 20-nt of flanking sequence context on each side of the protospacer; there are 
n = 509 such data points in total and value on top of each bar is the number (n) with each allele. b, Density of activity for different numbers of mismatches 
between guides and targets. Here, the number of mismatches is equivalent to Hamming distance. c, Effect of G-U pairing on activity. Top panel highlights 
U in the target and G in the crRNA spacer (U-g). Horizontal groupings (0, 1, 2, 3) are the total number of mismatches in guide-target pairs and the 
distributions in each grouping separate the pairs by the number of U-g mismatches, showing the density and interquartile ranges of activity; the yellow 
distribution shows pairs with 3 mismatches, all of which are U-g. Middle panel highlights G-u mismatches and bottom panel, as a benchmark, shows G-g. 
d, Profile of mismatches among guide-target pairs with similar activity. Each row in the heatmap represents a guide-target pair, ordered by activity, with 
those having the lowest activity on top; values on the left indicate activity. For each row y, we consider the 1,000 guide-target pairs with activity closest 
to the pair represented by y. Then, at each position x in the crRNA spacer sequence, we consider all mismatches at x across our dataset and calculate the 
fraction of them to which the 1,000 guide-target pairs, centered at y, contribute. We plot this fraction; higher values at a row indicate a preponderance 
of mismatches among the guide-target pairs with the activity represented by that row. e, Density of guide-target pairs that have no mismatches (purple) 
compared to those that have at least one mismatch in the first four positions of the protospacer and no mismatch elsewhere (yellow). As in b, here a G-U 
pair is counted as a mismatch. Positions in d are relative to the crRNA spacer sequence, while positions in e (and elsewhere) are relative to the target. In 
our analyses we set a lower threshold of −4 on the activity owing to measurement limitations (see Supplementary Fig. 4b and Methods for details), so in 
b–e guide-target pairs shown at −4 include pairs with true activity below this threshold; in b and c, densities drop slightly below −4 owing to smoothing.
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Extended Data Fig. 7 | Sharding k-mers across tries for specificity queries. a, Constructing a bit signature after transforming a string to a two-letter 
alphabet, as described in Supplementary Note 3b. Two strings that match up to G-U base pairing (shown here as G-T) have the same bit signature. b, Left: 
Inserting a k-mer into the data structure of tries. Each k-mer is inserted into p tries, and there are p · 2k/p tries in total. Right: Querying a k-mer for near 
neighbors (within m mismatches, sensitive to G-U base pairing as a match).
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Extended Data Fig. 8 | Estimating probe activity under forecasted substitutions. a, Sketch of proactive scheme to estimate probe performance, after a 
period of time, by forecasting relatively likely nucleotide substitutions. Starting with a target sequence and a GTR substitution model, we sample from a 
distribution of substitutions made to the original target sequence. In analyses that follow, we sample after 5 years. Against each simulated sequence, we 
predict the detection activity of a given probe using our Cas13a predictive model; across the simulated sequences, these predictions provide a distribution 
of activity under potential substitutions. b, Distribution of predicted detection activity across 10,000 simulated sequences that originate from a target 
sequence at one site in the SARS-CoV-2 genome. The probe is complementary to the original target sequence, except we randomly introduce a single 
mismatch. Most simulated sequences do not introduce any substitutions (i.e., they are identical to the original); the peak in the histogram (and vertical 
dashed line) represents these ones. Other than these simulated sequences, most simulated substitutions degrade the activity of the probe (left of 
the dashed line). Some enhance its activity (right of the dashed line), for example, by reversing the existing mismatch. c, Inverse CDF of the change in 
predicted detection activity after simulating substitutions, summarized across 1,000 random sites in the SARS-CoV-2 genome; b shows one such site. 
At each of these 1,000 sites, we simulate 10,000 target sequences according to our substitution model and construct a distribution of the change in 
the probe’s predicted detection activity compared to its activity in detecting the original sequence. As in b, at each site the probe is complementary to 
the original target sequence, except with one random mismatch. Plotted is the median change taken across sites, as well as the 95th and 5th percentiles. 
The faster the curve rises to 0, the less likely there is to be a drop in activity. That the 5th percentile curve shows a sharp drop for low values (∼<0.1) on 
the horizontal axis indicates that some sites may experience a pronounced drop in detection activity over time, but that even for these sites it is unlikely 
(∼10% chance). d, Effect of simulating substitutions on the ordering of ADAPT’s designs. We begin with the top 20 design options output by ADAPT for 
targeting SARS-CoV-2 genomes and, for this analysis, consider only the probe (Cas13a guide) from each design option. Each point represents one of the 
20 probes. We rank the probes according to their mean predicted detection activity across the genomes; this ranking is on the horizontal axis. Then, for 
each genome, we simulate 10,000 sequences according to our substitution model (at the site where a probe binds) and compute the 5th percentile of the 
predicted detection activities between the probe and these simulated sequences. We rank the probes accounting for simulated substitutions (vertical axis) 
according to the mean of this 5th percentile value taken across the genomes. In this analysis, we use only 500 randomly sampled genomes from the set of 
genomes used to design the 20 probes with ADAPT, in order to reduce runtime.
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Extended Data Fig. 9 | Benchmarking ADAPT’s designs in US CDC SARS-CoV-2 amplicons. a, Fluorescence over time for Cas13 guides at varying target 
concentrations (top of each plot, in cp/μL) within the US CDC’s SARS-CoV-2 N1 RT-qPCR amplicon. Compared guides are ADAPT’s design (green), 
a guide with an active (non-G) PFS at the site of the qPCR probe from the N1 assay (dark gray), and 10 randomly selected guides with an active PFS 
(light gray). Target concentration of 107 cp/μL is shown in Fig. 5b. b, Fluorescence for Cas13 guides at varying target concentrations within the US CDC’s 
SARS-CoV-2 N2 RT-qPCR amplicon. The final time point is shown (124 minutes). Guides are as in a. c, Fluorescence over time for Cas13 guides at varying 
target concentrations (top of each plot, in cp/μL) within the US CDC’s SARS-CoV-2 N2 RT-qPCR amplicon. Guides are as in a.
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Extended Data Fig. 10 | Separate guides for multi-guide designs in SARS-related CoV taxa. Fluorescence for ADAPT’s design options that use more than 
one Cas13 guide, separated by guide. Left label indicates target concentration (cp/μL). a, The two guides in Design #4 to detect the SARS-CoV-2–related 
taxon (Supplementary Fig. 24b). b, The two guides in Design #1 (Fig. 5f) and in Designs #5 and #6 (Supplementary Fig. 24c) to detect the SARS-related 
coronavirus species. In other figures, plotted value is the maximum across multiple guides. NC, no template control.
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