
Rieg et al. Respiratory Research          (2022) 23:189  
https://doi.org/10.1186/s12931-022-02101-x

RESEARCH

Platelet‑derived growth factor (PDGF)‑BB 
regulates the airway tone via activation 
of MAP2K, thromboxane, actin polymerisation 
and Ca2+‑sensitisation
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Abstract 

Background:  PDGFR-inhibition by the tyrosine kinase inhibitor (TKI) nintedanib attenuates the progress of idiopathic 
pulmonary fibrosis (IPF). However, the effects of PDGF-BB on the airway tone are almost unknown. We studied this 
issue and the mechanisms beyond, using isolated perfused lungs (IPL) of guinea pigs (GPs) and precision-cut lung 
slices (PCLS) of GPs and humans.

Methods:  IPL: PDGF-BB was perfused after or without pre-treatment with the TKI imatinib (perfused/nebulised) and 
its effects on the tidal volume (TV), the dynamic compliance (Cdyn) and the resistance were studied. PCLS (GP): The 
bronchoconstrictive effects of PDGF-BB and the mechanisms beyond were evaluated. PCLS (human): The broncho-
constrictive effects of PDGF-BB and the bronchorelaxant effects of imatinib were studied. All changes of the airway 
tone were measured by videomicroscopy and indicated as changes of the initial airway area.

Results:  PCLS (GP/human): PDGF-BB lead to a contraction of airways. IPL: PDGF-BB decreased TV and Cdyn, whereas 
the resistance did not increase significantly. In both models, inhibition of PDGFR-(β) (imatinib/SU6668) prevented the 
bronchoconstrictive effect of PDGF-BB. The mechanisms beyond PDGF-BB-induced bronchoconstriction include acti-
vation of MAP2K and TP-receptors, actin polymerisation and Ca2+-sensitisation, whereas the increase of Ca2+ itself and 
the activation of EP1–4-receptors were not of relevance. In addition, imatinib relaxed pre-constricted human airways.

Conclusions:  PDGFR regulates the airway tone. In PCLS from GPs, this regulatory mechanism depends on the 
β-subunit. Hence, PDGFR-inhibition may not only represent a target to improve chronic airway disease such as IPF, but 
may also provide acute bronchodilation in asthma. Since asthma therapy uses topical application. This is even more 
relevant, as nebulisation of imatinib also appears to be effective.
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Background
Platelet-derived growth factor (PDGF)-BB and its recep-
tor PDGFR are strongly involved in the pathogenesis of 
chronic airway disease [1], as both highly promote pro-
liferation in airways [2]. This instance provides for the 
evidence that PDGFR-inhibition by tyrosine kinase inhib-
itors (TKIs) appear to be beneficial in chronic airway dis-
ease, e.g. idiopathic pulmonary fibrosis (IPF) [3–5] or 
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asthma [6, 7]. Beyond the involvement of PDGF-BB and 
PDGFR in proliferation of airways and pulmonary vessels 
[1, 2, 8], PDGF-BB and PDGFR appear to regulate the 
tone of airways [9, 10].

The receptor tyrosine kinase PDGFR comprises of the 
two subunits αα, αβ or ββ which are activated by different 
ligands, e.g., in vivo PDGFR-α is activated by PDGF-AA 
and PDGF-CC, whereas PDGFR-β is activated by PDGF-
BB [2]. In contrast, further possibilities are conceivable 
in  vitro, e.g. the activation of PDGFR-αβ by PDGF-BB 
[2]. During organogenesis, the various PDGFR-subunits 
fulfil different functions, e.g., PDGFR-α is involved in 
the formation of the lungs, the skin, the gonads and the 
central nervous system, whereas PDGFR-β is responsible 
for the formation of blood vessel [2]. In respect of prolif-
erative processes, PDGFR-β promotes the remodelling of 
the pulmonary vascular bed [11], as well as the remodel-
ling in chronic fibrotic lung disease [12, 13] and asthma 
[14, 15].

This study was designed to evaluate the contractile 
effects of PDGF-BB on airway parameters in isolated per-
fused lungs (IPL) of guinea pigs (GPs) [16–19]. Further, 
we studied the effects of PDGF-BB in precision-cut lung 
slices (PCLS) of GPs and humans [17–22]. PCLS resem-
bles an ex vivo model which allows to study the tone of 
pulmonary arteries, pulmonary veins and airways con-
currently within their tissue organization excluding the 
exposure to in vivo factors such as shear stress, vascular 
filling pressure or thromboembolism [20, 21, 23]. As a 
major advantage, PCLS allow to compare how pulmo-
nary vessel and airways react to several stimulants within 
different species [16, 18, 22, 24–26].

With regard to acute and chronic airway diseases, 
there are multiple open questions concerning the role 
of PDGF-BB and PDGFR. We addressed the follow-
ing points: (1) Does PDGF-BB contract GP airways and 
is this contraction related to PDGFR-β? (2) How are the 
effects of PDGF-BB on airway parameters? (3) Does 
PDGF-BB affect airway parameters, if lungs are pre-
treated with the TKI imatinib (perfused/inhaled)? (4) 
Does PDGF-BB contract human airways? (5) Do TKIs 
exert bronchodilative properties in human airways? (6) 
What are the mechanisms beyond PDGF-BB-induced 
contraction?

Methods
Lung tissue from GPs and humans
Female Dunkin Hartley GPs (350 ± 50  g) were obtained 
from Charles River (Sulzfeld, Germany). All animal care 
and experimental procedures were approved by the 
Landesamt für Natur, Umwelt und Verbraucherschutz 
Nordrhein-Westfalen (ID: 84-02.04.2013A146, 8.87-
51.05.20.10.245, 50066A4) and strictly performed due 

the rules of the Directive 2010/63/EU of the European 
Parliament.

Human PCLS were prepared from patients undergo-
ing thoracic surgery (lobectomy) due to cancer. After 
pathological inspection, cancer free tissue from a periph-
eral part of the lung was selected. In functional lung 
measurements, none of the patients showed relevant 
signs of chronic airway disease. The study was approved 
by the ethics committee (EK 61/09) of the Medical Fac-
ulty Aachen, Rhenish-Westphalian Technical University 
(RWTH) Aachen. All patients gave written informed 
consent.

Isolated perfused lungs of the GP
GP lungs were prepared as described previously [17–19, 
27]. Briefly, intraperitoneal anaesthesia was performed 
(pentobarbital: 95  mg/kg) and verified by missing 
reflexes. The GP was exsanguinated, the trachea cannu-
lated and the lung ventilated with positive pressure with 
a frequency of 70 breaths/min. Next, the apex of the left 
ventricle was cut and cannulas were placed in the pul-
monary artery (perfusion inflow) and in the left atrium 
(perfusion outflow). Afterwards, the lung was perfused at 
constant flow (20 mL/min) with Krebs–Henseleit buffer, 
containing 2% bovine serum albumin, 0.1% glucose, 0.3% 
HEPES and 50 nM salbutamol in order to prevent bron-
choconstriction [28]. The temperature of the perfusate 
was maintained at 37  °C with a water bath and the pH 
was adjusted between limits (7.35 and 7.45) by carbon 
dioxide. Heart and lungs were withdrawn en-bloc and 
transferred into a negative-pressure chamber; next, ven-
tilation was switched from positive pressure to negative 
pressure. To avoid atelectasis of the lung, every 5 min a 
deep breath was applied. All following parameters were 
continuously monitored: tidal volume (TV), dynamic 
compliance (Cdyn), resistance (Res), pulmonal arterial 
pressure (PPA), left atrial pressure (PLA) and flow. Once 
respiratory and haemodynamic parameters remained sta-
ble over 10 min (baseline), imatinib was either perfused 
(10 µM) or nebulised (16.6 mM). Control lungs remained 
untreated. After 30 min, PDGF-BB (10 nM) was added to 
the recirculating perfusion buffer (total volume 200 mL) 
and perfused in untreated and in imatinib-pre-treated 
lungs. The different groups and the timeline of the exper-
iments are illustrated in Fig. 1.

Perfusion and nebulisation of imatinib
Using a buffer volume of 200  mL, perfusion of 10  µM 
imatinib corresponds to a total dose of 1.18 mg imatinib 
or to 3.5  mg/kg body weight imatinib. To nebulise 
imatinib, 29.38  mg imatinib mesylate were solved in 
3 ml aqua to obtain a solution of 16.6 mM. Afterwards, 
the solution of imatinib (16.6  mM) was nebulised over 
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130 min. Supposing a lung flow of 0.21 L/min (70 breaths 
by 3  mL) and a pressure of 1.5 bar, the total amount of 
inhaled imatinib corresponds to less than 4% of the nebu-
lised amount of imatinib [29], namely 1.18  mg, corre-
sponding to 3.5 mg/kg body weight imatinib, respectively.

Precision‑cut lung slices (PCLS) from GPs and humans
In GPs, intraperitoneal anaesthesia was performed with 
95  mg/kg pentobarbital (Narcoren; Garbsen, Germany) 
and verified by missing reflexes. The GP was exsangui-
nated, the trachea cannulated and the diaphragm opened. 
Thereafter, PCLS were prepared as described before 
[17–21, 24]. Whole lungs from GP or human lung lobes 
were filled via the trachea or a main bronchus, respec-
tively with 1.5% low-melting agarose and cooled on ice to 
harden them. Afterwards, tissue cores (diameter 11 mm) 
were prepared and cut into 300  µm thick slices with a 
Krumdieck tissue slicer (Alabama Research & Develop-
ment, Munford, AL, USA). PCLS were incubated at 37 °C 
and in order to wash out the agarose, repeated medium 
changes were performed.

Identification of the airway, histology
Airways from GPs were identified by their anatomical 
features; (1) beating cilia indicate the airways including 
their functional integrity and (2) the airways accompany-
ing the pulmonary arteries [18, 21].

Pharmacological interventions, measurements 
and videomicroscopy
To evaluate the contractile effect of PDGF-BB in air-
ways from GPs or humans, PCLS were exposed for 
60 min to 100 nM PDGF-BB (Fig. 3A, B). If a signalling 

pathway was evaluated (Figs. 4, 5, 6 and 7), PCLS were 
additionally pre-treated for 60  min with one of the 
following inhibitors at concentrations about 10–100 
fold above the IC50 value of the target: PDGFR-α: 
100  nM ponatinib (IC50: 1.1  nM) [30–32]; PDGFR-β: 
5  µM SU6668 (IC50: 0.008–0.1  µM) [33–35]; PDGFR-
α/β: 100  µM imatinib (IC50: 0.6–1.8  µM) [36], L-Type 
Ca2+-channels: 100 nM amlodipine (IC50: 1.9 nM) [37]; 
Rho-Kinase: 10  µM fasudile (IC50: 1.4  µM) [38]; pro-
tein kinase C (PKC): 5 µM calphostin C (IC50: 50 nM) 
[39]; MAP2K: 50  µM PD98059 (IC50: 2–7  µM) [40]; 
MAP2K: 5  µM U0126 (IC50: 58–72  nM) [41]; actin 
polymerisation: 10  µM cytochalasin D (IC50: 100  nM) 
[42]; TP: 10 µM SQ29548 (IC50 10 nM) [43]; IP: 1 µM 
RO-1138452 (IC50: 5–10 nM) [44]; EP1: 1 µM SC51322 
(IC50: 13.8  nM) [45]; EP2: 1  µM PF04418948 (IC50: 
2.7  nM) [46, 47]; EP3: 1  µM L798106 (IC50: 10  nM) 
[43, 48] and EP4: 1 µM L161982 (IC50: 3.2 nM) [43]. To 
study the relaxing effects of imatinib in human airways 
(Fig.  3C), human PCLS were incubated with 100  nM 
Endothelin-1 (ET-1) to induce a stable contraction after 
1  h. Subsequently, a concentration–response curve 
with imatinib was performed. Controls received no fur-
ther treatment.

In PCLS, all changes of the initial airway area (IAA) 
were quantified in % and indicated as “Change [% of 
IAA]”. Thus, an IAA < 100% indicates contraction and 
an IAA > 100% indicates relaxation. To compare the 
contractile effect of PDGF-BB in pre-treated airways, 
the intraluminal area was defined after pre-treatment 
again as 100% (exceptional Fig. 4). In the graphs, all pre-
treatments were indicated. The intraluminal area of air-
ways was monitored with a digital video camera (Leica 
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Fig. 1  Overview of the timeline. This overview illustrates the different groups and the timeline of all experiments using the IPL
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Viscam 1280, Leica DFC 280). The images were analysed 
with Optimas 6.5 (Media Cybernetics, Bothell, WA).

Chemicals
PDGF-BB was provided by Peprotech (Hamburg, 
Germany). Imatinib mesylate, amlodipine, fasudile, 
calphostin C, SC51322, PF04418948, L798106 and 
L161982 were purchased from Tocris Bioscience (Ellis-
ville, Missouri, USA). Ponatinib was acquired from Sell-
eckChem (Munich, Germany). SQ29548, RO-1138452, 
SU6668, PD98059 and U0126 were acquired from Cay-
man Europe (via Biomol, Hamburg, Germany). ET-1 
was purchased from Biotrends (Wangen, Switzerland). 
Cytochalasin D or standard laboratory chemicals were 
provided by Sigma (Steinheim, Germany).

Statistical analysis
Statistics were conducted using SAS software 9.3 (SAS 
Institute, Cary, North Carolina, USA) and Graph-
Pad Prism 5.01 (GraphPad, La Jolla, USA). All data, 
except Fig.  3C were analysed using a linear mixed 
model analysis (LMM) with the covariance structure 
AR(1). The data in Fig. 3C were analysed by EC50 val-
ues (GraphPad Prism). All p-values were adjusted for 
multiple comparisons by the false discovery rate and 
are presented as mean ± SEM; n indicates the numbers 
of animals or human lungs. p < 0.05 is considered as 
significant.

Results
We studied the effect of PDGF-BB on the airway tone 
using the IPL and PCLS from humans and GPs.

Fig. 2  (GPs’ IPL): Effect of PDGF-BB on airway parameters. A Effect of PDGF-BB on TV: (○) control (n = 7); (■) PDGF-BB (n = 7); ( ) imatinib (n = 7); 
( ) perfused imatinib/PDGF-BB (n = 7); ( ) nebulised imatinib/PDGF-BB (n = 6); ■ PDGF-BB: time point 0 (§) vs. 140 (§§) min: p < 0.001. B Effect 
of PDGF-BB on Cdyn: (○) control (n = 7); (■) PDGF-BB (n = 7); ( ) imatinib (n = 7); ( ) perfused imatinib/PDGF-BB (n = 7); ( ) nebulised imatinib/
PDGF-BB (n = 6); ■ PDGF-BB: time point 0 (§) vs. 140 (§§) min: p < 0.001. C Effect of PDGF-BB on Res: (○) control (n = 7); (■) PDGF-BB (n = 7); ( ) 
imatinib (n = 7); ( ) perfused imatinib/PDGF-BB (n = 7); ( ) nebulised imatinib/PDGF-BB (n = 6). A–C Statistics was performed by a LMM. p < 0.05 
are considered as significant: *p < 0.05, **p < 0.01 and ***p < 0.001
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Fig. 3  (Human and GPs’ PCLS): PDGF-BB regulates the airway tone via activation of PDGFR-(β). A The contractile effect of PDGF-BB in GPs’ airways: 
(◆) no pre-treatment/100 nM PDGF-BB (n = 7); ( ) pre-treatment with 100 nM ponatinib/100 nM PDGF-BB (n = 7); (◇) pre-treatment with 
5 µM SU6668/100 nM PDGF-BB (n = 7). B PDGF-BB contracts human airways: (◆) 100 nM PDGF-BB (n = 3); (◇) pre-treatment with 100 µM 
imatinib/100 nM PDGF-BB (n = 3). C Imatinib relaxes human airways: (△) pre-treatment with 100 nM ET-1 (n = 3); (▲) pre-treatment with 100 nM 
ET-1/imatinib (n = 5). A, B Statistics was performed by a LMM. C Statistics was performed by calculating EC50 values by the standard 4-parameter 
logistic non-linear regression model (GraphPad). p < 0.05 are considered as significant: *p < 0.05, **p < 0.01 and ***p < 0.001

Fig. 4  (GPs’ PCLS): Activation of MAP2K-signalling in PDGF-BB-induced bronchoconstriction. A Inhibition of MAP2K by PD98059 (◆) no 
pre-treatment/100 nM PDGF-BB (n = 4); (◇) pre-treatment with 50 µM PD98059/100 nM PDGF-BB (n = 4). B Inhibition of MAP2K by U0126 (◆) 
no pre-treatment/100 nM PDGF-BB (n = 4); (○) pre-treatment with 5 µM U0126/100 nM PDGF-BB (n = 4). A/B Statistics was performed by a LMM. 
p < 0.05 are considered as significant: *p < 0.05, **p < 0.01 and ***p < 0.001
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Fig. 5  (GPs’ PCLS): Activation of TP- and IP-receptors in PDGF-BB-induced bronchoconstriction. A Inhibition of TP-receptors by SQ29548 (◆) no 
pre-treatment/100 nM PDGF-BB (n = 5); (◇) pre-treatment with 10 µM SQ29548/100 nM PDGF-BB (n = 5). B Inhibition of IP-receptors by RO-1138 
(◆) no pre-treatment/100 nM PDGF-BB (n = 8); (◇) pre-treatment with 1 µM RO-1138/100 nM PDGF-BB (n = 8). A/B Statistics was performed by a 
LMM. p < 0.05 are considered as significant: *p < 0.05, **p < 0.01 and ***p < 0.001

Fig. 6  (GPs’ PCLS): No role of EP1–4-receptors in PDGF-BB-induced bronchoconstriction. A Inhibition of EP1-receptors by SC51322: (◆) no 
pre-treatment/100 nM PDGF-BB (n = 6); (◇) pre-treatment with 1 µM SC513222/100 nM PDGF-BB (n = 6). B Inhibition of EP2-receptors by PF0441 
(◆) no pre-treatment/100 nM PDGF-BB (n = 5); (◇) pre-treatment with 1 µM PF0441/100 nM PDGF-BB (n = 5). C Inhibition of EP3-receptors 
by L798106: (◆) no pre-treatment/100 nM PDGF-BB (n = 5); (◇) pre-treatment with 1 µM L798106/100 nM PDGF-BB (n = 5). D Inhibition of 
EP4-receptors by L161982 (◆) no pre-treatment/100 nM PDGF-BB (n = 6); (◇) pre-treatment with 1 µM L161982/100 nM PDGF-BB (n = 6). A–D 
Statistics was performed by a LMM. p < 0.05 are considered as significant: *p < 0.05, **p < 0.01 and ***p < 0.001
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IPL: effect of PDGF‑BB on airway parameters
Perfusion of PDGF-BB decreased the TV (Fig.  2A) and 
Cdyn (Fig. 2B) up to 50% compared to baseline values and 
to untreated control lungs (p < 0.001 for all). This effect 
was completely prevented, if lungs were pre-treated with 
perfused or nebulised imatinib (Fig. 2A, B). Accordingly, 
perfusion with PDGF-BB appears to increase Res, but 
statistical evaluation did not reveal significance (Fig. 2C). 
Anyhow, pre-treatment with imatinib prevented any 
changes (Fig.  2C). Imatinib itself had no influence on 
these airway parameters (Fig. 2A–C).

PCLS (GP): PDGF‑BB contracts airways via activation 
of PDGFR‑β
Next, using PCLS, we tried to find out, if PDGF-BB con-
tracts the airways and if this contraction depends on 
PDGFR-β, as it was already shown for PVs [17].

In PCLS, PDGF-BB contracted the airways up to 30% 
of IAA (p < 0.001) and this effect was prevented, if PCLS 
were pre-treated with the PDGFR-β-inhibitor SU6668 
(Fig. 3A; p < 0.001). In contrast, inhibition of PDGFR-α by 
ponatinib did not alter PDGF-BB induced bronchocon-
striction (Fig. 3A).

Human PCLS: activation or inhibition of PDGFR‑α/β alters 
the airway tone
PDGF-BB contracted human airways up to 53% of IAA 
(p < 0.05) and this bronchoconstriction was completely 
prevented if human airways were pre-treated with the 
PDGFR-α/β-inhibitor imatinib (Fig.  3B; p < 0.05). Next, 
we studied if imatinib also relaxes human airways. 

Therefore, airways were pre-constricted with 100  nM 
ET-1 prior to the application of increasing concentrations 
of imatinib (Fig.  3C). Imatinib relaxed human airways 
strongly up to 260% of IAA (Fig. 3C).

PCLS (GP): mechanisms for PDGF‑BB‑induced 
bronchoconstriction
Activation of MAP2K in PDGF‑BB‑induced 
bronchoconstriction
Inhibition of MAP2K by 50  µM PD98059 (Fig.  4A) or 
5  µM U0126 (Fig.  4B) completely prevented the con-
tractile effect of PDGF-BB (p < 0.001).

Activation of TP‑ and IP‑receptors in PDGF‑BB‑induced 
bronchoconstriction
Inhibition of TP-receptors with 10  µM SQ29548 
(Fig.  5A) prevented PDGF-BB-induced contrac-
tion, whereas inhibition of IP-receptors with 1  µM 
RO-1138 (Fig. 5B) had no effect on PDGF-BB-induced 
bronchoconstriction.

No role of EP1–4‑receptors in PDGF‑BB‑induced 
bronchoconstriction
Neither inhibition of EP1-receptors with 1 µM SC51322 
(Fig.  6A), nor inhibition of EP2-receptors with 1  µM 
PF0441 (Fig.  6B), nor inhibition of EP3-receptors with 
1 µM L796106 (Fig. 6C) influenced PDGF-BB-induced 
contraction. In contrast, inhibition of EP4-receptors 
with 1 µM L161982 (Fig. 6D) appears to lower the con-
tractile effect of PDGF-BB; however, this effect was 
without statistical significance.

The role of actin polymerisation within PDGF‑BB‑induced 
bronchoconstriction
The control airways slightly contracted over the pre-
treatment period of 60  min, whereas airways pre-
treated with cytochalasin D neither contracted nor 
relaxed and the airway tone remained stable. After 
treatment with PDGF-BB, control airways strongly con-
tracted to 23% of IAA (Fig. 4). In contrast, the airways 
which passed through inhibition of actin polymerisa-
tion by cytochalasin D, contracted only to 56% of IAA 
(p < 0.001; Fig. 7).

The role of Ca2+ and Ca2+‑sensitisation 
within PDGF‑BB‑induced bronchoconstriction
Pre-treatment with the Ca2+-channel blocker amlodi-
pine (100 nM) did not significantly influence PDGF-BB-
induced contraction (Fig. 8A). In contrast, inhibition of 
Rho-Kinase by fasudile (10  µM) significantly reduced 
the contractile effect of PDGF-BB (Fig.  8B), as does 
inhibition of PKC by calphostin C (5 µM) (Fig. 8C).

Fig. 7  (GPs’ PCLS): The role of actin polymerisation within 
PDGF-BB-induced bronchoconstriction. Inhibition of actin 
polymerisation by cytochalasin D: (◆) no pre-treatment/100 nM 
PDGF-BB (n = 7); (◇) pre-treatment with 10 µM cytochalasin 
D/100 nM PDGF-BB (n = 7). Statistics was performed by a LMM. 
p < 0.05 are considered as significant: *p < 0.05, **p < 0.01 and 
***p < 0.001
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Discussion
PDGF and PDGFR play a critical role within the remod-
elling in chronic airway diseases [1, 49]. Additionally, 
TKIs are increasingly focused as possible therapeutic 
agents [3–7, 50]. In contrast to these considerations, 
the acute effects of PDGF-BB and TKIs on the airway 
tone, e.g. constriction or relaxation have not yet been 
studied intensively. Here, we show that PDGF-BB con-
tracts airways of GPs and humans via activation of 
PDGFR. Vice versa, PDGF-BB-induced airway contrac-
tion was prevented by TKIs. Further, the TKI imatinib 
even relaxed ET-1 pre-constricted human airways.

Effect of PDGF‑BB on airway parameters
In the IPL (GP), PDGF-BB significantly reduced the tidal 
volume (Fig.  2A) and the dynamic compliance (Fig.  2B) 
of the lung. In addition, resistance tends to increase, 
however without statistical significance (Fig.  2C). 
The appearance of this bronchoconstrictive effect of 

PDGF-BB is supported by our results from GPs’ PCLS, 
where PDGF-BB also exerted distinct bronchoconstric-
tion (Fig. 3A). In both experimental models, PDGF-BB-
induced bronchoconstriction was completely prevented 
by TKIs. For example, in IPLs (Fig. 2A–C) pre-treatment 
with the PDGFR-α/β inhibitor imatinib completely 
avoided PDGF-BB-induced bronchoconstriction. Fur-
ther in GPs’ PCLS, inhibition of PDGFR-β by SU6668 
prevented PDGF-BB-induced bronchoconstriction 
(Fig.  3A), whereas inhibition of PDGFR-α by ponatinib 
had no effect (Fig.  3A), suggesting a dominant role of 
PDGFR-β within the contractile effect of PDGF-BB. The 
relevance of our findings is reinforced by the fact that 
PDGF-BB strongly contracted human airways (Fig. 3B) in 
PCLS, which was prevented by the PDGFR-α/β inhibitor 
imatinib (Fig. 3B). Further, imatinib also relaxed human 
airways after pre-constriction with ET-1, suggesting 
a relevant role of PDGFR within the regulation of the 

Fig. 8  (GPs’ PCLS): The role of Ca2+ and Ca2+-sensitisation within PDGF-BB-induced bronchoconstriction. A Inhibition of voltage-gated 
Ca2+-channels by amlodipine: (◆) no pre-treatment/100 nM PDGF-BB (n = 7); (◇) pre-treatment with 100 nM amlodipine/100 nM PDGF-BB (n = 7). 
B Inhibition of Rho-Kinase by fasudile: (◆) no pre-treatment/100 nM PDGF-BB (n = 5); (◇) pre-treatment with 10 µM fasudile/100 nM PDGF-BB 
(n = 5). C Inhibition of PKC by calphostin C: (◆) no pre-treatment/100 nM PDGF-BB (n = 5); (◇) pre-treatment with 5 µM calphostin C/100 nM 
PDGF-BB (n = 5). A–C Statistics was performed by a LMM. p < 0.05 are considered as significant: *p < 0.05, **p < 0.01 and ***p < 0.001
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airway tone (Fig.  3C). This observation might be useful 
for approaches in asthma therapy.

Research in this field is scarce. Solely, Schaafsma et al. 
[51] demonstrated the bronchoconstrictive effect of 
PDGF-BB in GP tracheal strips, whereas Zhou et al. [10] 
proved the role of PDGFR within bronchoconstriction in 
rats lung slices.

Mechanisms for PDGF‑BB‑induced bronchoconstriction
The role of MAP2K‑signalling in PDGF‑BB‑induced 
bronchoconstriction
Our results indicate that MAP2K-signalling is of pivotal 
role within the bronchoconstrictive effect of PDGF-BB, as 
inhibition of MAP2K-signalling by PD98059 and U0126 
(Fig.  4A, B) completely prevented PDGF-BB-induced 
bronchoconstriction. Accordingly, Schaafsma et  al. [51] 
proved the contractile effect of PDGF-BB in the trachea 
of GPs, just as the involvement of MAP2K. In addition, 
PDGF-BB-induced contraction of pulmonary veins also 
depends on MAP2K-signalling [19]. These findings are in 
line with the role of TP-receptors within the contractile 
effect of PDGF-BB in GPs’ airways (Fig. 5A) and pulmo-
nary veins [19]. Further, they are explained by the fact 
that PDGF-BB induces the activation of MAP2K, which 
itself stimulates phospholipase A2 (PLA2) and subsequent 
prostaglandin synthesis [52–55]. Consequently, MAP2K-
signalling is highly involved in PDGF-BB-induced prosta-
glandin synthesis.

The role of prostanoids in PDGF‑BB‑induced 
bronchoconstriction
TP-receptors are highly involved within PDGF-BB-
induced bronchoconstriction, as inhibition of TP-recep-
tors by SQ29548 completely prevented the contractile 
effect of PDGF-BB (Fig. 5A). TP-receptors are primarily 
linked to Gαq/11 and Gα12/13. Induction of Gαq/11 leads to 
the formation of IP3 and—by the release of Ca2+ from the 
sarcoplasmic reticulum—to increased intracellular Ca2+ 
levels [56, 57]; whereas activation of Gα12/13 mediates the 
induction of RhoA/ROCK which itself inhibits the myo-
sin light chain phosphatase. Finally, both signalling path-
ways provoke sustained contraction [58].

In contrast to the role of TP-receptors, PDGF-BB-
induced activation of IP-receptors (Fig.  5B) appears to 
be without relevance, as inhibition of IP-receptors by 
RO-1138 did not alter the contractile effect of PDGF-BB. 
Additionally, activation of EP1–4-receptors by PDGF-BB 
(Fig.  6A–D) seems to be at most of minor impact. Our 
results are partly in contrast to those from Schaafsma 
et  al. [51] who found that PDGF-BB-induced bron-
choconstriction (GPs) depends on the activation of 
EP1-receptors [51]. Further, Zhou et al. [10] showed that 
PDGFR-downstream signalling involves the activation 

of EP3-receptors. Our present results are further in con-
trast to a former study in pulmonary veins of GPs. There, 
PDGF-BB-induced contraction of SMCs was shown to 
depend on the activation of TP-receptors, as well as on 
the activation of EP1/3/4-receptors [19].

Comparing between the findings of our present work 
on GP airways and a former work on GP pulmonary 
veins [19], it is evident that TP-receptors play a piv-
otal role within PDGF-BB-induced contraction. This is 
also supported by the fact that thromboxane B2 (TXB2), 
the inactive metabolite of thromboxane A2 (TXA2), is 
strongly increased in the perfusate of IPLs after treat-
ment with PDGF-BB. This effect is prevented if IPLs were 
pre-treated with imatinib [19].

The role of actin polymerisation within PDGF‑BB‑induced 
bronchoconstriction
Actin polymerisation is an important process within the 
regulation of the tone of smooth muscle cells (SMC) [59]. 
In this context, activation of PDGFR-β contributes—via 
the stimulation of SRC and abelson tyrosine kinase (Abl) 
(Fig.  9)—to actin polymerisation [60, 61]. Conversely, 
inhibition of PDGFR-β, e.g. by SU6668 or imatinib pre-
vents this process. In addition, imatinib acts as a direct 
inhibitor of Abl [62]. Consecutively, imatinib prevents 
Abl downstream signalling such as actin polymerisa-
tion [62] and activation of RhoA/ROCK [63, 64]. Our 
data indicate that actin polymerisation is involved within 
PDGF-BB-induced bronchoconstriction, as its inhibi-
tion by cytochalasin D reduced the contractile effect of 
PDGF-BB (Fig. 7). Our results are supported by the facts 
that (1) actin polymerisation is of impact for the con-
tractile effect of PDGF-BB in pulmonary veins (GP) [19] 
and (2) that actin polymerisation is of relevance for air-
way hyperresponsiveness [62, 65]. Further, Nayak et  al. 
[66] recently demonstrated the additive effects of beta-
agonists and Abl-inhibitors on the airway tone in murine 
PCLS and in mice with the flexiVent system [66].

Ca2+‑ release and Ca2+‑sensitisation within PDGF‑BB‑induced 
bronchoconstriction
Studying the mechanisms of PDGF-BB-induced bron-
choconstriction in GP PCLS, we found that inhibition of 
L-Type Ca2+ channels by amlodipine seems to play an at 
best minor role within the contractile effect of PDGF-BB 
(Fig.  8A). In contrast, inhibition of Rho-Kinase by fas-
udile (Fig. 8B) as well as inhibition of PKC by calphostin 
C (Fig. 8C) significantly reduced the contractile effect of 
PDGF-BB, suggesting a relevant role of Ca2+-sensitisation 
within the bronchoconstrictive effect of PDGF-BB. Our 
results are conflicting as Ca2+-sensitisation depends in 
part also on the increase of intracellular Ca2+ (Fig. 9) [58, 
67]; e.g. Rho kinase mediated contraction of SMCs can 
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be activated by Ca2+-independent and Ca2+-dependent 
mechanisms (Fig. 9), however activation of PKC is abso-
lutely coupled on the release of Ca2+. Consecutively, Ca2+ 
should be involved within PDGF-BB-induced bronchoc-
onstriction anyhow.

Our results are in contrast to those of Zhou et  al. 
[10], who showed in rat lung slices that PDGF-BB-
associated airway constriction depends on increased 
Ca2+-levels. The diverging results might be explainable 
by the different species, GPs versus rats. Yet, this aspect 
should not be the only reason for a possible discrepant 
regulation of the tone of SMCs. In fact, in contrast to 
our present results, L-Type Ca2+-channels play a domi-
nant role within PDGF-BB-induced constriction in pul-
monary veins of GPs, whereas Ca2+-sensitisation does 
not [19].

The bronchorelaxant effect of Imatinib
Beyond the contractile effects of PDGF-BB, PDGFR-
inhibition by imatinib exerts bronchorelaxation in 
ET-1-pre-constricted human airways. In contrast, if 
airways were not pre-constricted, imatinib did not 
mediate relaxation, but it prevented PDGF-BB-induced 
contraction. Our results are supported by those of 
Chopra et  al. [50] who proved a relaxant effect of the 
TKIs ST638, genistein and tyrphostin A47 in isolated 
bronchioles of rats. Recently, Nayak et al. [66] showed 
in murine PCLS and in a murine in  vivo model (flex-
iVent) that TKIs and β-agonist act synergistic within 
the context of bronchorelaxation. Beyond, the relaxant 
effects of several TKIs, e.g. nilotinib, imatinib and nin-
tedanib (unpublished data) have been proven in differ-
ent tissue of various species [17, 22, 68–70].

Fig. 9  Mechanisms for PDGF-BB-induced bronchoconstriction. The contractile effect of PDGF-BB depends on the activation TP-receptors which are 
mainly coupled to Gα12/13 [56, 57] activating Rho/ROCK and inhibiting thereby MLCP [58]. Further, TP-receptors (TPR) are coupled to Gαq/11, leading 
to the formation of IP3 and to the release of calcium from the sarcoplasmic reticulum (SR) [56, 57]. Increased cytosolic calcium levels are leading 
to the activation of PKC which itself inhibits the myosin light chain phosphatase (MLCP), hence the actomyosin system remains activated and 
contraction of SMCs is intensified [58]. In addition, increased cytosolic calcium levels provoke the activation of Rho/ROCK [58, 67]. Last, TP-receptors 
(TPR) are linked to Gβγ activating MAPK-signalling. MAPK-signalling supports the activation of TP-receptors, as it strengthens the activation of the 
cytosolic PLA2 [52, 53], which leads to the formation of arachidonic acid (AA), serving as a substrate for the production of TXA2 [77]. Moreover, 
both PDGF-BB and PDGFR stimulate the abelson tyrosine kinase (Abl) [60, 61, 78] which acts downstream on Rho/ROCK [63, 64]. In contrast, the 
TKI imatinib, but not SU6668, inhibits Abl [62]. The stimulation of Abl by PDGF-BB and PDGFR is important for SMCs’ contraction, as Abl supports 
the polymerisation of subcortical actin filaments [59] strengthening the membrane for the transmission of the force generated by the actomyosin 
system. Hence, the stabilization of the cytoskeleton and the crossbridge cycling reinforce each other, leading to enhanced contraction [59]
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Beyond the Abl-inhibiting properties of imatinib 
[62], it should be considered that imatinib relaxed 
human airways pre-constricted with ET-1. Within this 
context it is relevant that ET-1 downstream signal-
ling [71–74] involves the release of TXA2 and subse-
quently the activation of TP-receptors, as a common 
pathway of ET-1-induced contraction. Furthermore, 
it is possible that imatinib interacts directly with TP-
receptors. Since long, TP-receptors are focused as pos-
sible targets in the therapy of chronic asthma [75, 76]. 
Imatinib might contribute to generate new therapeu-
tic approaches in asthma. Within this context inhaled 
imatinib may enlarge the existing repertoire of topical 
application.

In conclusion, (1) PDGF-BB contracts airways. (2) 
Imatinib (perfused/nebulised) prevents the contrac-
tile effects of PDGF-BB. (3) Imatinib relaxes ET-1 pre-
constricted human airways. Finally, PDGFR might act 
as a central platform in chronic airway disease, e.g. IPF 
or asthma. Within this context, MAP2K-signalling, 
activation of TP-receptors, actin polymerisation and 
Ca2+-sensitisation appear to play a central role. Thus, 
TKI-inhibition might be a beneficial and prospective 
strategy in asthma and airway hyperresponsiveness.
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