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Abstract

The detection and unambiguous identification of anabolic-androgenic steroid metabolites are 

essential in clinical, forensic, and anti-doping analyses. Recently, sulfate phase II steroid 

metabolites have received increased attention in steroid metabolism and drug testing. In large 

part, this is because phase II steroid metabolites are excreted for an extended time, making 

them a potential long-term chemical marker of choice for tracking steroid misuse in sports. 

Comprehensive analytical methods, such as liquid chromatography-tandem mass spectrometry 

(LC-MS/MS), have been used to detect and identify glucuronide and sulfate steroids in human 

urine with high sensitivity and reliability. However, LC-MS/MS identification strategies can be 

hindered by the fact that phase II steroid metabolites generate non-selective ion fragments across 

the different metabolite markers, limiting the confidence in metabolite identifications that rely 

on exact mass measurement and MS/MS information. Additionally, liquid chromatography-high 

resolution mass spectrometry (LC-MS/MS (HRMS)) is sometimes insufficient at fully resolving 

the analyte peaks from the sample matrix (commonly urine) chemical noise, further complicating 

accurate identification efforts. Therefore, we developed a liquid chromatography-ion mobility-

mass spectrometry (LC-IM-MS) method to increase the peak capacity and utilize the IM-derived 

collision cross section (CCS) values as an additional molecular descriptor for increased selectivity 

and improve identifications of intact steroid analyses at low concentrations.
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Exogenous anabolic-androgenic steroids (AASs) are performance enhancement drugs 

obtained by structural modifications of testosterone. AASs are the most reported prohibited 

substances in competitive sports.1–4 Urine sampling is the matrix of choice for testing the 

presence of AAS because many steroid metabolites are eliminated through urine. AAS 

metabolites exhibit a slow elimination rate in the urinary system, allowing drug testing 

laboratories to detect them over an extended period following exposure. Furthermore, urine 

is a non-invasive sample collection strategy. Usually, AASs undergo two phases of enzyme-

controlled metabolism to inactivate the drug and facilitate its elimination from the body 

via the bioconversion of AAS into more hydrophilic compounds.1 Phase I reactions mainly 

include oxidation and reduction, making the compounds more suitable for subsequent phase 

II reactions. The most common phase II reactions are conjugations with sulfonic acid and 

glucuronic acid.1,5,6

Routine analyses of AAS metabolites often use indirect methods such as hydrolysis of 

phase II metabolites, followed by liquid-liquid extraction and derivatization reactions for 

increased volatility and thermal stability for GC-MS/MS detection.1,7 Sensitivity challenges 

in atmospheric pressure ionization (API) methods have been extensively described for the 

aglycone counterparts of AASs.8,9 Thus, the sensitivity required in drug testing is difficult to 

achieve. More recent work has demonstrated that AAS phase II metabolites can be analyzed 

directly via LC-MS/MS due to their moderate acidity.1,10–13 LC-MS/MS has been shown to 

be suitable for determining the presence of hydrolysis resistant glucuronide metabolites.14 

Nevertheless, this approach does not provide intact steroid structural characterization, 

relying instead on unspecific fragment ions observed in the MS2 spectra. Derivatization 

reactions are also sometimes used for LC-MS/MS analyses to address ionization issues. 

However, the sample preparation for derivatization reactions is time-consuming and can 

yield multiple derivative products.15

Despite these challenges, the best targets to track AAS misuse in sports are those eliminated 

in urine over extended time periods. These are usually referred to as AAS long-term 

metabolites (LTMs). These LTMs were a turning point in AASs characterization through 

expanding the detection window of AASs in anti-doping analyses.1,16 Discovering novel 

LTMs of AAS with improved analytical capabilities has led to significant improvements 
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in anti-doping scenarios.1,16–21 For example, dehydrocloromethyltestosterone’s (DHCMT) 

estimated detection window without its LTM is 8-18 days, but through inclusion of its LTM 

this window can be expanded to ca. 250 days.16,17,19–21

Recently, new LTMs have been described in the sulfate fraction, but current analytical 

methods cannot detect these metabolites in a high-throughput manner. Exhaustive and 

inefficient chemical hydrolysis reactions are required to detect the desirable non-sulfated 

derivative for MS analyses.22 GC-MS/MS analyses have been utilized for detecting the 

sulfate metabolites to avoid the inconveniences described above. The degradation products 

of non-hydrolyzed sulfated metabolites are detected, instead.23 This approach is not reliable 

since these degradation products are generated in the GC injection port, and are difficult to 

control.

A further analytical challenge in detecting AAS metabolites is that their chemical and 

isomeric diversity results in numerous isobaric peaks in LC-MS/MS (HRMS) analyses, 

especially considering the high occurrence of coeluting endogenous interferences in human 

urine.24,25 To date, several different analytical strategies have been utilized to characterize 

AAS and related metabolites.11,16–20,22,23,26–35 Traditionally, these techniques consist 

of GC-MS/MS, LC-MS/MS, and/or LC-MS/MS (HRMS). However, inherent issues are 

apparent with intact phase II steroid metabolites selectivity due to poor fragmentation in API 

sources and tandem mass spectrometry described by previous studies.15,24,36 More selective 

and sensitive analytical methods that are capable of addressing sample complexity and 

throughput are needed in doping control laboratories to discover novel markers and address 

the ongoing misuse of AASs.6,16,37

Ion mobility spectrometry (IMS) is a gas-phase separation technique that distinguishes ions 

based on their size, shape, and charge state.38–66 The IMS size and shape measurement 

takes the form of an ion collision cross section (CCS), which is a coarse-grained surface 

area measurement (reported in square angstroms, Å2) encompassing the ion size as well as 

its interaction with the neutral gas. IMS separates ions based on differences in gas phase 

electrophoretic mobility, while in contrast, GC and LC separations are primarily based 

on differences in analyte boiling point\vapor pressure and polarity, respectively. Gas-phase 

IMS analyses are rapid, typically occurring on a time scale of 10-100 ms per spectrum, 

whereas condensed phase LC-MS is on the time scale of minutes. Therefore, IMS can 

be included in existing LC-MS workflows without compromising analytical throughput, 

providing an additional separation dimension and an associated molecular descriptor (CCS) 

to support analyte detection and identification.38,50 Previously, IMS has been utilized to 

characterize intact AASs along with their phase I and phase II metabolites.24,54,67–72 

Various IMS techniques, such as field asymmetric IMS (FAIMS), traveling wave IMS 

(TWIMS), and drift tube IMS (DTIMS), have been utilized for AAS analyses.50,67–74 The 

Yost research group investigated the effect of Group 1 cation adducts on resolving AAS 

isomers using FAIMS, providing direct separation of metal-coordinated AAS isomers with 

no increase in analysis time or modifications to the instrumentation, which is useful for 

high-throughput screening.71 Hernández-Mesa et al. have successfully cross-validated the 

first TWIMS database for steroids in calve urine and obtained CCS values within 2% of 

literature databases entries.68 The Chouinard group has demonstrated the application of the 
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Paternò-Büchi reaction for structural modification of steroid isomers, prompting improved 

identification by DTIMS, which is promising due to the simplicity, low cost, and relatively 

high efficiency of the Paternò-Büchi reaction for generating structurally-informative ions.67

Online, multidimensional analytical separations such as liquid chromatography-ion 

mobility-mass spectrometry (LC-IM-MS) may be necessary for AAS analyses, particularly 

for complex human sample matrices where numerous isobaric and isomeric compounds 

(e.g., nominal mass interferents and analyte structural isomers) are commonly 

encountered.24,57,75 In addition to LC-MS/MS (HRMS) and GC-MS/MS, LC-IM-MS has 

become an essential analytical technique for characterizing metabolites simultaneously by 

molecular structure and weight.49,52,63,66,75–77

In this work, we describe an LC-IM-MS workflow based on DTIMS that supports anti-

doping efforts to improve the detection of relevant,endogenous, and long-term intact AAS 

phase II metabolites in human urine at low concentrations. Collision cross section (CCS) 

values derived from DTIMS analysis show utility in improving the confidence in assigning 

small-molecule AAS identifications. The combined LC-IM-MS workflow described here 

delivers reliable and accurate qualitative results for AAS phase II metabolites and should 

prove beneficial for laboratories interested in increasing efficiency and accuracy in anti-

doping analyses.

Experimental Methods

Standards and Chemicals.

Steroids utilized in this study are presented in Table 1. Epitestosterone S (4-androsten-17α-

ol-3-one sulphate), 7-Keto DHEA-3 S (5-androsten-3β-ol-7,17-dione sulphate), 16α-

hydroxy DHEA S (5-androsten-3β, 16α-diol-17-one-3 sulphate), Prednisolone 21-S 

(1,4-pregnadien-11,17,21-triol-3,20-dione 21-sulphate), 11-Ketoetiocholanolone S (5β-

androstan-3α-ol-11,17-dione sulphate), Prasterone S (3β) (5-androsten-3β-OL-17-one 

sulphate), Epiandrosterone S (5α-androstan-3β-ol-17-one sulphate), Prasterone (3α) 

S (5-androsten-3α-OL-17-one sulphate), 5α-androstan-3β-ol-one S, Etiocholanolone S 

(5β-androstan-3α-ol-17-one sulphate), and Androsterone S (5α-androstan-3α-ol-17-one 

sulphate) were purchased from Steraloids Inc. (Newport, RI, USA). Drostanolone 

M1 G (2α-methyl-5α-androstan-3α-ol-17-one-3-β-D-glucuronic acid), Methenolone 

M1 G (1-methylene-5α-androstan-3α-ol-17-one-3-β-D-glucuronic acid), Mesterolone 

M1 G (1α-methyl-5α-androstan-3α-ol-17-one-3β-D-glucuronic acid), Mesterolone 

M2 G (1α-methyl-5α-androstan-3α,17β-diol-3-β-D-glucuronic acid), Boldenone G 

(1,4-adrostadien-17β-diol-3-one-17-β-D-glucuronic acid), Bolasterone M1 G (7α,17α-

dimethyl-5β-androstan-3α,17β-diol-3-β-D-glucuronic acid), Stanozolol 3’OH G (5α-

androstan-[3,2-c] pyrazole-3’,17β-diol-17α-methyl-3’-β-glucuronic acid, Nandrolone G 

(4-estren-17β-ol-3-one-17-β-D-glucuronic acid), Epinandrolone S (17α-sulfoxy-4-estren-3-

one), 19-norandrosterone D4 G (2,2,4,4-d4-5α-Estran-3α-ol-17-one-3-β-D- glucuronic 

acid), Testosterone D3 S (16,16,17α-d3-17β-sulfoxy-androst-4-en-3-one) were purchased 

from The National Measurement Institute of Australia (NMIA). Epi-THMT S3 (3α-

sulfoxy-17β-methyl-5β-androstan-17α-ol) was a kind gift from the Institute Hospital 

del Mar d’Investigacions Mèdiques (IMIM) (Barcelona, Spain). Stanozolol 1’N-G (5α-
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androstan-[3,2-c] pyrazole-3’,17β-diol-17α-methyl-1Ń-glucuronic acid) was provided by 

Seibersdorf Laboratories (Austria). All 22 AAS chemical structures are shown in Figure 

1, with sections depicting constitutional isomer and stereoisomer groups along with CCS 

values for interday (n = 3 technical replicates over 3 different days) analyses in this study. 

Optima LC/MS grade water, methanol, formic acid, and ammonium formate were obtained 

from Fisher Scientific (Hampton, NH, USA).

Human Urine Extraction and Preparation.

Solid-phase extraction (SPE-C18 Cartridges) was used for all urine samples. Briefly, 2 mL of 

methanol and 2 mL of water were used for cartridge conditioning. Afterward, the cartridge 

was loaded with 5 mL of each human urine sample. Next, the cartridges were washed with 

10% methanol in water. Then, the steroid metabolites were eluted with 100% methanol, 

andthe solvent was evaporated under a nitrogen stream at 40 °C for 40 min. The final extract 

was reconstituted with 100 µL of mobile phase buffer before analyses.

Chromatographic Conditions.

For the LC-IM-MS method, steroid standards were analyzed using a 2.1 x 75 mm (1.7 

µm) reversed-phase column, Waters ACQUITY BEH C18 (Waters Corporation, Milford, 

MA) with a 2.1 x 5 mm 1.7 µm Waters ACQUITY BEH C18 Vanguard precolumn (Waters 

Corporation, Milford, MA), maintained at 45 °C for separation by Ultra High-Pressure 

Liquid Chromatography (UHPLC, Agilent 1290 Infinity I system, Agilent Technologies, 

Santa Clara, CA). Mobile phase A consisted of water with 0.1% formic acid and 1 mM 

ammonium formate. Mobile Phase B consisted of methanol with 0.1% formic acid and 

1 mM ammonium formate. The UHPLC was directly coupled online to a commercial 

DTIMS-MS (6560, Agilent). A 10 µL sample was injected at a flow rate of 400 µL/min 

and was analyzed using the following chromatographic conditions (15 minute total runtime 

including purge and equilibration times): mobile phase B was maintained at 45% for the 

first 1 minute for an initial isocratic hold, linearly increased from 45% to 70% over 8.5 

minutes, linearly increased again from 70% to 100% over 1 minute, and held at 100% for 

1.5 minutes. Mobile phase B returned to 45% by 13 minutes and was held at 45% for 2 

minutes to re-equilibrate the column. A shorter 10 minute LC method was used for human 

urine samples to increase throughput (Table S1). In these methods, the initial isocratic hold, 

final purge, and re-equilibration times were performed to ensure efficient cleaning, minimize 

carryover, and preserve column integrity.

DTIMS-MS conditions.

AASs were analyzed in negative ionization mode using the Jet Stream ESI source (Agilent) 

coupled with a drift tube ion mobility mass spectrometer (6560, Agilent) using settings 

similar to previously described instrumental methods.38,44,46,47,50,78 Ionization source 

conditions were optimized (e.g., gas temperature, drying gas, nebulizer pressure, sheath 

gas temperature, sheath gas flow, capillary voltage, and nozzle voltage in Table S1) for 

flow injection analysis (FIA) to maximize sensitivity. The IM analyses used nitrogen drift 

gas with the drift tube at a temperature of 30 °C, a pressure of 4.0 Torr, and an electric 

field of 17.3 V/cm. A single field CCS method was used to determine CCS values via 

a modified Mason-Schamp equation.46 Data were acquired using MassHunter Workstation 
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Data Acquisition software (Agilent) and analyzed using MassHunter Qualitative Analysis 

(Agilent), MassHunter IM-MS Browser (Agilent), and Skyline (MacCoss Lab).79,80 

Statistical analyses for isomeric AAS phase II metabolite RT and CCS measurements were 

performed using GraphPad Prism (version 8.0). Significant difference was assessed based 

on a p-value < 0.05 from appropriate statistical tests (t-tests (Tables S2–S3) and one-way 

analysis of variance (ANOVA) tests (Tables S4–S5)).

Results and Discussion

LC-IM-HRMS.

The data in Figure 2 was extracted for Epi-THMT S3 (m/z 367.194), which had the same 

LC retention time in the pure standard, the standard spiked in urine, and the urine blank 

samples (panel A). Panel B showed that the peak arising from the urine blank was an 

interference because the CCS percent error between the pure standard and the urine blank 

was > 5%. On the other hand, the CCS percent error between the pure standard and standard 

spiked in urine was ~0.5%, which is within the margin of error for DTIMS (panel B). Panel 

C demonstrates how HRMS alone could not fully resolve the masses for Epi-THMT S3 

and the interference. However, when data filtering is used in the DTIMS dimension, the 

interference can be resolved from Epi-THMT S3 (LC-IM-MS).

To evaluate the selectivity and applicability of the DTIMS dimension in analyzing 

AASs, Figure 3 exhibits the theoretical isotope distribution patterns for Epi-THMT S3, 

Drostanolone M1 G, and Stanozolol 1’N – G. Theoretical isotopic distribution patterns 

were compared to the extracted mass spectra of the (1) MS only, (2) LC-MS, (3) IM-

MS, and (4) LC-IM-MS dimensions which were analyzed from human urine samples. 

These data collectively illustrate that information derived from the multiple separation 

dimensions, particularly IM-derived CCS values, contribute increased selectivity and analyte 

identification assurance. For all three AASs, the LC-IM-MS analyses distinctively resolved 

coexisting interferences and enhanced certainty in AAS differentiation. Lastly, Figure 3 

demonstrates the utility of the IM dimension to resolve concomitant species from human 

urine that were not separated in the LC or HRMS dimensions alone.

A representative CCS vs. retention time plot of the 22 AAS IMS and LC profiles is shown 

in Figure 4C. Table 1 also denotes AAS formulas, exact masses, isomer groups, [M-H]− 

measured masses, retention times (RT), RT coefficient of variations (CV%), CCS, and CCS 

CV%. Additionally, CCS and m/z correlations are shown in Figure S2 and Figure S3. 

These data collectively demonstrate the structural diversity among the AAS phase II steroids 

outlined in this study even though there are many isomer groups (Table 1 and Figure 1). 

Chromatographically, most isomeric AASs were shown to display statistically significant 

separations with some overlapping retention times (based on CV% in Table 1, standard error 

bars in Figure 4A, and p-values in Table S2–S5). For most isomeric AASs that did not 

exhibit statistically significant separation chromatographically, the data show that there were 

statistically significant CCS values (difference based on standard error bars in Figure 4 and 

p-values in Table S2–S5). By combining LC, IM, and MS data, all AASs examined, except 

for Etiocholanolone S and Androsterone S, were statistically significant and separated in 
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either chromatography, ion mobility, or mass spectrometry dimensions (font colors represent 

AAS isomers in Table 1, Figure 1, Figure 4, and p-values in Table S2–S5).

Isomer Separation.

To assess the utility of the LC-IM-MS method for separating isomeric AASs (Table 1, 

Figure 1, Figure 4, Figure S4, and Table S2–S5), we analyzed 11 analytes belonging 

to 4 isomeric sets including 16α-hydroxy DHEA 3-S (in blue), 11-ketoetiocholoanolone 

S (in blue), Prasterone S (3β) (in green), Epitestosterone S (in green), Prasterone S 

(3α) (in green), Epiandrosterone S (in gold), 5α-androstan-3β-ol-16-one S (in gold), 

Etiocholanolone S (in gold), Androsterone S (in gold), Mesterolone M1 G (in orange), 

and Drostanolone M1 G (in orange). Because isomers have the same chemical formula, 

this presents challenges for mass separation alone. However, LC-IM-MS analyses give the 

most accurate results (Figure 3). In the IM dimension, statistically significant separations 

were readily obtained for all isomer sets except for Epiandrosterone S vs. 5α-androstan-3β-

ol-16-one S and Etiocholanolone S vs. Androsterone S (difference based on standard error 

bars in Figure 4C, Figure S2, Figure S3, and p-values in Table S5). The IMS single-peak 

resolving power (Rp) values and FWHM peak widths for Epiandrosterone S were ~40.2 and 

~0.68 ms, respectively. The IMS Rp values and FWHM peak widths for 5α-androstan-3β-

ol-16-one S were ~42.3 and ~0.65 ms, respectively (p-value = 0.92 when CCS values 

are compared to each other). For the other set of isomers denoted with gold, the IMS 

single-peak resolving power (Rp) values and FWHM peak widths for Etiocholanolone S 

were ~48.8 and ~0.56 ms, respectively. The IMS Rp values and FWHM peak widths for 

Androsterone S were ~47.7 and ~0.57 ms, respectively (p-value = 0.13 when CCS values 

are compared to each other). These four endogenous AAS phase II metabolite isomers are 

challenging to differentiate using the current IMS technology and thus would benefit from 

high resolution IMS techniques such as extended path-length traveling wave IMS (cyclic 

TWIMS), Structures for Lossless Ion Manipulation (SLIM), trapped IMS (TIMS), FAIMS, 

or ion multiplexing using DTIMS.81–86

Structural analyses of the stereoisomers (in green, Table 1 and Figure 1), Prasterone S (3α), 

and Prasterone S (3β) along with their constitutional isomer, Epitestosterone S, yielded 

statistically significant CCS values from each other (in green, difference based on standard 

error bars in Figure 4C and p-values in Table S4). However, Prasterone S (3β) did not 

yield statistically significant RT values when compared to Epitestosterone S, but all other 

RT values were statistically significant (in green, difference based on standard error bars in 

Figure 4C and p-values in Table S4). The stereoisomers structural analysis (in gold, Table 

1), Epiandrosterone S, Etiocholanolone S, and Androsterone S do not all have statistically 

significant RT values, and these three isomers do not have statistically significant CCS 

values (in gold, difference based on standard error bars in Figure 4, Figure S2, Figure S3, 

and p-values in Table S5). The constitutional isomer, 5-α-androstan-3β-ol-16-one S, yielded 

statistically significant RT values but not CCS values when compared to Epiandrosterone 

S (in gold, difference based on standard error bars in Figure 4C, Figure S2, Figure S3, 

and p-values in Table S5). Etiocholanolone S did not yield statistically significant RT and 

CCS values when compared to Androsterone S (in gold, difference based on p-values in 

Table S5). Each of the constitutional isomer sets (in blue and orange, Table 1), 16α-hydroxy 
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DHEA 3-S (in blue), 11-ketoetiocholanolone S (in blue), Mesterolone M1 G (in orange), 

and Drostanolone M1 G (in orange) all have statistically significant RT and CCS values 

(difference based on standard error bars in Figure 4C and p-values in Table S2–S3).

Enhancement in AAS Detection Utilizing Ion Mobility.

Sulfate and glucuronide AAS phase II metabolites were detected using both RT and CCS 

values to examine the complementary separation of each dimension (Figure 4C). There was 

no consistent trend in the LC elution order as both sulfate and glucuronide AAS phase II 

metabolites eluted at different times throughout the chromatographic method. However, in 

the IMS analyses, the CCS values of the sulfate metabolites are smaller than the glucuronide 

metabolites. By combining approaches, all the isomers (except for Etiocholanolone S and 

Androsterone S) can be resolved cooperatively using LC-IM-MS.

This study has four isomeric groups consisting of both constitutional isomers and 

stereoisomers analyzed individually and in a mixture. The LC and IMS separations in 

Figure 4 (also Table S2–S5) illustrate the power of orthogonal separation mechanisms of 

polarity (LC) and molecular size in the gas phase (IM). Although not all the isomeric 

AAS phase II metabolites could be resolved by the LC or MS dimension alone, coupling 

these two techniques provide a more comprehensive example of isomer separation in 

3-dimensional space (LC-IM-HRMS). Once the utility of endogenous steroid sulfates are 

also demonstrated as a means of identifying suspicious samples arising from pseudo 

endogenous intaking, the LC-IM-HRMS workflow developed in this study may be quite 

useful for overcoming selectivity issues found in the conventional LC-MS/MS approach.87 

Furthermore, faster LC gradients can be explored without significantly compromising the 

LC separation. Fast LC can provide a considerable advantage as it enables analytical 

results to be achieved more quickly, which is particularly important in major competitive 

events such as the Olympic Games since the time frame to report the analytical results is 

necessarily short.

Conclusions

The increase in positive tests reported by WADA accredited laboratories have necessitated 

the evaluation of new analytical methods that are fit for purpose with regard to analyzing 

AASs in human urine. This motivation for evaluating new technologies is in response 

to targeting long-term metabolites of steroids with improved analytical selectivity and 

sensitivity which ultimately results in a significant increase in positive tests.16 The lack 

of high analytical selectivity and sensitivity can complicate accurate identifications in anti-

doping analyses.

This manuscript investigates the utility of LC-IM-HRMS analytical workflows in anti-

doping applications, which are motivated by inherent limitations with steroid selectivity due 

to limited diagnostic fragmentation in MS/MS workflows, especially when differentiating 

isomers. Our analyses provide qualitative measurements of intact phase II metabolite groups 

(sulfate and glucuronide metabolites). Taken together, 20 out of 22 AASs evaluated in 

this study (including isomeric species but excluding Etiocholanolone S and Androsterone 

S) were separated with statical significance when the combined LC-IM-MS analytical 
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approach was utilized. Additional confidence was gained when matching the CCS values 

of the tentative steroid identifications (obtained via accurate mass measurement), with CCS 

measurements from the analytical standards. For the future, CCS predictions using machine 

learning algorithms will be necessary to populate the numerous possible AAS CCS values 

for unknown detectionwith high speed and accuracy (e.g., DeepCCS, SIFTER).88,89 Also, 

high resolution ion mobility will provide additional selectivity and differentiation needs for 

AAS analyses that would ultimately lead to higher precision and accuracy for anti-doping 

applications.81–86
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Figure 1. 
Chemical structures, exact masses, and CCS values of 22 phase II steroids categorized 

as (A) non-isomeric, (B) constitu-tional isomers, and (C) stereoisomers. Reported CCS 

measurements represent n = 3 technical replicates over 3 different days at 5 μg/mL. 

The color coordination is for isomer groups and the red stars indicate positions of 

stereochemistry that differentiate stereo-isomers.
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Figure 2. 
The anabolic-androgenic steroids (AASs) analytical workflow for the liquid chromatography 

(LC)-ion mobility (IMS)-mass spectrometry (MS) method with 17-methyltestosterone 

sulfate metabolite 3 (Epi-THMT S3 as [M-H2O-H]− found in Figure S1) as an example 

using the 10 minute LC method (Table S1). (A) EPI-THMT S3’s chemical structure, 

color coordination legend, sample preparation, LC chromatograms relative intensity vs. 

retention time in minutes (min) as extracted ion chromatograms (EIC) for 367.1930 m/z. 

(B) Comparison of collision cross section (CCS) values vs. retention time (min), drift time 

relative inten-sity vs. IM spectra in milliseconds (ms). (C) HRMS mass spectra relative 

intensity vs. m/z. In (B) standard error bars were used to demonstrate overlapping CCS 

values vs. retention times and are within the scale of the marker for most values (n = 3 

intraday technical replicates).
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Figure 3. 
Isotope distribution patterns for three exogenous AASs (Epi-THMT S3 (World Anti-Doping 

Agency (WADA) minimum required performance level or MRPL = 2 ng/mL) extracted 

from human urine samples and analyzed via LC-IM-MS. The mass spectra in this figure 

are presented as extracted isotopic distribution patterns for the MS only, LC-MS, IM-MS, 

and LC-IM-MS dimensions. All chromatographic and ion mobility peaks were extracted for 

the MS only dimension mass spectra. For the LC-MS dimension mass spectra, the AAS 

chromatographic peaks for Epi-THMT S3, Drostanolone M1 G, and Stanozolol 1’N – G 

were individually filtered while the entire ion mobility range (0-60 ms) were extracted. 

For the IM-MS dimension mass spectra, all the chromatographic peaks were extracted 

while the AAS ion mobility peaks for Epi-THMT S3, Drostanolone M1 G, and Stanozolol 

1’N – G were individually filtered. For the LC-IM-MS dimension mass spectra, the AAS 

chromatographic peaks and ion mobility peaks for Epi-THMT S3, Drostanolone M1 G, and 
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Stanozolol 1’N – G were individually filtered. This strategy can be used to enhance the 

confidence in AAS differentiation where the green boxes indicate theoretical mass isotopic 

distribution matches (±5% height deviation). This figure also presents red boxes that indicate 

isotopic distribution concomitant interfer-ences that were analyzed in the human urine 

complex biological sample for the MS only, LC-MS, IM-MS, and LC-IM-MS dimen-sions. 

In the MS only, LC-MS, and IM-MS dimensions numerous interferences were analyzed. 

Ultimately, the LC-IM-MS dimen-sion resolved most, if not all, interferences for Epi-THMT 

S3, Drostanolone M1 G, and Stanozolol 1’N – G. The concept of this figure was in part 

adapted from Davis, Jr., et al. showing the utility of LC-IM-MS analyses in human urine 

anti-doping applications.75
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Figure 4. 
(A) LC-IMS-MS analysis showing an LC chromatogram of 22 phase II AAS. Dashed 

chromatograms are isomer groups. The dotted grey line represents %B mobile phase 

gradient. (B) The elution order of the 22 phase II AAS where the color coordina-tion 

designates isomer groups. (C) Correlation of LC retention times and CCS values to specific 

types of phase II steroids (glucuronic acids are in orange and sulfonic acids are in blue). 

Standard error bars for both variation in retention times and CCS are shown and are for most 

values within the scale of the marker (n = 3 technical replicates over 3 different days at 5 

μg/mL).
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