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Abstract

Combining single-cell transcriptomics with mitochondrial DNA (mtDNA) variant detection can 

be used to establish lineage relationships in primary human cells, but current methods are not 

scalable to interrogate complex tissues. Here, we combine common 3' single-cell RNA-sequencing 

protocols with mitochondrial transcriptome enrichment to increase coverage by more than 50-fold, 

enabling high-confidence mutation detection. The method successfully identifies skewed immune-

cell expansions in primary human clonal hematopoiesis.

Single-cell RNA-sequencing (scRNA-seq) enables the unbiased assessment of cell states 

in health and disease1,2. Combined acquisition of cell state and genetic information can 

provide additional insight, such as targeted enrichment of cancer driver mutations from 

single-cell transcriptomes3,4. Separately, combining scRNA-seq with genetic cell barcodes 

can reveal clonal relationships and the evolutionary dynamics of cells within organisms5,6. 

However, this has largely been limited to experimental model systems that can be genetically 

manipulated to insert cell barcodes. To infer clonal dynamics in primary human cells, 

recent methods have detected and utilized mitochondrial DNA (mtDNA) mutations as 

naturally occurring genetic cell barcodes7-9. The combination of scRNA-seq with mtDNA 

mutation detection can inform clonal relationships with high confidence, but is currently 

restricted to expensive, low-throughput, full-length transcript sequencing technologies like 

SmartSeq27,10. To enable the reconstruction of clonal relationships in complex human 

tissues, we developed a method that captures genetic variants from high-throughput 

scRNA-seq platforms: MAESTER, or Mitochondrial Alteration Enrichment from Single-cell 

Transcriptomes to Establish Relatedness (Fig. 1a). MAESTER is compatible with the most 

common high-throughput scRNA-seq platforms, including 10x Genomics 3′ protocols, Seq-

Well S3, and Drop-seq (Supplementary Fig. 1-3)11,12. An intermediate step in each of these 

platforms yields full-length cDNA transcripts, from which we enrich all 15 mitochondrial 

transcripts using pools of primers, while maintaining cell-identifying barcodes (Fig. 1b, 

Supplementary Fig. 4). Standard next-generation sequencing with 250 bp reads is then used 

to obtain the sequence of the amplified mitochondrial transcripts (Fig. 1a). We developed 

a computational toolkit to call mtDNA variants from MAESTER data, the Mitochondrial 

Alteration Enrichment and Genome Analysis Toolkit (maegatk; Supplementary Fig. 5; 

Methods). Building on previous tools that we developed8 for mtDNA variant detection from 

single-cell ATAC (Assay for Transposase-Accessible Chromatin) or SmartSeq2, maegatk 

specifically handles technical biases implicit in high-throughput transcriptomic libraries. 

Maegatk uses unique molecular identifiers (UMIs) to collapse multiple sequencing reads 

of the same starting transcript, creating a consensus call for every nucleotide based on the 

most common call and base quality. This approach mitigates sequence errors introduced 
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during PCR and sequencing and is essential to obtain high-confidence variant calls from 

high-throughput scRNA-seq protocols. We also incorporate indel calling and provide a 

resource to evaluate the potential functional impact of variants (Supplementary Fig. 6, 

Supplementary Table 1). Alterations in mtDNA are then used to infer relatedness between 

cells.

To verify the recovery of variants in our approach, we sought to measure mitochondrial 

DNA and RNA from the same individual cells. To achieve this, we performed MAESTER 

on DOGMA-seq libraries, which enable the concomitant detection of accessible DNA 

(including mtDNA) and transcriptome-wide RNA via the 10x Genomics multiome kit13 

(Fig. 1c). After identifying variants on mtDNA8, we examined the proportion of variants 

recovered by MAESTER. Our analyses revealed that MAESTER recovered 94.1% of 

variants at a single-cell heteroplasmy of >10% (Fig. 1c). These results confirm that 

MAESTER recovers true mitochondrial DNA variants from transcriptomic data.

We established the feasibility and efficiency of MAESTER in standard high-throughput 

scRNA-seq methods using human cell mixing experiments. Chronic myelogenous leukemia 

cells (K562) were mixed with brain tumor cells (BT142) and analyzed using Seq-Well 

S3 and 10x Genomics 3′ v3 protocols. MAESTER dramatically increased the coverage 

of mitochondrial transcripts compared to scRNA-seq data alone (mean coverage per 

cell 0.2–0.7-fold for RNA-seq, 52–217-fold for MAESTER, Fig. 1d, Supplementary 

Fig. 7a-d), enabling reliable mtDNA variant calling with high confidence across many 

of the transcripts. Using Uniform Manifold Approximation and Projection (UMAP) for 

dimensionality reduction, the two cell populations cluster based on mRNA expression data 

(Fig. 1e). MAESTER enabled the identification of six homoplasmic mtDNA variants that 

distinguished between cell types (Fig. 1e-g, Supplementary Fig. 7d-f). Combining data from 

all six informative variants cleanly separates cell types and demonstrates 100% concordance 

with mRNA clusters (Supplementary Fig. 7g,h). Of note, MAESTER identified the same six 

variants in the Seq-Well and 10x libraries (Supplementary Fig. 8a-d).

To benchmark MAESTER’s ability to identify clonal structure at a more granular resolution, 

we performed a clonal expansion experiment. One hundred K562 cells were plated and 

allowed to expand for 14 days (doubling time ~24h), followed by scRNA-seq with 

MAESTER. We identified 21 informative mtDNA variants that revealed clonally related 

populations of K562 cells (Fig. 1h, Supplementary Fig. 8e), which were validated by 

orthogonal bulk ATAC-seq (Supplementary Fig. 8f). These data demonstrate the faithfulness 

of mtDNA variants enriched from mtRNA and the capacity of this method to resolve 

subpopulations within closely related cells.

We next applied MAESTER to derive clonal structure within primary human patient 

specimens. We first utilized a bone marrow aspirate from a patient with clonal 

hematopoiesis. The clonal hematopoiesis had evolved into blastic plasmacytoid dendritic 

cell neoplasm (BPDCN), as the patient had skin tumors at the time of collection. However, 

the concurrent bone marrow aspirate we utilized showed no tumor involvement (Methods). 

We performed 10x single-cell sequencing with MAESTER on this bone marrow aspirate 

and identified 9,346 high-quality cells, including all expected cell types, with an abundance 
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of cytotoxic T cells (CTLs), likely due to hemodilution of the bone marrow sample with 

peripheral blood and possibly related to his evolving malignancy (Fig. 2a, Supplementary 

Fig. 9). We found that MAESTER coverage largely depends on the mtRNA content per 

cell (Supplementary Fig. 10) and tested different thresholds to select informative variants 

(Supplementary Fig. 11). We plotted the largest and most distinct 23 clones using 26 

informative mtDNA variants (14.9% of cells were assigned to these clones, Fig. 2b), 

indicating MAESTER can resolve clonal populations in primary human specimens.

Many of the mtDNA clones clustered together in the RNA-based UMAP (Fig. 2c, 

Supplementary Fig. 12). Indeed, we found that many mtDNA clones were lineage biased 

with 9/23 clones skewed towards CTLs and 2 clones with myeloid lineage bias (Fig. 2d, 

Supplementary Fig. 13).

The abundance of T cells in the sample provided an opportunity to validate the mtDNA 

clones with an orthogonal assessment of clonality using the T-cell receptor (TCR) variable 

region. Building on a TCR enrichment method for Seq-Well14, we developed a protocol for 

TCR sequencing from 10x 3′ scRNA-seq cDNA. We termed the protocol T-cell Receptor 

Enrichment to linK clonotypes by sequencing (TREK-seq, Supplementary Fig. 14) and 

applied this to the bone marrow sample, adding an additional modality to the same single 

cells (Fig. 2e). TRA and TRB variable regions were detected in T-cells but not other lineages 

and were highly concordant, confirming reliable TCR enrichment (Supplementary Fig. 15). 

When comparing TRB variable regions to mtDNA variants, we noted high overlap of the 

orthogonal clonal markers (ARI = 0.74, Fig. 2f,g). The mtDNA clones that were skewed 

towards CTLs (e.g. 6205G>A-9164T>C), suggesting the mtDNA mutation occurred after 

TCR rearrangement, were largely restricted to a single T-cell state (Fig. 2h). In contrast, 

mtDNA clones with all hematopoietic cell types (e.g. 2593G>A), indicating the mtDNA 

mutation occurred within a multipotent HSC, contributed to multiple T-cell states and 

clonotypes (Fig. 2h). Combining MAESTER, TCR-sequencing, and transcriptional states 

(Fig. 2i) can provide independent validation of clonal relationships and new opportunities to 

study T-cell biology.

We also identified two clones with myeloid lineage bias, identified by mtDNA alterations 

2593G>A and 6243G>A (Supplementary Fig. 13,16a). Given the patient’s clonal 

hematopoiesis, we sought to understand if these represented expanded clones. We utilized 

Genotyping of Transcriptomes (GoT)3 to identify the patient’s known ASXL1 and TET2 
loss-of-function mutations in single cells. We found that cells within the two myeloid-biased 

clones contained a high fraction of mutated transcripts (Supplementary Fig. 16b). Of cells 

in the 2593G>A clone, 44% and 40% had TET2.S792X and TET2.Q1034X mutations, 

respectively. This is consistent with bi-allelic TET2 inactivation, a recurrent feature in 

myeloid malignancies15. No mutated transcripts were identified in cells from the other 

21 clones we identified, providing evidence that the myeloid-biased clones identified by 

MAESTER represent cells derived from the patient’s clonal hematopoiesis.

GoT only captured wild-type or mutant transcripts in 3.5% of all 9,346 cells for TET2, and 

0.4% for ASXL1. This relative lack of genotyping efficiency is related to gene expression, 

variant position, and amplicon size, and is similar to other protocols that genotype somatic 
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mutations from high-throughput scRNA-seq libraries4. In contrast, MAESTER captured the 

mtDNA genotype at the 2593 position in 21,767 transcripts in 1,396 cells (99.9% of cells, an 

average of 16 transcripts per cell). Combining driver mutation with mtDNA variant detection 

facilitates phylogeny reconstruction (Supplementary Fig. 16c,d). This allowed us to explore 

cells marked by 2593G>A as clonally expanded cells with loss of TET2.

To interrogate this population further, we compared the myeloid differentiation trajectory of 

2593G>A cells to other cells in the bone marrow using pseudotime analysis (Supplementary 

Fig. 16e)16. We found the clonal population was skewed towards less mature cell types, 

consistent with HSC expansion observed in Tet2 knockout mice17. While analysis of more 

cells and biological replicates is required to generalize these results, our data suggest the 

utility of MAESTER to identify and investigate pre-malignant cell expansions.

Finally, we applied MAESTER to a primary solid tumor tissue to demonstrate compatibility 

with complex tissues requiring cell dissociation. In tumor and peripheral blood samples 

from a glioblastoma patient, we identified a mtDNA deletion in malignant cells that was 

absent in the blood and we found region-specific clonal populations of malignant cells 

(Supplementary Fig. 17a-e). We also discovered tumor-associated myeloid cells that were 

derived from peripheral blood cells in the patient (Supplementary Fig. 17f).

In conclusion, MAESTER enables mtDNA variant detection in high-throughput 3′-biased 

scRNA-seq data, which was previously limited to ATAC-seq or full-length scRNA-seq. 

As with all methods that utilize mtDNA mutations to infer clonal relationships, there are 

limitations inherent to mitochondrial biology. It is currently not possible to track each 

cell division as single-molecule mutations typically cannot be detected above background 

due to their low mtDNA heteroplasmy. For MAESTER, the VAF needs to reach >1% 

for confident detection. The mtDNA copy number per cell and rate of cell proliferation 

impact the time it takes to reach 1% VAF. Further improvements in mutation detection 

efficiency (mitochondrial or nuclear) will enable increasingly granular studies of clonal 

dynamics. Studies that require short-term, per division tracking still require tunable and 

engineered lineage tracing methods. In contrast, mtDNA variants are suitable to determine 

clonal relationships between subsets of cells that are more divergent, providing a tool to 

study in vivo cellular dynamics and human biology. In addition, due to the widespread use 

of 3′-biased scRNA-seq, the development of MAESTER makes mtDNA variant detection 

accessible to more research laboratories and a wider range of experimental contexts. The 

accompanying maegatk software uses UMIs to increase confidence in mtDNA variant 

calls, an advance over previous methods. MAESTER can be implemented on new or prior 

scRNA-seq datasets by using the amplified cDNA that is stored as a standard practice. The 

high-throughput nature of 3′-biased scRNA-seq and MAESTER enables the study of clonal 

relationships and evolutionary dynamics of cells within complex primary human tissues. The 

combination of MAESTER with other modalities such as TCR-sequencing, somatic variant 

detection, and RNA-seq creates synergies that enable analyses and discoveries that are not 

possible with each method alone. By developing MAESTER, we democratize and expand 

the use of naturally occurring barcodes created by mtDNA alterations to enable discoveries 

in human biology.
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Methods

Cell lines and culturing.

Human chronic myelogenous leukemia K562 cells (ATCC CCL-243) were cultured in RPMI 

1640 Medium with GlutaMAX (Gibco 61870127), supplemented with 10% fetal calf serum 

(FCS) and penicillin-streptomycin. The BT142 gliomasphere line18 (ATCC ACS-1018) 

was maintained in Neurobasal media supplemented with 20 ng/mL recombinant EGF (R 

and D Systems), 20ng/mL FGF2 (R and D Systems), 1X B27 supplement (Invitrogen), 

0.5X N2 supplement (Invitrogen), 3 mM L-glutamine, and penicillin/streptomycin19. 

25% conditioned media was carried over each passage. Cultures were confirmed to be 

mycoplasma-free and their identity was verified by STR analysis. K562 and BT142 cells 

from the same passage were used for Seq-Well scRNA-seq + MAESTER, 10x 3′ v3 scRNA-

seq + MAESTER, and bulk ATAC-seq.

Primary human samples—The patients in this study consented to all study procedures 

under Dana-Farber Cancer Institute IRB-approved research protocols. The patient with 

clonal hematopoiesis had a history of leukopenia and thrombocytopenia. The bone marrow 

sample we analyzed was an aspiration in the context of evaluation for skin-only BPDCN. 

Histologic evaluation of the concurrent bone marrow core biopsy was normal and did 

not show involvement of malignant BPDCN cells. Targeted sequencing of the bone 

marrow aspirate identified alterations in ASXL1 and TET2 indicating clonal hematopoiesis 

(Supplemental Figure 9B). Mononuclear cells were isolated from a bone marrow aspirate 

by density centrifugation and cryopreserved with 10% DMSO in liquid nitrogen. Cells were 

thawed using standard procedures; since viability (independently assessed by Trypan and 

propidium iodide staining) exceeded 90%, unsorted cells were used for scRNA-seq using 

the 10x 3' v3 protocol. A high proportion of cytotoxic T-cells was recovered, consistent 

with an expansion of large granular lymphocytes in the peripheral blood of this patient as 

demonstrated by routine clinical evaluation and confirmatory flow cytometry (Supplemental 

Figure 9A). This specimen is likely hemodiluted with a contribution from the peripheral 

blood as the bone marrow core biopsy did not contain this high fraction of T-cells. The 

scRNA-seq data from this sample is also being utilized in an independent manuscript not 

involving the MAESTER technique and is under consideration elsewhere (Patient 10, Griffin 

et al., manuscript under review).

Single-cell RNA-sequencing—For Seq-Well S3 experiments, cells were processed as 

described previously11. A complete, updated protocol for Seq-Well S3 is hosted on the 

Shalek Lab website (www.shaleklab.com). Briefly, an array with ~90,000 nanowells was 

first loaded with barcoded mRNA capture beads, then 10-15,000 cells were added dropwise 

onto the surface of the array. After cells were allowed to settle into the wells, the array 

was sealed with a semi-permeable polycarbonate membrane. Cells were lysed and mRNA 

transcripts were hybridized to the bead contained within the same well at the polyT 

sequence of the barcoded oligonucleotides. The beads were then used to generate cDNA via 

reverse transcription. A second strand synthesis step using a random octamer was performed 

to recover transcripts in which template switching during reverse transcription was not 

successful. Whole transcriptome amplification (WTA) PCR was performed and the product 
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underwent a combination of tagmentation and PCR to generate dual indexed sequencing 

libraries. Libraries were sequenced using a 75 cycle kit on the Illumina NextSeq500 with 

custom read 1 (CR1P) and custom i5 primers (SW-Ci5P, Supplementary Table 2), 20 cycles 

for Read 1 (cell barcode or CB + UMI), 56 cycles for Read 2 (transcript sequence), and 2 x 8 

bp library barcodes.

For 10x Genomics experiments, we used 3’ Single Cell Gene Expression v3 reagents, 

following all manufacturer’s recommendations. Briefly, 5,000 cells were loaded per well and 

captured in gel bead-in emulsions. Captured mRNAs were reverse transcribed into cDNAs 

and amplified to generate WTAs. Library construction involves fragmentation, adapter 

ligation, and a sample index PCR. Libraries were sequenced using a NovaSeq SP 100 cycle 

kit with 28 cycles for Read 1 (CB + UMI), 91 cycles for Read 2 (transcript sequence) and an 

8 bp library barcode.

For the cell line mixing experiments, we analyzed cells from the same passage using two 

Seq-Well S3 arrays and two 10x 3′ v3 wells, yielding a similar number of cells and data 

quality. For the clonal hematopoiesis sample, we used four 10x 3’ v3 wells.

Mitochondrial alteration enrichment for MAESTER from Seq-well or Drop-seq
—Similar to a method we initially developed for the detection of somatic mutations4, the 

starting material for targeted amplification of mtDNA transcripts is the product of the 

Seq-Well WTA reaction (only a fraction of which is used for scRNA-seq). The general 

method consists of two PCR reactions with a streptavidin bead enrichment in between 

(Supplementary Figures 1-2). The first PCR reaction serves to add a biotin tag and Nextera 

adapter (NEXT) to mitochondrial transcripts while retaining the UMI and CB of the 

transcripts. The second PCR is used to append Illumina adapters (P5, P7), dual index 

barcodes to identify the sample, and sequencing primer binding sites.

PCR1: We designed biotinylated primers to tile across the entire mitochondrial 

transcriptome. Twelve primer mixes were created using 2-11 of these primers at a 

concentration of 1 μM each (10-fold relative to the final concentration). The SMART-AC 

primer, which is common to all PCR1 reactions, was included in each primer mix at 10 μM 

(Figure 1B, Supplementary Figure 4, Supplementary Table 2).

As a template, WTA products from an individual sample were pooled and diluted to be used 

at 20 ng in a total volume of 10 μl per reaction. Next, 2.5 μl of the primer mix and 12.5 μl 

of KAPA HiFi Hotstart ReadyMix (Fisher Scientific KK2602) were added to the template, 

and PCR was performed using the following conditions: initial denaturation at 95°C for 3 

minutes, followed by 6 cycles of 98°C for 20 seconds, 65°C for 15 seconds, and 72°C for 

3 minutes, ending with a final extension at 72°C for 5 minutes. There were 12 reactions in 

total for each sample, as each primer mix is used in a single reaction.

Following amplification, the PCR product is pooled and purified with 0.8x AMPure XP 

beads (Beckman Coulter A63881). Pooling ratios of PCR1 products were empirically 

determined to obtain a more equal distribution of reads across the mitochondrial 

transcriptome (Supplementary Figure 4D). Using Streptavidin-coupled Dynabeads, only 
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biotinylated fragments containing the amplicons of interest are captured (following 

manufacturer’s instructions, ThermoFisher 60101). Dynabeads/DNA-complex is eluted in 

23 μl H2O and used as a template for the second PCR.

PCR2: To add Illumina adapters (P7, P5), index barcodes to identify the library (i7, i5), 

and sequencing primer binding sites to the fragments, a second PCR is performed using 

23 μl of streptavidin-bound template, with 2 μl of a 5 μM primer mix (N70D_P7_BCXX 

and N70_P5_BCXX; Supplementary Table 2) and 25 μl PFU Ultra II HS 2xMasterMix 

(ThermoFisher Q32854). The parameters used for PCR2 are an initial denaturation at 95°C 

for 2 minutes, then 6 cycles of 95°C for 20 seconds, 65°C for 20 seconds, and 72°C for 

2 minutes, and then a final extension at 72°C for 5 minutes. After the second PCR, the 

streptavidin beads are magnetized to collect the supernatant, from which DNA is purified 

with 0.7x AMPure XP beads. After elution in 22 μl TE, the supernatant is transferred to a 

new tube and saved for sequencing.

The resulting libraries are similar to Seq-Well scRNA-seq libraries but with targeted 

integration of the sequencing primer binding site at the regions of interest. The libraries 

were generally 2-10 ng/μl with sizes ranging from 250-1000 bp. Libraries were sequenced 

on the Illumina NovaSeq SP 300 cycle kit with the forward strand workflow and the CR1P 

primer, using 20 cycles for Read 1, 264 cycles for Read 2, and 2 x 8 bp index barcodes.

Mitochondrial alteration enrichment for MAESTER from 10x Genomics—
Enrichment of mitochondrial transcripts from 10x Genomics 3’ v3 cDNA was very similar 

to the protocol for Seq-Well or Drop-Seq described above. The main differences are the 

use of primer sequences specific to 10x and the omission of the biotin enrichment step 

(Supplementary Figures 1, 3).

PCR1: We designed primers to tile across the entire mitochondrial transcriptome. Twelve 

primer mixes were created using 2-11 of these primers at a concentration of 1 μM each (10-

fold relative to the final concentration). A barcoded GoT-P5-i5-BCXX primer was included 

in each primer mix at 10 μM for sample indexing (Supplementary Figure 4, Supplementary 

Table 3).

As a template, cDNA products from an individual sample were pooled and diluted to be 

used at 20 ng in a total volume of 16 μl per reaction. Next, 4 μl of the primer mix and 20 μl 

of KAPA HiFi Hotstart ReadyMix (Fisher Scientific KK2602) were added to the template, 

and PCR was performed using the following conditions: initial denaturation at 95°C for 3 

minutes, followed by 6 cycles of 98°C for 20 seconds, 65°C for 15 seconds, and 72°C for 

3 minutes, ending with a final extension at 72°C for 5 minutes. There were 12 reactions in 

total for each sample, as each primer mix is used in a single reaction.

Following amplification, the PCR product is pooled and purified with 1x AMPure XP 

beads to remove primers (Beckman Coulter A63881). Pooling ratios of PCR1 products were 

empirically determined to obtain a more equal distribution of reads across the mitochondrial 

transcriptome (Supplementary Figure 4D, all volumes multiplied by 1.6). After AMPure XP 

purification, the pooled PCR1 product was eluted in 20 ul H2O.
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PCR2: To add Illumina adapters (P7, P5), index barcodes to identify the library (i7, i5), and 

sequencing primer binding sites to the fragments, a second PCR is performed using 18 μl of 

the eluate, with 2 μl of a 5 μM primer mix (P5-generic and XV-P7-i7-BCXX; Supplementary 

Table 3) and 20 μl KAPA HiFi Hotstart ReadyMix (Fisher Scientific KK2602). The 

parameters used for PCR2 are an initial denaturation at 95°C for 3 minutes, then 6 cycles 

of 98°C for 20 seconds, 60°C for 30 seconds, and 72°C for 3 minutes, and then a final 

extension at 72°C for 5 minutes. After the second PCR, the DNA is purified with 0.8x 

AMPure XP beads. The DNA is eluted in 20 μl TE, the supernatant is transferred to a new 

tube and saved for sequencing.

The resulting libraries are similar to 10x scRNA-seq libraries but with targeted integration 

at the regions of interest. The libraries were generally 2-100 ng/μl with sizes ranging 

from 300-1500 bp. Libraries were sequenced on the Illumina NovaSeq SP 300 cycle kit 

with 28 cycles for Read 1, 256 cycles for Read 2, and 2 x 8 bp index barcodes. For the 

NovaSeq Forward Strand Workflow, no custom sequencing primers are required. For the 

NovaSeq Reverse Complement Workflow, custom index primers should be used instead of 

the Illumina standards (10x-Ci7P and 10x-Ci5P, Supplementary Table 3).

10x Multiome sequencing—To assess the recall of MAESTER in identifying 

mitochondrial variants, we conducted an experiment to genotype both mtDNA and mtRNA 

in the same individual cells. We performed DOGMA-seq13 with LLL lysis on peripheral 

blood mononuclear cells from a consented healthy donor. As DOGMA-seq utilizes the 10x 

Genomics Multiome ATAC + Gene Expression kit to capture both DNA (via ATAC) and 

RNA from the same individual cells, our experimental framework provided the means to 

verify the detection of mutations on mtDNA via RNA. Though this lysis buffer yielded a 

low mtRNA copy number as previously described13, we amplified mitochondrial transcripts 

from the full-length cDNA using MAESTER. We sequenced the corresponding ATAC 

(containing mtDNA), gene expression, and amplified mtRNA libraries separately.

Bulk ATAC-sequencing—K562 cells from the same passage used for the cell line mixing 

experiments were analyzed by bulk ATAC-seq for orthogonal validation of mtDNA variants. 

Cells were washed in PBS, pelleted by centrifugation and ~12,000 cells were lysed and 

tagmented in 1x TD buffer, 2.5 μl Tn5 (Illumina), 0.1% NP40 and 0.3x PBS in a 50 

μl reaction volume as described20. Samples were incubated at 37°C for 30 min at 300 

rpm. Tagmented DNA was purified using the MinElute PCR kit (Qiagen). The complete 

eluate underwent PCR with initial extension and 5 cycles of pre-amplification using indexed 

primers and NEBNext High-Fidelity 2X PCR Master Mix (NEB). Then, the number of 

additional cycles was assessed by quantitative PCR using SYBR Green. Seven additional 

cycles were run. The final library was purified using a MinElute PCR kit (Qiagen). Libraries 

were sequenced on a NextSeq 500 instrument with paired-end 38 bp reads and dual library 

indices of 8 bp each.

T-cell Receptor Enrichment to linK clonotypes by sequencing (TREK-seq)—
We adapted a previously described TCR sequencing protocol14, developed for Seq-Well, 

for use with 10x Genomics 3’ v3 cDNA libraries (Supplementary Figure 14). The 

modifications to the original protocol are as follows: in the TCR enrichment master mix, 
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we added PartialRead1 and PartialTSO primers at a final concentration of 1.25 μM each 

(Supplementary Table 3). For amplification of TCR transcripts following enrichment, we 

used the same primers at a final concentration of 0.4 μM each. For the final PCR, to add 

the Illumina P5 and P7 sequences we used UPS2-N70x and 10X_SI-PCR_P5 primers at a 

final concentration of 0.2 μM each. The libraries were sequenced using a 150 cycle kit on 

the Illumina MiSeq loaded at a final DNA concentration of 10 pM, aiming for a cluster 

density of roughly 450k/mm2. 28 cycles were used for Read 1, which reads the cell barcode 

and UMI. 150 cycles were used for Index 1, which reads the TCR region. TCRα and 

TCRβ-specific custom sequencing primers were used for Index 1 at a final concentration of 

2.5 μM (aTCR-Seq and bTCR-Seq, Supplementary Table 3).

Single-cell RNA-seq read processing—For Seq-Well, sequencing data was 

demultiplexed using bcl2fastq2. Read 1 yielded 20 bp reads (12 bp CB and 8 bp UMI), 

Read 2 yielded 56 bp reads (transcript sequence) and i7 and i5 indices to identify the library 

were 8 bp each. Reads associated with CBs occurring less than 100 times were removed, 

and the list of remaining CBs was used to generate Read 2 fastq files in which the library 

barcode, the CB, and the UMI were appended to the read identifier. For 10x, scRNA-seq 

data was processed using cellranger mkfastq to demultiplex into fastq files and cellranger 

count to quantify gene expression.

To generate the reference genome, we used hg38 sequences and annotations (v99) from 

Ensembl with the addition of RNA18S and RNA28S annotations from UCSC. Annotations 

were filtered using cellranger mkgtf with recommended attributes as well as the gene 

biotypes gene_biotype:Mt_rRNA and gene_biotype:rRNA. The reference genome was 

then generated with cellranger mkref which includes STAR indexing. To align Seq-Well 

scRNA-seq data to this reference, we used STAR with the options --outSAMtype BAM 

SortedByCoordinate and --quantMode TranscriptomeSAM. To align 10x data scRNA-seq 

data to this reference, we used cellranger count which implements STAR.

MAESTER read processing—MAESTER fastqs include Read 1 encompassing the CB 

and UMI (20 bp for Seq-Well, 28 bp for 10x), Read 2 covering mitochondrial transcript 

sequences (264 bp for Seq-Well, 256 bp for 10x), and 2 x 8 bp for dual-indexed library 

barcodes. We used Illumina bcl2fastq for demultiplexing with both indices. Reads associated 

with CBs occurring less than 100 times were removed, and the list of remaining CBs was 

used to generate Read 2 fastq files in which the library barcode, the CB, and the UMI 

were appended to the read identifier. We trimmed the first 24 bp from these fastqs using 

homerTools to avoid using primer binding sequences for variant calling. Next, we aligned 

the fastq files with STAR (--outSAMtype BAM SortedByCoordinate) to the same hg38 

reference genome we used for scRNA-seq alignment above. More than 90% of MAESTER 

reads aligned to chrM. See Supplementary Figure 5 for an overview of these procedures.

maegatk - mitochondrial genome variant calling—To facilitate the analysis of 

MAESTER data, we developed maegatk, a Python package, as an extension of our 

previously described mgatk pipeline8. Maegatk specifically handles technical biases implicit 

in high-throughput scRNA-seq to facilitate the identification of mtDNA variants. First, 

maegatk takes inputs of a single-cell bam file following the 10x Genomics SAM 
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tag conventions, a valid list of CBs, and more than 20 customizable command-line 

arguments. Next, the software collapses duplicate reads based on UMI, start position, 

and CB. Unlike most existing variant calling pipelines, including GATK and mgatk 

that select a representative read based on highest mean base quality score, maegatk 

identifies the most likely consensus nucleotide across sequencing read replicates via the 

CallMolecularConsensusReads (v1.1) tool from fgbio. Further, maegatk provides a --min-

reads command-line argument that specifies the minimum number of sequence reads needed 

for a UMI to be considered for variant calling. This workflow minimizes artifacts due to 

PCR amplification and sequencing error compared to the standard Picard MarkDuplicates. 

By calling maegatk-indel, our software enables indel calling by implementing FreeBayes 

on a per-cell basis, which we validated using simulated mtRNA read data (Supplementary 

Figure 6). After consensus read deduplication, per-cell, per-position nucleotide counts are 

enumerated and used for downstream analysis.

For use in our analysis with maegatk, we ensured that all bam files contained 

the CB and UMI SAM tags according to 10x conventions (CB:Z and UB:Z). 

We selected reads aligning to chrM and merged bam files from scRNA-seq and 

MAESTER (Aligned.sortedByCoord.out.bam from STAR or possorted_genome_bam.bam 

from cellranger). We generated a list of CBs by intersecting CBs with ≥100 alignments 

to chrM and high-quality CBs from scRNA-seq. Maegatk was then executed with the 

options --input merged.bam --mito-genome chrM.fa --barcodes CBs.txt --min-reads 3. 

The last option specifies only UMIs with three reads are used to increase confidence 

in variant calls. Upon completion, maegatk saves mutation calls as a maegatk.rds file in 

the SummarizedExperiment format21 for convenient intersection with other modalities and 

downstream analysis in R.

Multiome analysis—Multiome libraries (ATAC and gene expression) were aligned using 

CellRanger-Arc to a modified hg38 reference genome with regions of mitochondrial genome 

homology hard-masked in the nuclear genome8. Mitochondrial DNA from the ATAC library 

was processed using the mgatk workflow8. In parallel, we applied MAESTER and maegatk 

to enrich mitochondrial variants from the mRNA library using an unmodified hg38 reference 

genome. Next, we identified a “gold-standard” dataset of variants from the mgatk ATAC 

library and examined the concordance of variants that were covered at a minimum of 5x 

in both DNA (ATAC) and RNA (MAESTER) within individual cells. For a heteroplasmy 

threshold value X (as shown on the x-axis of Figure 1C), we quantified the recovery of 

variants by MAESTER as the number of variants that exceeded X in the MAESTER library 

over the number of variants that exceeded X in the ATAC library.

Single-cell RNA-seq clustering and cell type annotation—For Seq-Well and 10x 

scRNA-seq data alike, we filtered for cells with ≥2,000 UMIs, ≥1,000 genes, ≤20% 

alignment to rRNA genes, and ≤20% alignments to genes on chrM. Genes from chrX and 

chrY were removed from the count matrix. Next, we used Seurat for standard scRNA-seq 

processing steps including the functions NormalizeData, FindVariableFeatures, ScaleData, 

and RunPCA (similar to https://satijalab.org/seurat/archive/v3.2/pbmc3k_tutorial.html)22. 

We implemented graph-based clustering with FindNeighbors with 6 PCA dimensions and 
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FindClusters with a resolution of 0.05-0.1, as we only aimed to distinguish K562 and 

BT142 cells. We determined the top 10 cell type-specific genes by fold change using the 

FindAllMarkers function with only.pos = TRUE, min.pct = 0.25 and logfc.threshold = 0.25.

For cell line mixing experiments, we used decontX from the R package celda to remove 

cells with high ambient RNA23. We supplied the decontX function with the count matrix to 

calculate per-cell contamination scores. We also scored each cell for both cell type-specific 

gene signatures using the Seurat function AddModuleScore. Finally, we excluded cells 

that exceeded a contamination score of 0.05 and had a high module score for both cell 

type-specific signatures. For Seq-Well, this removed 218/2525 (8.6%) of cells, with 1387 

K562 and 920 BT142 cells remaining. For 10x, this removed 112/2778 (4.0%) of cells, with 

1310 K562 and 1356 BT142 cells remaining.

For the clonal hematopoiesis sample, we used the cell type annotations that were 

established using a Random Forest Classifier based on healthy donor populations (Griffin 

et al., manuscript under review). Further annotation of T and NK cell subsets was done 

by evaluating cluster-specific gene expression using the FindAllMarkers function with 

logfc.threshold = 0.25, min.pct = 0.1, test.use = "roc", return.thresh = 0.4, only.pos = TRUE 

(cluster-identifying marker genes are on https://github.com/petervangalen/MAESTER-2021/

tree/main/5_TCR-Seq). Filtering for high-quality cells, dimensionality reduction, and 

removal of cells with ambient RNA were performed using similar procedures as we used for 

the cell line mixing experiments except for decontX.

Identification of informative mtDNA variants—To establish clonal relationships 

between cells, we first select informative variants, and then select cells that are positive 

for any of these informative variants (i.e. have a VAF of >1%). For informative variant 

selection, we first calculated an allele frequency matrix of all possible variants (rows) and 

cells (columns) from the output of the maegatk software. The total number of possible 

variants is 3x16,569+1=49,708 because the mitochondrial genome (NC_012920) is 16,569 

bp with three possible variants each, except base 3,107, which has four possible variants 

(A, C, T, G) because the reference is N. Next, we generated a table with features for every 

variant: the mean allele frequency, mean coverage, mean quality score, and the VAF in 

percentiles of rank sorted cells or the number of cells exceeding a chosen VAF. This allowed 

us to select informative variants by applying filters such as a mean coverage of >20, mean 

quality of >30, VAF of <10% in at least 10% of cells, and a VAF of >90% in at least 10% of 

cells to distinguish cell lines. For the clonal hematopoiesis sample, we selected variants with 

a mean coverage of >5 per cell, mean quality of >30, VAF of 0% in at least 90% of cells, 

and a VAF of >50% in at least 10 cells (Supplementary Figure 11). This allowed us to use 26 

variants to identify the 23 largest clones, which together made up 14.9% of cells. Selected 

informative variants were highly enriched for transitions vs. transversions, as expected 

(>89%). Additional filters to remove artifacts were included for subclone identification, 

for example, variants informing K562 subclones should be absent in BT142 cells. The 

classification of K562 and BT142 cells by mtDNA variants was determined by the sum of 

calls at all homoplasmic variants for either cell line (Supplementary Figure 7G-H).
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Having identified informative variants, we assessed their VAFs in single cells by UMAP 

visualization (Figures 1E, 2C, Supplementary Figures 8B, 12). We used a VAF threshold 

of 1% to consider a cell positive for an mtDNA variant. We combined highly correlated 

variants into groups or clones (e.g. 10158T>A and 6293T>C, Figure 2B). To visualize 

clonal structures in VAF heatmaps, we sorted clones (rows) by their size, and sorted cells 

(columns) within each clone from high to low VAF or clustered the cells by Pearson 

correlation (Figure 1H, 2B, 2I, Supplementary Figure 8E, 11C).

Bulk ATAC-seq analysis—For the analysis of ATAC-seq as an orthogonal validation of 

the presence of mtDNA variants in K562 cells, we aligned demultiplexed fastq files to hg38 

using STAR. We subsetted the bam file for alignments to the mitochondrial genome and 

used Picard-Tools MarkDuplicates to remove duplicates. Next, we ran bam-readcount with 

the option -w 5 to generate a table of read metrics for every position along the mitochondrial 

genome. From this table, we extracted informative K562 variants that were identified by 

MAESTER. We then compared the VAF determined from mRNA transcripts captured by 

MAESTER to the VAF determined from mtDNA fragments captured by bulk ATAC-seq, 

the latter being calculated as the number of reads supporting the variant allele over the total 

sequencing depth at that position.

TREK-seq analysis—Following sequencing of enriched TCR regions, the MiSeq run 

was demultiplexed using bcl2fastq v2.20.0.422 and a SampleSheet with 150xN as the 

index sequence. CDR3 sequences were aligned as outlined previously14. Briefly, Hamming 

errors in cell barcodes were repaired using a whitelist of cell barcodes generated from 

whole transcriptome sequencing data and a single-base error tolerance. UMIs for each cell 

barcode were then collapsed with a single-base error tolerance. The repaired reads were then 

aggregated by CB and UMI, and UMIs with fewer than ten total reads were discarded. The 

remaining reads were mapped against TCRV and TCRJ IMGT (http://imgt.org/) reference 

sequences with IgBlast. CDR3 sequences were called by identifying the 104-cysteine and 

118-phenylalanine according to IMGT references and translating the amino acid sequences 

in between. UMIs with a V-gene consensus frequency of less than 0.9 were discarded. 

Processed TCR sequences were paired with the single-cell transcriptome data by matching 

of cell barcodes. We recovered TRB in 5,288 (63.1%) and TRA in 4,175 (49.8%) of the 

total 8,382 T-cells. If multiple TRA or TRB sequences were detected for a single cell 

barcode, then the corresponding sequence with the highest number of UMIs and raw reads 

was retained. Next, we stringently selected TRB calls present in at least 10 cells and 

subsequently selected TRA calls present in at least 10 cells. We visualized the overlap of 

cells with both TRB and TRA calls and calculated the Adjusted Rand Index using the R 

package mclust (Supplementary Figure 15). To test overlap with mtDNA variant calls, we 

selected TRB clones with an mtDNA variant in at least 5 cells and vice versa. These filtered 

TRB and mtDNA clonal determinations are visualized in Figure 2F-G and intersected with 

cell type classification and gene expression in Figure 2H-I.

Genotyping of Transcriptomes analysis—To analyze reads from the GoT analysis for 

the clonal hematopoiesis sample, we utilized IronThrone-GoT (https://github.com/landau-

lab/IronThrone-GoT)3. We provided the IronThrone-GoT function with fastq files and 
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a whitelist of CBs for 10x 3′ v3 scRNA-seq. From the summTable, we selected high-

confidence transcript calls by filtering for UMIs that were sequenced ≥3x with ≥3x more 

wild-type than mutant calls or vice versa. We then generated a table with CBs, the number 

of wild-type transcripts, and the number of mutant transcripts per cell. These calls were 

intersected by CBs with cells of different subclones, as shown in Supplementary Figure 

16B-D.

Pseudotime analysis—We assigned pseudotime values to cells using the R slingshot 

library16. We selected relevant cell types for four differentiation trajectories from the clonal 

hematopoiesis sample and provided the slingshot function with the UMAP coordinates. The 

predicted trajectory (black curve) and assigned pseudotime values (colors) are shown in 

Supplementary Figure 16E, which is an enlargement of Figure 2A. The same pseudotime 

values are used for the horizontal axis of adjacent density plots.

Functional annotation of mitochondrial variants—Mitochondrial genes encode 

factors involved in the respiratory chain. Variants that impact function are thus expected to 

alter energy metabolism. Since genes required for mitochondrial biogenesis and replication 

reside in the nuclear genome, mtDNA variants are less likely to impact the intrinsic 

replication rate of the mitochondrion in which the mutation occurs and hence the 

heteroplasmy level. However, beneficial/detrimental mutations could affect the fitness of 

the host cell and the potential functional impact of variants that are used to establish lineage 

relationships should be assessed in this context. We generated a table of mitochondrial 

variants, their effects on the resultant proteins, and potential functional consequences by 

merging the Ensembl Variant Effect Predictor (VEP) (https://useast.ensembl.org/info/docs/

tools/vep/index.html) and MitoMap (https://www.mitomap.org/MITOMAP). First, a five-

column table of variants was generated using the reference mitochondrial genome (https://

www.genome.jp/dbget-bin/www_bget?-f+refseq+NC_012920), with columns as follows: 

Chromosome number (MT), starting nucleotide, ending nucleotide, substitution (e.g., A/T), 

and strand (+), as described in https://useast.ensembl.org/info/website/upload/var.html. This 

format is used as the default input for VEP. Second, VEP was run using the variant table as 

input via the web interface to predict the effect of variants on genes, proteins, and regulatory 

regions. Additional configurations included ‘Protein’ and ‘UniProt’ (identifiers), ‘Identify 

canonical transcripts’ (transcript annotation), and ‘Protein domains’ (protein annotation). 

The same results can be acquired by running VEP on the command line with the following 

code:

./vep --af --appris --biotype --buffer_size 500 --canonical --check_existing 

--distance 0 --

domains --mane --polyphen b --protein --pubmed --regulatory --sift b --

species homo_sapiens --

symbol --transcript_version --tsl --uniprot --cache --input_file 

[input_data] --output_file

[output_file]
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Third, the VEP output was further processed to retain only the following columns prior 

to integration with MitoMap data: Uploaded_variation, Location, Allele, Consequence, 

SYMBOL, Gene, Feature_type, Feature, BIOTYPE, Amino_acids, Codons, SIFT, 

PolyPhen. Finally, Disease and Polymorphism data were downloaded from the 

API resources in MitoMap in VCF format (https://www.mitomap.org/foswiki/bin/view/

MITOMAP/Resources). These data were merged with the VEF data using the dplyr package 

in R.

Software used for analysis and figures—Geneious Prime version 2019.1.3 with 

Primer3 was used for primer design. Read processing was performed using command-line 

tools including bcl2fastq v2.20.0, Samtools version 1.8, cellranger 3.1.0, homerTools 4.10, 

STAR version 2.6.0c, and IronThrone-GoT version 1.0. Quality controls and downstream 

analyses were performed with R for Statistical Computing version 3.6.1 with RStudio 

version 1.2.5042. We used the tidyverse version 1.3.0 collection of packages including 

ggplot2 version 3.3.2, Seurat version 3.2.2, SummarizedExperiment 1.24.0 for maegatk 

output, celda version 1.5.6 for decontX, and slingshot version 2.2.0 for trajectory analyses 

as described in the provided Github scripts. Mclust version 5.4.9 was used for ARI analysis. 

Maegatk is a python package and therefore python was utilized as part of maegatk. FlowJo 

was used for FACS analysis. We also used GraphPad Prism, Microsoft Excel version 16.56, 

and Adobe Illustrator 2021 for additional statistical analyses and visualization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Targeted enrichment of mitochondrial transcripts enables discrimination between 
genetic clones.
A. Schematic shows the procedures for lineage inference from single-cell transcriptomes 

using MAESTER. Following mRNA capture and whole transcriptome amplification, part 

of the cDNA is used for standard scRNA-seq, and another part is used for PCR-based 

enrichment of mitochondrial transcripts. 300 bp sequencing reads maximize mitochondrial 

genome coverage to call variants. B. Diagram depicts the circular mitochondrial genome 

with annotated features. The green triangles indicate where MAESTER primers bind. C. 
Barplot shows the number of mtDNA variants that were detected by ATAC-seq (blue 

bars) and their recovery by MAESTER (red line). DNA (ATAC) and RNA (MAESTER) 

were acquired from the same K562 cells using the 10x multiome workflow. D. Barplot 

shows coverage of the mitochondrial genome with and without amplification from Seq-Well 

libraries using MAESTER. Mean coverage of 2,482 K562 and BT142 cells is shown. Each 

of the transcripts (UMIs) was sequenced ≥3 times. E. UMAPs show detection of cell 

type-specific (top) gene expression from scRNA-seq and (bottom) homoplasmic mtDNA 

variants from MAESTER. F. Heatmap depicts separation of 1,523 K562 and BT142 cells 

(columns) based on six mtDNA variants (rows). Cell type annotation from scRNA-seq is 

shown on top. G. Correlation matrix shows cell similarity based on the allele frequencies 

of six homoplasmic variants (rows and columns depict 1,523 cells). Unsupervised clustering 
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identified two clusters that correlate with cell annotations from scRNA-seq. H. Heatmap 

shows VAF of 21 mtDNA variants detected by MAESTER (rows) for 588 K562 cells 

(columns, 44.4% of all K562 cells) with informative variants. Homoplasmic K562 variant 

2141T>C is shown for comparison. Heatmap is organized by clonal structure (Methods). 

For E-H, only cells with >3-fold coverage of the indicated variants are shown. SMART 

and NXT are specific primer binding sequences, SA: streptavidin, CB: cell barcode, UMI: 

unique molecular identifier.
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Figure 2. Genetic clones exhibit lineage bias in clonal hematopoiesis.
A. UMAP of all 9,346 cells profiled by 10x scRNA-seq from a bone marrow aspirate from 

an individual with clonal hematopoiesis. B. Heatmap shows VAF of 26 informative mtDNA 

variants detected by MAESTER and maegatk (rows) for 1,397 cells (columns) with at least 

1% VAF for one of the 26 variants. Heatmap is organized by clones and sorted by clone size. 

Cell type is listed on the bottom by color according to legend in A. C. UMAPs display VAF 

in each cell for mtDNA variants 683G>A (left) and 2593G>A (right). D. Stacked bar graph 

of the number of cells in each clone, with cell type denoted by color according to legend 

in A. E. Schematic depicts multimodal analysis we performed on the same single cells. 

F. Plot shows cells (rows) in which both mtDNA and TRB clonal markers were detected. 

Clones are indicated by colors and defined by mtDNA variants and the TRB variable region, 

respectively. G. Confusion matrix shows concordance between mtDNA clones and TRB 
clonotypes. H. UMAPs of 8,382 T-cells in the clonal hematopoiesis sample, with state 

annotated by transcriptional signatures (left), and selected mtDNA clones (right). I. Heatmap 

of T-cells (columns) in the selected mtDNA clones with mtDNA VAF (top), TRB sequence 

(middle), and state-defining transcript expression (bottom). ARI: Adjusted Rand Index.

Miller et al. Page 19

Nat Biotechnol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Methods
	Cell lines and culturing.
	Primary human samples
	Single-cell RNA-sequencing
	Mitochondrial alteration enrichment for MAESTER from Seq-well or Drop-seq
	PCR1
	PCR2

	Mitochondrial alteration enrichment for MAESTER from 10x Genomics
	PCR1
	PCR2

	10x Multiome sequencing
	Bulk ATAC-sequencing
	T-cell Receptor Enrichment to linK clonotypes by sequencing (TREK-seq)
	Single-cell RNA-seq read processing
	MAESTER read processing
	maegatk - mitochondrial genome variant calling
	Multiome analysis
	Single-cell RNA-seq clustering and cell type annotation
	Identification of informative mtDNA variants
	Bulk ATAC-seq analysis
	TREK-seq analysis
	Genotyping of Transcriptomes analysis
	Pseudotime analysis
	Functional annotation of mitochondrial variants
	Software used for analysis and figures


	References
	Figure 1.
	Figure 2.

