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Abstract

The inclusion of ethnicity in equations for estimating the glomerular filtration rate (eGFR) from 

serum creatinine levels has been challenged since ethnicity is socially defined and therefore a 

poor proxy for biological differences. We hypothesized that genetic ancestry (GA) would be more 

strongly associated with creatinine levels among healthy individuals than self-identified ethnicity. 

We studied a diverse cohort of 35,590 participants characterized as part of the UK Biobank, 

grouped by self-reported ethnicity: Black, East Asian, Mixed, Other, South Asian, and White. 

We used multivariable modeling to test for associations between ethnicity, GA, socioeconomic 

deprivation, and serum creatinine levels, including covariates for age, sex, height, and body mass 

index. Model fit comparisons and relative importance analysis were used to compare the effects 

of ethnicity and GA on creatinine levels. Black ethnicity shows a positive effect on participant 

serum creatinine levels (β=9.36±0.38), whereas East Asian (β=−1.80±0.66) and South Asian 

(β=−0.28±0.36) ethnicity show negative effects on creatinine. Male sex (β=17.69±0.34) and height 

(β=0.13±0.02) also show high positive associations with creatinine levels, while socioeconomic 

deprivation (β=−0.04±0.04) shows no significant association. African ancestry has the highest 

association (β=13.81±0.52) with creatinine levels. Overall, GA (9.06%) explains significantly 

more of the variation in creatinine levels than ethnicity (4.96%), with African ancestry (6.36%) 

alone explaining more of the variation than ethnicity. We found that GA explains more of the 
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variation in serum creatinine levels than socioeconomic deprivation, suggesting the possibility that 

ethnic differences in creatinine are shaped by genetic rather than social factors.
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Introduction

The glomerular filtration rate (GFR) is the total filtration rate of the nephrons in the kidney, 

and it is considered to be the best overall index of kidney function (Levey et al., 2020a). 

GFR is used to diagnose kidney malfunction or disease, and to guide decisions about 

prognosis and treatment. Since GFR is impracticable to quantify in clinical practice, serum 

creatinine levels are used as a surrogate measure for GFR in clinical settings(Stevens and 

Levey, 2009). The National Institute of Diabetes and Digestive Kidney Disease (NIDDK), 

the National Kidney Foundation (NKF), and the American Society of Nephrology (ASN) all 

recommend estimating GFR from serum creatinine.

The equations used to estimate GFR (eGFR) from serum creatinine levels include 

adjustments based on patients’ age, sex, and race (ethnicity), specifically Black or non-

Black; in principle, these variables are surrogates for the non-GFR determinants of serum 

creatinine, namely generation of creatinine from muscle and diet, tubular secretion of 

creatinine, and extra-renal elimination in the GI tract (Stevens and Levey, 2009; Levey et al., 

2020a; Levey et al., 2020b). These eGFR equation adjustments account for the observations 

in the study population used for development of the equations that younger patients had 

higher measured GFR (mGFR) than older patients at the same level of serum creatinine, 

and males had higher mGFR than females at the same level of serum creatinine, and Black 

patients had higher mGFR than members of other ethnicities at the same level of serum 

creatinine (Levey et al., 1999; Levey et al., 2006; Levey et al., 2009).

The eGFR equation adjustments for age and sex are non-controversial; however, the 

adjustment for ethnicity is highly contentious and has been recently challenged (Eneanya 

et al., 2019; Vyas et al., 2020). Opponents of the binary (Black or non-Black) ethnicity 

adjustment to the eGFR equation hold that ethnicity is socially defined and therefore a poor 

proxy for biological differences. There is concern that the ethnicity adjustment in the eGFR 

equation leads to higher eGFR values for Black patients, thereby jeopardizing their access 

to potentially life-saving technologies, such as dialysis and kidney transplant. These authors 

hold that the reliance on ethnicity is only justified if it confers a substantial benefit and 

cannot be achieved by other means.

This controversy persists even though it has recently been confirmed that use of ethnicity 

improves the estimation of mGFR from serum creatinine levels for Black patients and that 

ethnicity adds more predictive information than height and weight (Levey et al., 2020b; 

Levey et al., 2020c). Accordingly, proponents of the use of ethnicity for eGFR calculation 

assert that removing race from the equation will lead to misdiagnosis of Black patients and 

potentially exacerbate disparities in kidney disease. In support of this notion, they show how 
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underestimation of eGFR for Black patients can lead to false detection of kidney disease, 

lower doses or contraindication for a number of antibiotics, and rejection of kidney donor 

candidates.

This study was motivated by a desire to explore the empirical basis for the consideration 

of ethnicity when calculating eGFR from patient serum creatinine levels. The specific 

objective of the study was to investigate the effects of ethnicity, genetic ancestry (GA), 

and socioeconomic deprivation (SED) on serum creatinine levels in a diverse, cosmopolitan 

population. We compared Black, East Asian, Mixed, Other, and South Asian minority ethnic 

groups from the United Kingdom to the majority White ethnic group, which served as the 

reference group for all comparisons. We used multivariable modeling to test for associations 

between ethnicity and creatinine levels, including covariates for SED, age, sex, height, 

and body mass index (BMI). We hypothesized that, in addition to the previously observed 

association between Black ethnicity and creatinine levels, Asian ethnic groups would also 

show significant associations with serum creatinine levels.

GA is a characteristic of the genome and therefore a better proxy for genetic diversity 

than socially defined ethnic groups (Yudell et al., 2016; Yudell et al., 2020), and serum 

creatinine levels are known to be heritable, i.e. influenced by genetic factors (Arpegard et al., 

2015; Sinnott-Armstrong et al., 2021). African GA was previously shown to be associated 

with serum creatinine levels in African American and Hispanic/Latino American patients 

(Udler et al., 2015). Given the heritability of serum creatinine levels, we hypothesized that 

GA would explain more of the variance in creatinine levels than socially defined ethnicity. 

Model fit comparisons and relative importance analysis were used to compare the magnitude 

of the effects of ethnicity and genetic ancestry on serum creatinine levels.

Levels of SED vary significantly among socially constructed ethnic groups, and SED affects 

a number of health outcomes, including kidney disease (Young et al., 1994; Drey et al., 

2003; Nagar et al., 2021). Previous studies on the relationship between patient ethnicity 

and serum creatinine levels have not adjusted for SED (Udler et al., 2015; Levey et al., 

2020b; Levey et al., 2020c). We hypothesized that controlling for SED could attenuate 

ethnic differences in serum creatinine levels.

Materials and Methods

UK Biobank study cohort

Study participants and data were taken from the UK Biobank, a prospective cohort study 

of more than 500,000 participants between 40 and 70 years of age, enrolled between 2006 

and 2010 (Bycroft et al., 2018). UK Biobank participants provided biological samples, 

completed questionnaires, and underwent medical assessments. Ethics approval for the 

UK Biobank was obtained from the North West Multi-centre Research Ethics Committee 

(MREC) for the United Kingdom, the Patient Information Advisory Group (PIAG) for 

England and Wales, and the Community Health Index Advisory Group (CHIAG) for 

Scotland (see https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics). 

This study was conducted using the UK Biobank resource under application number 

65206 granting access to LMR and IKJ to the corresponding UK Biobank biomarkers, and 

Mariño-Ramírez et al. Page 3

Gene. Author manuscript; available in PMC 2023 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics


phenotype data. UK Biobank data is publicly available upon application on the UK biobank 

website (https://www.ukbiobank.ac.uk/register-apply/).

Model outcome, predictors, and covariates

Multivariable linear regression was used to model participant serum creatinine levels 

(outcome) by participant ethnicity, GA, and SED (predictors). Age, sex, height, and BMI 

were included as model covariates.

Serum creatinine levels: Serum creatinine levels were modeled as continuous variable 

in μmol/L units. Participant serum creatinine level data were taken from UK Biobank Field 

30700: Creatinine. UK Biobank participant serum samples were derived from whole blood 

samples collected using silica clot accelerator tubes (SST) and stored for a variety of 

biochemical assays as previously described (Elliott et al., 2008). Participant serum creatinine 

levels were measured by enzymatic analysis on a Beckman Coulter AU5800 machine 

using a kinetic modification of the Jaffe procedure, calibrated to an isotope dilution mass 

spectrometry (IDMS) reference method (Jaffe, 1886; Cook, 1971).

Ethnicity: Ethnicity was modeled as a categorical variable according to participants’ 

ethnic group self-identification. Participant ethnic group information was taken from the 

UK Biobank Field 21000: Ethnic background. UK Biobank participants self-identified as 

belonging to one of six possible ethnic groups via questionnaire at the time of enrollment: 

Asian, Black, Chinese, Mixed, White, or Other. The UK Biobank ethnic group choices 

are based on the ethnicity categories used by the UK National Health Service (NHS) 

(Gov.uk, 2020). It should be noted that the UK Biobank participant ethnic group labels 

make no distinction between the related concepts of race and ethnicity and therefore the 

ethnic groups used here may correspond to racial groups used other countries, such as the 

United States (US) (Kertzer and Arel, 2002). The term ethnicity, instead of race, is used 

throughout this study in keeping with the convention for data collected from the UK. The 

UK Biobank ethnic groups reflect the history of immigration to the UK, and the resulting 

make-up of the modern population, in a way that may not be obvious to readers from the 

US or other countries. For example, the UK Biobank makes a distinction between Asian 

and Chinese ethnic groups, where the UK Asian ethnic group corresponds to South Asians 

from Bangladesh, India, and Pakistan. Black and White ethnicity in the UK correspond to 

similarly labeled racial groups in the US. Ethnic group labels that correspond approximately 

to US racial group labels are used for this study: Black, East Asian, South Asian, or 

White. Supplementary Table 1 shows the correspondence between UK Biobank ethnic group 

designations, the ethnic group labels used for this study, and racial group designations used 

in the US.

Genetic ancestry (GA): GA was modeled as a continuous variable in percent ancestry 

values for each of six regional ancestry groups: African, Central Asian, East Asian, 

European, South Asian, and West Asian. UK Biobank participant whole blood samples 

were used to derive buffy coat aliquots for DNA extraction, and whole genome genotypes 

(WGG) were characterized from extracted DNA using the UK Biobank Axiom Array or 

the UK BiLEVE Axiom Array as previously described (Welsh et al., 2017). Participant 

Mariño-Ramírez et al. Page 4

Gene. Author manuscript; available in PMC 2023 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ukbiobank.ac.uk/register-apply/


WGG were merged and harmonized with whole genome sequence (WGS) data from global 

reference populations characterized by the 1000 Genomes Project (1KGP) and the Human 

Genome Diversity Project (HGDP) (Li et al., 2008; Genomes Project et al., 2015; Bergström 

et al., 2019). WGG and WGS variant data were merged to include variants present in all 

three datasets with variant strand flips and identifier inconsistencies corrected as needed. 

Variant sample missingness <5% and a minor allele frequency >1% filters were used for 

merging. The merged genome variant data set was pruned for linkage disequilibrium (LD) 

using PLINK v2 with ‘--indep pairwise 100 10 0.05’ (Chang et al., 2015).

Principal component analysis (PCA) of the merged and LD pruned genome variant dataset 

was performed using the FastPCA program implemented in PLINK v2 (Galinsky et 

al., 2016). Visual inspection of the PCA results was used together with information on 

the 1KGP and HGDP samples’ geographic origins to characterize a set of genetically 

and geographically distinct reference populations corresponding to six regions: African 

(sub-Saharan), Central Asian, East Asian, European, South Asian, and West Asian 

(Supplementary Table 2 and Supplementary Figure 1). We developed and applied a fast 

and efficient method for genome-wide GA inference that analyzes the PCA data from global 

reference populations and non-reference individuals with non-negative least squares (NNLS) 

to assign GA fractions for each of the broad geographic regions to each individual UK 

Biobank participant. To do so, mean PC vectors for each individual reference population 

are first calculated. Then for each non-reference individual, NNLS is used to assign non-

negative coefficients corresponding to each individual reference population, where all of the 

reference population coefficients together best approximate that non-reference individuals 

PC vector. Finally, the individual reference population coefficients are summed for each 

region to yield regional GA percentages for each non-reference individual. This NNLS GA 

inference method is adopted from previous studies from our group (Conley et al., 2017; 

Jordan et al., 2019).

Socioeconomic deprivation (SED): SED was modeled as a continuous variable using 

the Townsend deprivation index, which is a widely used measure of SED that is known to 

be associated with a variety of health outcomes (Foster et al., 2018). Participant Townsend 

deprivation index data were taken from UK Biobank Field 189: Townsend deprivation 

index at recruitment. The Townsend Index is a composite metric of SED that includes: 

(1) unemployment, (2) non-car ownership, (3) non-home ownership, and (4) household 

overcrowding in a given area (Townsend et al., 1988). Townsend index values range from 

−6.23 to 10.59; higher (positive) values of the Townsend index indicate high material 

deprivation, and lower (negative) values indicate less deprivation (i.e. relative affluence). 

SED was chosen as a covariate, since ethnic groups experience different levels of SED, 

which are linked to differences in health outcomes among individuals and groups (Williams 

et al., 2016).

Age and sex: Age was modeled as a continuous variable in years, and sex was modeled 

as a categorical variable for male or female. Participant age data were taken from the UK 

Biobank Field 21003: Age when attended assessment center, and participant sex data were 
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taken from the UK Biobank Field 31: Sex. Age and sex were chosen as covariates, since 

they have been previously associated with serum creatinine levels (Levey et al., 2009).

Height, weight, and body mass index (BMI): Height was modeled as a continuous 

variable in centimeters (cm), and weight was modeled as a continuous variable in kilograms 

(kg). BMI modeled as a continuous variable calculated as weight divided by the square 

of height in meters (m): BMI=kg/m2. Participant data on height were taken from the UK 

Biobank Field 12144: Height, and participant data on weight were taken from the Field 

21002: Weight. These body size measures were chosen as covariates, given the relationship 

between muscle mass and serum creatinine levels (Levey et al., 2020c).

Statistical analysis methods and software

The R statistical language v3.6.1 was used for all statistical analyses (R Development Core 

Team, 2020). Multivariable linear regression analysis was performed with the lm function in 

base R. Akaike’s Information Criteria (AIC) and Bayesian Information Criteria (BIC) values 

were computed using the AIC and BIC functions in base R. Multicollinearity of model 

predictor variables was assessed using the variance inflation factor vif function implemented 

in the car R package (Fox and Weisberg, 2019). Bidirectional stepwise regression analysis 

was performed using the MASS R package (Ripley, 2002). Model forest plots were 

generated using the sjPlot R package (Lüdecke, 2021). Model comparisons were performed 

using the lmtest R package (Zeileis and Hothorn, 2002). Nested models where all ethnic 

groups are included compared to when only Black ethnicity is considered were compared 

using the likelihood ratio test with the lrtest function. Accuracies of analogous models for 

serum creatinine using SED, age, sex, height, and BMI, and either ethnicity or the GA 

measures substituted for them, were compared using the Cox and Davidson-MacKinnon J 

tests, implemented respectively by the coxtest and jtest R functions. Relative importance 

analysis was performed using the relaimpo R package (Grömping, 2006). The specifications 

for all statistical models used here are shown in Supplementary Table 3.

Results

Study cohort and participant characteristics

A total of 502,493 participants from the UK Biobank progressive cohort were used to build 

the cohort for this study (Supplementary Figure 2). First, participants with missing genetic 

data were excluded from the study cohort. Next, participants with missing demographic data 

– ethnicity, age, or sex – and missing data on creatinine levels were excluded from the study 

cohort. Next, individuals with missing genetic, height, and weight data were excluded from 

the study cohort. All remaining individuals from the Black, East Asian, South Asian, Mixed, 

and Other ethnic groups were included in the study cohort, along with a random subsample 

of 10,000 individuals from the White ethnic group. Subsampling of the White ethnic group 

was performed to create a cohort with relatively balanced numbers of participants across 

ethnic groups, given that the majority of UK Biobank participants identify as White.

The final study cohort consists of 35,590 individuals from the Black, East Asian, South 

Asian, White, Mixed, and Other ethnic groups (Table 1). The Black ethnic group shows 
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the highest average serum creatinine level (79.98), the South Asian (71.74), White (72.17), 

Mixed (71.15), and Other (71.69) groups show intermediate levels, and the East Asian 

group (66.37) shows the lowest average creatinine level. Ethnic group differences in serum 

creatinine levels stratified by sex are shown in Supplementary Table 4. Differences in 

genetic ancestry (GA) percentages across ethnic groups are shown for the four regional 

ancestry groups that correspond to the ethnic groups studied here: African, East Asian, 

South Asian, and European. SED is measured by the Townsend deprivation index, where 

lower (negative) values indicate less deprivation and higher (positive) values indicate more 

deprivation. The Black ethnic group has the highest average SED, by far (2.65), followed 

by the Other (0.99), Mixed (0.47), and South Asian (0.32) groups, all of which show 

positive average SED values. Both the East Asian (−0.49) and White (−1.43) ethnic groups 

show negative average SED values, indicative of less deprivation and relative affluence. The 

average age of the cohort is 54 years, with the White group showing the highest age. The 

cohort is 46% male on average; the East Asian and Mixed groups have the lowest percentage 

of males, and the South Asian group is the only group with more males than females. There 

are differences in body size across ethnic groups – as measured by height, weight, and BMI 

– where Black and White group participants tend to be larger than participants from the 

other groups.

Ethnic differences in creatinine levels

We measured the association of ethnicity with serum creatinine levels using multivariable 

linear regression, controlling for SED, age, sex, and BMI. SED was included as a covariate 

since ethnic groups experience different levels of deprivation, which is known to be 

associated with health outcomes. Age and sex were included as covariates since they are 

known to be associated with creatinine levels. Height, weight, and BMI were all considered 

as potential covariates given the relationship between muscle mass and creatinine levels. 

Since these three body size measures are highly correlated, model fit comparisons and 

stepwise regression were used to choose the best set of size covariates to include in the final 

model, resulting in inclusion of height and BMI and the exclusion of weight (Models 1–4; 

Supplementary Table 5).

Taking the White ethnic group as the reference, the Black group shows the highest effect on 

serum creatinine levels in the multivariable model (Model 5; Figure 1 and Supplementary 

Table 6). Controlling for all other model predictors, participants from the Black ethnic group 

have 9.36 μmol/L higher creatinine levels, on average, than participants from the White 

ethnic group. The Black and Mixed groups are the only ethnic groups that show significant 

positive effects on creatinine levels. The East Asian ethnic group shows a significant 

negative effect on creatinine levels, whereas the South Asian and Other ethnic groups do not 

show significant effects on creatinine levels. Age shows a slightly positive association with 

creatinine levels, and male sex shows the highest overall and positive effect on creatinine. 

Height and BMI are both slightly positively associated with creatinine levels. The positive 

effect of the Black ethnic group on creatinine levels, and the negative effect of the East 

Asian group remain in the unadjusted creatinine model, which includes ethnicity variables 

alone (Model 6; Supplementary Table 7). The South Asian, Mixed, and Other ethnic groups 

do not show significant effects on creatinine levels in the unadjusted model.
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SED is not significantly associated with creatinine levels in the fully adjusted model (Model 

5; Figure 1 and Supplementary Table 6). When the cohort is stratified by sex and SED 

terciles (low, medium, high), there are virtually no differences in serum creatinine levels 

observed among SED terciles and the same ethnic differences in creatinine can be seen 

within each tercile (Supplementary Figure 3). Comparison of the fully adjusted model with 

a model of serum creatinine levels (outcome) without SED predictor variable shows that 

inclusion of SED does not attenuate the observed ethnic associations with creatinine (Model 

7; Supplementary Table 8).

In the US, equations for estimating eGFR from serum creatinine levels have included a 

binary ethnicity correction factor for Black or non-Black patients; ethnic differences among 

non-Black patients are not considered. We assessed the utility of including information on 

other ethnic groups for predicting creatinine levels by comparing the fits for the creatinine 

model that includes all four ethnic groups versus a model that only includes Black and non-

Black groups, using a likelihood ratio test (Models 5 & 8; Table 2). The full model shows 

a significantly better fit than the binary Black or not model, underscoring the contribution 

of other UK ethnic groups to the observed variation in creatinine levels. Nevertheless, the 

overall difference in the amount of variation explained by both models is small, consistent 

with the major effect of Black ethnicity on creatinine.

Ethnicity and genetic ancestry (GA)

GA refers to genetic similarities derived from common ancestors and reflects distinct 

allele frequency patterns found in ancestral populations that were reproductively isolated. 

In contrast to self-identified ethnicity, GA is a characteristic of the genome that can 

be objectively characterized via comparison with diverse global reference populations. 

Genomes of individuals from modern cosmopolitan populations, such as the UK, often show 

GA contributions from multiple ancestral source populations. GA was characterized for 

study cohort participants as a continuous variable reflecting percent ancestry contributions 

from each of six regional ancestry groups: African, Central Asian, East Asian, European, 

South Asian, and West Asian.

We characterized the GA of the cohort participants and compared the patterns of GA to their 

ethnic self-identity. Overall similarities and differences between ethnic self-identity and GA 

can be seen when individuals are mapped to the first three genomic principal components 

(PCs) and color-coded according to either ethnicity or GA (Figure 2A). While there is 

broad concordance among participants’ ethnic groups and their GA, there are also numerous 

individuals that show discordant patterns of ethnicity and GA. Moreover, participant genetic 

diversity is distributed along a continuum of PC values as opposed to forming discrete, 

coherent groups. More detailed views of the PCA results can be seen for both ethnicity 

(Supplementary Figure 4) and GA (Supplementary Figure 5).

Participant GA fractions were inferred from PCA data for six broad geographic regions: 

African, Central Asian, East Asian, European, South Asian, and West Asian (Figure 2B). 

Overall, UK Biobank ethnic groups show clear differences in GA fractions, consistent with 

shared historical origins among group members. Nevertheless, there is substantial variation 

seen within ethnic groups, which is particularly true for the Mixed and Other ethnic groups. 
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The East Asian and White ethnic groups show the most coherent within-group patterns 

of GA. The South Asian ethnic group shows predominantly South Asian ancestry with a 

substantial Central Asian component as well as smaller East Asian and European fractions. 

The Black ethnic group shows primarily African ancestry with a secondary European 

component and a minor West Asian component.

Genetic ancestry (GA) and creatinine levels

Participants’ serum creatine levels were regressed against GA fractions for the four most 

prominent ancestry components observed in the study cohort: African, East Asian, South 

Asian, and European. African ancestry is the only ancestry component that shows a positive 

correlation with creatinine levels, and African ancestry shows by far the highest magnitude 

correlation with creatinine levels (Figure 3). The remaining ancestry components show 

either negative correlations or no correlation with creatinine levels. Overall, the European 

ancestry component shows the next highest correlation with creatinine followed by the 

South Asian and East Asian ancestry components. These patterns hold for both males and 

females across all four ancestry components.

We further evaluated the associations between ancestry and serum creatinine levels by 

modeling the association of ancestry fractions for each ancestry separately adjusting for 

SED, age, sex, height, and BMI (Models 9–12; Supplementary Table 9). The results of the 

ancestry-specific models are consistent with the results of the regression analyses. African 

ancestry shows the largest effect size and the only positive effect size for all four ancestries, 

and the African ancestry model shows the best fit to creatinine levels for any of the models.

We evaluated the amount of variation in serum creatinine levels explained by ethnicity 

versus the amount explained by GA by comparing the specification of the creatinine model 

that includes ethnicity and covariates (Model 5; Supplementary Table 6) to the specification 

of the model that includes ancestry and covariates (Model 13; Supplementary Table 10). 

Serum creatinine levels have a slightly skewed distribution, and ancestry fractions are non-

normally distributed, as most ethnic groups show a single majority ancestry component with 

much smaller contributions from other ancestries. We checked the residual distribution for 

the creatinine-ancestry model to ensure that the model estimates are reliable (Supplementary 

Figure 6). The ancestry model shows better specification, i.e. a more correct set of 

regressors, compared to the ethnicity model, using both the J test and the Cox test for 

non-nested model comparisons. For the J test, adding the fitted values of the ancestry model 

to the ethnicity model improves the model specification far more than adding the fitted 

values of the ethnicity model to the ancestry model (Model 5 & Model 13; Table 3). For the 

Cox test, fitting the regressors from the ancestry model to the fitted values of the ethnicity 

model has high explanatory value, whereas fitting the regressors from the ethnicity model to 

the fitted values of the ancestry model does not (Model 5 & Model 13; Supplementary Table 

11).

We further compared the amount of variation in serum creatinine levels explained by 

ethnicity versus GA using relative importance analysis of a creatinine model that included 

both ethnicity and GA as predictors, along with SED, age, sex, height, and BMI covariates 

(Model 14; Table 4 & Supplementary Table 12). GA explains more of the variation in serum 
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creatinine levels than ethnicity, and African ancestry alone explains more of the variation in 

creatinine levels than ethnicity. African ancestry explains 4.9 times more variation than the 

next highest East Asian ancestry and an order of magnitude more variation than European or 

South Asian ancestry.

Discussion

We modeled the association of ethnicity, GA, and SED with serum creatinine levels 

controlling for age, sex, height, and BMI. Black ethnicity shows a positive effect on serum 

creatinine levels, whereas East Asian and South Asian ethnicity have negative effects on 

creatinine levels. While Black ethnicity has the highest magnitude effect on creatinine levels, 

inclusion of additional ethnic groups contributes significantly to the observed variation in 

creatinine levels and slightly improves the model fit. African ancestry has the highest and 

the only positive GA association with serum creatinine levels. Overall, GA explains more of 

the variation in creatinine levels than ethnicity, yielding a significantly better model fit, with 

African ancestry alone explaining more of the variation in creatinine levels than ethnicity.

It is possible that the association between serum creatinine levels and ethnicity is related 

to social determinants of health. Although GA is a characteristic of the genome, it could 

also co-vary with social factors, thereby confounding our analysis. We controlled for SED 

using the Townsend deprivation index and did not see any attenuation of the effects of 

ethnicity or GA. In fact, SED has no significant effect on serum creatinine levels, in contrast 

to the expectations of the social determinants hypothesis. Furthermore, when the cohort is 

stratified into low, medium, and high SED terciles, there is no difference in serum creatinine 

levels among terciles and the ethnic differences are the same within all terciles. These results 

suggest that social and environmental factors, at least as measured by the Townsend Index, 

have a negligible effect on serum creatinine levels. Nevertheless, the inclusion of additional, 

more detailed measures of the social determinants of health could shed light on the genetic 

versus environmental contributions to ethnic differences in creatinine levels.

Limitations and future directions

Our study was motivated by a desire to explore the empirical basis of ethnicity corrections 

for equations that calculate estimated GFR (eGFR) from patient serum creatinine levels. 

One limitation of the study is the absence of measured GFR (mGFR) data for our cohort 

participants. Without mGFR, we cannot determine whether the differences they observed in 

serum creatinine among groups defined by ethnicity or GA represent differences in mGFR 

or differences in the non-GFR determinants of serum creatinine, which has implications 

beyond the use of GFR estimating equations as a tool for assessment of GFR. Previous 

findings on the association of ethnicity on mGFR have been recently reviewed (Levey et 

al., 2020a; Levey et al., 2020b). These data do not suggest a large difference in mGFR 

between US Black and White participants enrolled in MESA, a community-based study, 

in which differences in serum creatinine were observed. Lower GFR has been observed 

healthy South Asians and Whites compared with historical data in Whites, but differences in 

mGFR methods and in diet may have contributed to the observed differences. Further study 

is required to understand these observations along with the findings presented here.
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It must be stressed that this study was conducted on a cohort from the UK using ethnic 

group designations specific to the country. The extent to which our findings may be 

transferable to other countries like the US is an open question, particularly as it relates 

to the social dimension of ethnicity. While the UK ethnic groups studied here correspond 

approximately to US racial groups, the social experiences of these groups and the health 

implications of ethnicity and race may be distinct in different countries. Furthermore, 

country-specific patterns of migration could yield distinct patterns of GA and differences 

in the nature of ethnicity-ancestry covariation.

For this study, GA was calculated at the level of whole genomes with respect to broad 

geographical population groups. Future studies on the relationship between GA and serum 

creatinine levels could benefit from more fine-scale ancestry inference. For example, there 

are likely to be high levels of genetic diversity with the regional ancestry groups studied 

here, particularly for African ancestry. Delineation of African ancestry into more highly 

resolved ancestry components could shed additional light on the link between GA and 

creatinine. Local ancestry inference, i.e. the assignment of ancestral origins to specific 

haplotypes across the genome, could be used to further interrogate the genetic basis of our 

observations. In particular, the association of local ancestry segments with serum creatinine 

levels via admixture mapping could help to uncover specific genes (loci) that influence 

ethnic differences in creatinine levels.

The clinical utility of genetic ancestry: pros and cons

UK Biobank participants self-identified their ethnicity based on shared history, culture, and 

family ties, i.e. ethnic groups in the UK Biobank and elsewhere are socially determined. 

The social construction of these groups is underscored by the use of the term ‘ethnicity’ 

as opposed to ‘race’ in the UK census and health system, whereas similar groups are 

referred to as races in the US and elsewhere. Nevertheless, socially defined ethnic groups 

are considered as important epidemiologic proxies, since they co-vary with both genetic and 

non-genetic factors that can impact health outcomes (Borrell et al., 2021; Oni-Orisan et al., 

2021). In contrast to socially defined ethnic groups, GA can be used to more accurately 

capture patterns of genetic diversity that are associated with patients’ biogeographical 

origins (Yudell et al., 2016; Yudell et al., 2020).

GA provides a number of advantages for biomedical research and clinical practice. GA can 

be inferred directly from genetic data, independently of the social dimensions of ethnicity, 

and can therefore be calculated objectively and with precision. GA can be defined at 

different levels of relatedness, e.g. for broad geographical regions or for more closely related 

populations within regions. Finally, GA can be calculated at the level of whole genomes or 

at the local level with respect to the origins of individual haplotypes. Indeed, GA has been 

associated with a number of different health-related outcomes, including creatinine levels 

(Borrell et al., 2021).

GA more accurately reflects human genetic diversity, compared to racial and ethnic 

categories, and therefore allows for more precise stratification of patient populations, as 

seen here for the case of eGFR calculation from serum creatinine levels. Thus, the utility of 

using GA instead of race or ethnicity in clinical decision making is promising. Nevertheless, 
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accurate calculation of patients’ GA requires genome-wide genotype data of the kind 

analyzed here, or at the very least panels of scores or hundreds of ancestry informative 

markers (Ding et al., 2011; Schraiber and Akey, 2015). Racial and ethnic minorities who 

bear a disproportionate burden of disease are vastly underrepresented among clinical genetic 

study cohorts and far less likely to have access to their own genetic information (Bustamante 

et al., 2011; Petrovski and Goldstein, 2016; Popejoy and Fullerton, 2016). On the other 

hand, race and ethnicity, are useful proxies in their own right and readily available to health 

care providers, and prior to elimination of race and ethnicity in eGFR calculation, the impact 

of doing so on the exacerbation of existing health disparities must be carefully assessed.

While our manuscript was under review, a study of the Chronic Renal Insufficiency Cohort 

(CRIC) reported lower accuracy of eGFR for Black patients when race was eliminated from 

consideration in the estimation model (Hsu et al., 2021). The use of GA instead of race 

resulted in similar, and more accurate, eGFR estimates, consistent with the results reported 

here. They also show miscalculation of eGFR for Black patients could not be corrected 

when non-GFR determinants of serum creatinine were accounted for, similar to what we 

found. Taken together, the results of this recent study underscore the reliability of race as 

a proxy for GA and serum creatinine levels among Black patients. However, this study 

also showed that cystatin C could be used to accurately estimate GFR for Black patients 

without the use of race in the model. The authors stress that the use of cystatin C for 

GFR estimation, instead of creatinine, could mitigate potential negative consequences of 

race-based approaches.

Conclusion

We found that GA explains more of the variation in serum creatinine levels than 

socioeconomic deprivation or anthropometric factors, suggesting that ethnic differences in 

creatinine are shaped by genetic rather than social factors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

GA genetic ancestry

GFR glomerular filtration rate
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eGFR estimated GFR

mGFR measured GFR

SED socioeconomic deprivation

BMI body mass index

WGG whole genome genotypes

WGS whole genome sequence

1KGP 1000 Genomes Project

HGDP Human Genome Diversity Project

LD linkage disequilibrium

PCA principal component analysis

NNLS non-negative least squares

AIC Akaike’s Information Criteria

BIC Bayesian Information Criteria
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Figure 1. Ethnic disparities in serum creatinine levels.
Forest plot showing the results of multivariable linear regression modeling serum creatinine 

levels with ethnicity, SED, age, sex, height, and BMI. Effect size estimates (β-values), 95% 

confidence intervals (CIs), and association significance levels (P-values) are shown for each 

independent (predictor) variable in the model. The model is specified as shown. Serum 

creatinine levels are modeled as μmol/L units; ethnicity and sex are modeled as categorical 

variables, with White ethnicity and female sex as reference values; age, height, BMI, and 

SED are modeled as continuous variables with units as shown in the Figure.
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Figure 2. Ethnicity and genetic ancestry (GA).
(A) Principal Component Analysis (PCA) of UK Biobank participants showing the first 

three PCs. Individual participants are colored by their self-identified ethnicity (left) and 

their GA (right). Ethnicity and GA color-codes are shown in the key. (B) Participants’ GA 

fractions for six global ancestry groups are shown, with participants grouped according to 

their self-identified ethnicity. Each participant is shown as a single column, with different 

ancestry components summing to 100%. The White group shows a random sample of 

10,000 individuals.
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Figure 3. Genetic ancestry (GA) and serum creatinine levels.
Serum creatinine levels (y-axis) are regressed against percent GA (x-axis) for four ancestry 

groups: African (blue), East Asian (green), South Asian (red), and European (orange). 

Results for each ancestry group are stratified by sex. Participants are grouped into 

percentiles and linear trend lines with standard errors were fit with linear regression. The R2 

and P-values for Pearson correlation are shown for each ancestry-sex combination.
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Table 1.
Characteristics of the study cohort.

Numbers of participants are shown across ethnic groups, and the percentage of males is shown across 

groups. For all other measures, average values are shown with standard deviations in parentheses. Units 

of measurement are shown for height, weight, and BMI measures and serum creatinine levels. SED is 

socioeconomic deprivation as measure by the Townsend deprivation index.

All Black East Asian South 
Asian

White Mixed Other

n 35,590 7,045 1,412 8,721 10,000 2,706 5,706

Creatinine (μmol/L) 73.23 
(24.68)

79.98 
(30.14)

66.37 
(18.25)

71.74 
(24.91)

72.17 
(16.32)

71.15 
(26.71)

71.69 
(27.66)

% Genetic 
Ancestry

African 21.96 
(38.44)

90.64 
(15.68)

0.21 (0.95) 0.30 (1.77) 16.88 
(21.30)

16.54 
(33.91)

0.01 (0.20)

East Asian 7.39 
(24.62)

0.18 (1.94) 98.39 (8.06) 4.76 (18.58) 5.82 
(14.94)

11.41 
(29.81)

0.03 (0.77)

South Asian 16.67 
(30.58)

1.09 (7.78) 0.14 (1.21) 57.38 
(31.21)

11.37 
(19.12)

9.44 
(25.34)

0.05 (0.94)

European 40.76 
(44.75)

6.45 
(10.93)

1.02 (6.81) 3.68 (8.12) 58.40 
(22.76)

38.53 
(42.62)

99.37 
(5.30)

SED (Townsend index) 0.38 (3.61) 2.65 (3.44) −0.49 
(3.35)

0.32 (3.18) −1.43 
(3.00)

0.47 (3.58) 0.99 (3.73)

Age (years) 53.95 
(8.37)

51.99 
(8.08)

52.47 (7.66) 53.29 (8.47) 56.82 
(7.92)

51.78 
(8.12)

53.73 
(8.26)

% Male 46.35 42.97 37.60 53.57 45.57 37.77 47.09

Height (cm) 166.40 
(9.36)

167.33 
(8.70)

161.77 
(7.88)

163.95 
(9.23)

168.60 
(9.33)

166.86 
(9.14)

165.89 
(9.55)

Weight (kg) 76.89 
(16.01)

82.61 
(16.06)

63.35 
(11.60)

73.16 
(13.92)

78.18 
(15.87)

76.41 
(16.52)

76.84 
(16.44)

BMI (kg/m2) 27.70 
(4.98)

29.51 
(5.40)

24.11 (3.43) 27.16 (4.38) 27.43 
(4.76)

27.38 
(5.23)

27.83 
(5.08)
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Table 2.
Log likelihood ratio test comparing the creatinine model with all ethnic groups considered 
(Model 5) and the creatinine model with only Black ethnicity considered (Model 8).

The White ethnic group is taken as the reference group in the all ethnic group model, and all non-Black ethnic 

groups are taken as reference in the Black-only model.

Models compared Df
1 R2

LogLik
2

ΔDf
3 χ2 P-value

Model 5: Creatinine ∼ Ethnicity + SED + Age + Sex + Height + BMI 12 0.1797 −161,082
4 29.52 6.1 × 10−6

Model 8: Creatinine ∼ Black ethnicity + SED + Age + Sex + Height + BMI 8 0.1790 −161,097

1
Degrees of freedom for each model

2
Log likelihood for the goodness fit of each model

3
Degrees of freedom for the χ2 test
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Table 3.
J test comparing the creatinine model with ethnicity versus the creatinine model with 
ancestry.

Model 5: Creatinine ∼ All ethnic groups + SED + Age + Sex + Height + BMI. Model 13: Creatinine ∼ 
Genetic ancestry + SED + Age + Sex + Height + BMI.

Models compared Estimate (β) Std. Error t-value P-value

Model 5 + fitted (Model 13) 0.91 0.06 15.77 <2 × 10−16

Model 13 + fitted (Model 5) 0.15 0.07 2.15 0.03
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Table 4.
Relative importance of ethnicity versus genetic ancestry for explaining variation in serum 
creatinine levels.

Model x:

Predictor Relative Importance
1

Ethnicity 4.96 (±0.59)

Genetic Ancestry (all) 9.06

African Ancestry 6.36 (±1.29)

East Asian Ancestry 1.29 (±0.32)

European Ancestry 0.86 (±0.16)

South Asian Ancestry 0.59 (±0.11)

1
Percent of variation (± 95% CI) in serum creatinine levels explained by each predictor. Note that genetic ancestry (all) is the sum of variation 

across all four ancestry components.
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