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Abstract

The application of polymer models to chromosome structure and dynamics is a powerful approach 

for dissecting functional properties of the chromosome. The models are based on well-established 

bead-spring models of polymers and are distinct from molecular dynamics studies used in 

structural biology. In this work, we outline a polymer dynamics model that simulates budding 

yeast chromatin fibers in a viscous environment inside the nucleus using DataTank as a user 

interface for the C++ simulation. We highlight features for creating the nucleolus, a dynamic 

region of chromatin with protein-mediated, transient chromosomal cross-links, providing a 

predictive, stochastic polymer-physics model for versatile analyses of chromosome spatiotemporal 

organization. DataTank provides real-time visualization and data analytics methods during 

simulation. The simulation pipeline provides insights into the entangled chromosome milieu in 

the nucleus and creates simulated chromosome data, both structural and dynamic, that can be 

directly compared to experimental observations of live cells in interphase and mitosis.
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1 Introduction

Chromosome segregation is performed largely at the intersection of chromosomes and 

microtubule plus-ends, known as the kinetochore, through the interaction of the kinetochore 

with the mitotic spindle. Much focus has been paid to the centromere and understanding 

its role in dictating kinetochore assembly. However, the bulk of the chromosome arm is not 

typically considered beyond mechanisms required for its condensation. One of the major 

hurdles in studying bulk chromosomes is the sheer mass of DNA. From the biochemical 

perspective, there is a dearth of information beyond the nucleosome. Likewise, structural 

biological approaches toward understanding higher-order chromosome structure are limited 

due to computational cost of resolved simulations at the required spatial and temporal 

scales for detailed structure across the entire genome. The application of stochastic bead-

spring models of entropic polymers, derived from statistical physics, has revolutionized 

the field of chromosome structure and dynamics. These models provide a remarkably 

accurate approximation for chromosome motion under a variety of conditions (such as 

DNA damage), organization of the nucleolus and other sub-compartments, and higher-order 

structures such as the bottle brush organization in centromeres and the condensed mitotic 

chromosome.

The spatial structure of chromosomes furthermore dictates control of genome expression 

beyond the linear arrangement of nucleotides that encodes the gene map [1-3]. Yet 

direct observation of chromosomes fails to bring detailed structural information, due to 

compactness and the intense dynamics of chromosomes inside the nucleus. Numerical 

simulations extend the possibility for clear and concise observation of chromosome spatial 

structure and dynamics. These simulations can be validated through direct comparison with 

experimental results in terms of statistical and stochastic analyses, including but not limited 

to signal size and intensity, spatial distribution of chromosome territories, and the underlying 

intra- and inter-chain interactions that reproduce observed genome self-organization.

Modeling DNA as bead-spring polymer chains is widely adopted in the field and has made a 

tremendous impact on studying genome organization [4-6].

In this work, we introduce the model developed for simulating dynamics of budding yeast 

chromosomes inside the nucleus in the G1 stage of interphase [7, 8]. Each chromatin fiber 

is modeled as a flexible polymer consisting of beads connected by nonlinear springs in a 

viscous environment. 32 polymer chains, representing the arms of the 16 yeast chromosomes 

with biologically accurate lengths, are generated to directly compare to experimental 

observations. The dynamics of each bead, representing 5000 bp of DNA, is joined to 

adjacent beads with nonlinear springs that obey a worm-like chain force regime [9, 10]. 

Moreover, the polymers are confined within a 1 μm sphere representing the nucleus, and 

both ends of the 32 polymer chains are tethered on the nuclear membrane to generate a 
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Rabl conformation [4]. Both confinements resemble configurations of the nucleus inspired 

by experimental results. This stochastic simulation of coupled, entropy-driven, tethered, 

geometrically confined, bead-spring polymer chains shows many consistent features in terms 

of dynamic properties of chromatin fibers inside the nucleus.

Additionally, this model simulates the nucleolus, a region inside the nucleus where 

ribosomal RNA is synthesized [11]. The nucleolus is represented as a specific region on 

chromosome XII with an enhanced activity specified by intra- and inter-chain interactions. 

These interactions are modeled by the formation of transient cross-links between beads on 

the same chain or across separate chains [7]. This approach simulates high-level chromatin 

interactions with structural proteins such as structural maintenance of chromosome (SMC) 

proteins in the nucleolus.

The simulation pipeline is entirely accomplished using DataTank. In the .tank file, DataTank 
offers a graphical interface for setting all inputs. The input parameters are passed to 

the simulation program attached to the .tank file. After compiling, the program runs the 

simulation, and DataTank captures the streaming results and simultaneously outputs the 

nuclear configuration. When the simulation is finished, the results are stored in DataTank. 

Users have the option to either continue analyzing the data using DataTank or export the 

data to other file formats for additional analysis. We provide the script for an interphase 

simulation, Yeast_Chromosome_Dynamics_Simulator.tank, and the simulation program 

attached to it. Moreover, we provide a number of tools we developed using DataTank for 

visualization and analysis of the 32-chromosome arm simulation. Lastly, we provide a quick 

guide for researchers to use DataTank to read their own simulation results and conduct 

downstream analyses utilizing DataTank’s user-friendly interface and visualization features.

2 Materials

The simulation pipeline uses DataTank, a numerical working environment, as the 

user interface. DataTank is developed by David Adalsteinsson; researchers can go 

to the following website for a user license and to download the software https/

www.visualdatatools.com/DataTank/. DataTank provides powerful visualization and analysis 

tools that are compatible with various types of data. ImageTank is an additional data 

visualization tool that further streamlines data analysis (see Note 3). DataTank employs 

embedded data-oriented functions and is itself a visual programming environment. Programs 

created by standard utilities or the built-in C++ framework can be launched in DataTank 
for numerical purposes. The simulation results are parsed by DataTank in real time for 

downstream data visualization and analyses.

1. Yeast_Chromosome_Dynamics_Simulator.tank – The main file for the 

simulation pipeline contains: (1) The interface to enter input parameters and 

settings. (2) The port connecting to the simulation program. (3) The visualization 

module. (4) Modules for stochastic analyses.

2. Microscope_Simulator.tank—The microscope simulator pipeline functions to 

convert the numerical results to experimental microscope images. This enables 
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direct statistical comparison of geometries between simulated chromosomes and 

experimental observations.

3. Community_Detection_Analysis.tank—The community detection pipeline 

applies a multilayer modularity optimization process to detect community 

behavior during chromosomal interactions in simulation results.

All DataTank scripts and attachments are available at https://github.com/heyunyan19930924/

Yeast-Chromosome-Dynamic-Simulaion. See Note 1 for online help.

3 Methods

We now show how to run the simulation program using DataTank. After the simulation 

data is generated, we show ways to store the results in different file formats. We show 

how to visualize the results as the simulation is progressing. Lastly, we introduce scripts 

for data analytics of the simulated, all chromosome, time series, consisting of a Microscope 

Simulator script that passes the simulated data through a microscope imaging pipeline, and 

a Community Detection script that detects dynamic gene clusters (communities) at the scale 

they exist.

3.1 Set Inputs and Launch the Simulation

1. Download and install DataTank. Acquire the license by following 

instructions on the website. Download the simulation script 

Yeast_Chromosome_Dynamics_Simulator.tank.

2. Run Yeast_Chromosome_Dynamics_Simulator.tank through DataTank. Set 

inputs before running the simulation. Default setting simulates DNA dynamics 

inside the nucleus of a budding yeast cell. First set the initial geometry by 

inputting the number of arms, lengths of each arm, and connections at the 

nuclear wall in the “lengths” and “connections” modules. By default, there are 32 

polymer arms simulating 16 chromosomes. “Coefficients” dictionary contains 

parameters regarding the dynamics, including simulation scale, persistence 

length of polymers, environmental parameters, and so on. “Evolution” dictionary 

controls the simulation time scale, timestep, and which timesteps to save (the 

save time “stride”). The fundamental model introduced so far already builds 

the basis for polymer dynamics simulation, and there are additional features 

specifically for simulating chromosomes. Beads are subject to a repulsive 

potential and the corresponding parameters are in the “Excluded volume” 

dictionary. The nuclear membrane is modeled as a spherical surface and all 

arms are restricted within. The membrane location and volume are set in “Void 

formation” dictionary. By default, both ends of all polymer arms are attached 

to fixed sites on the membrane. Moreover, this work simulates chromatin 

interactions as transient cross-links in the nucleolus, and the nucleolus is 

modeled as a specified region (the default is on chromosome XII) specified in 

the “Terms” dictionary. Users can toggle all modules listed above to modify the 

simulation parameters.
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3. The simulation can be run in two different ways. The user can either run the 

simulation locally or submit it to a remote computing cluster.

a. Local. This approach utilizes the local machine’s CPUs and therefore 

potentially prevents users from multitasking, especially for long 

simulations, but it allows users to view the results simultaneously. 

One can create a “Task” module and add dependencies to all relevant 

dictionaries simply by dragging the dictionaries in the module. By 

linking the C++ simulation script to the module as the kernel, the 

simulation is ready to run.

b. Remote. Submit the simulation and run it on a server with legal 

access to avoid local occupancy. This approach forbids simultaneous 

observation; however, one can download the results and visualize them 

locally at any time, even when the job is still running. To create a job, 

DataTank offers the “Parameter run” module that does the submission 

and online manipulation. Likewise, once the “Task” module is created, 

one can link all dependent parameters and simulation script to the task. 

One can conduct multiple runs in each submission by setting variables 

as “Time sequences.” DataTank automatically recognizes the format 

and creates multiple runs for all time values.

4. DataTank is only compatible with Xcode in MacOS as its C++ 

program compiler. It also provides built-in DTSource library as data 

structures and ports specifically for DataTank modules. The simulation C+

+ script is developed based on the DTSource library and is attached to 

Yeast_Chromosome_Dynamics_Simulator.tank.

a. Set the application to the attached script in “Parameter run” or 

“Task” module by clicking the “Set” button; find the script under 

Yeast_Chromosome_Dynamics_Simulator.tank file.

b. Compile or profile the C++ script in Xcode, and one will find that in the 

scroll down list “Support,” either the “Debug version” or the “Release 

version” has been lit up. See Note 2 for troubleshooting in compiling.

c. Select either the “Debug version” or the “Release version” as the 

project.

d. If the simulation is being run locally, click the “Run” button and the 

simulation starts to progress.

e. If the simulation is being submitted to a remote computing cluster, 

click the “Create” button to create a Parameter_run.dtask file that stores 

all required scripts and commands for submitting the job. Navigate to 

“Task > Run remotely > Add machine” and enter server information 

and access. Now click the “submit” button, and the job is successfully 

submitted to the server. The output data is also stored in the same 

Parameter_run.dtask file. While the file is open, DataTank periodically 

checks with the server for progress and downloads temporary results.
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5. To get the simulation results, the approach depends whether the simulation is run 

locally or online.

a. For local simulations, the output is saved by DataTank into a local 

cache. By accessing the “Task” module itself, we parse the results. If 

one intends to store the output locally, make a switch in the “Directory” 

line from “Temp” to a custom directory in the “Task” module before 

running the program. The output will be stored in a custom .mat file as 

the simulation progresses.

b. For online simulations, the output data is saved inside 

Parameter_run.dtask file.

3.2 Access Simulation Results

1. Simulation data stored as .mat file contains the coordinates of each bead at each 

timestep in a table and stores all tables in a corresponding .mat file. DataTank 
can parse the .mat file as input and convert to a time series of “3D Path,” a built-

in data structure in the DTSource library. By creating a “Data File” module in 

DataTank, the .mat data could be opened in the module which contains the main 

output. Three variables are contained in .mat files, and the position information is 

saved as variable “Var.”

2. Simulation results saved in .dtask files can be read by “File Name” module 

in DataTank. Choose “From Parameter Run” from the scroll down bar in the 

module and specify the file to be read. Unlike “Data File” module, “File Name” 

module cannot detect the underlying data structure automatically. Manually 

create a “Group” structure, link the group to the “File Name” module, and one 

can extract the three variables within the file including the “3D Path” by pressing 

“Suggest” button.

3.3 Visualize Simulation Data

DataTank possesses powerful data visualization modules that are compatible with various 

data formats and real–time updates (Fig. 1a-c).

1. To observe numerical data, drag the “3D Path” variable to the “Variable 

Monitor” panel on the right side of DataTank. The positions of all beads at a 

particular timestep will be displayed in the panel. The duration time for a time 

series can be toggled in the “Time” sliding bar at the bottom.

2. To create figures, navigate to “Drawing” and create a “3D Space - Rendered” 

imaging module. A new figure window will be created. Drag the “3D Path” 

variable into the window, and the chromosome beads and springs will be 

displayed in the image window. Likewise, one can toggle the “Time” sliding 

bar to observe chromosome structure at a specific timestep. One can also tweak 

parameters in the image window to modify visualization features.

3. By default, a “3D Surface” variable has been created in order to represent the 

nucleus membrane in the figure. It attains the exact parameter settings from the 
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simulation. Drag this variable into the image window to create a sphere around 

the chromatin chains representing the nucleus membrane. Set the sphere to be 

semitransparent.

3.4 Analytics Tools

3.4.1 Microscope Simulator—To compare statistical and stochastic properties 

of simulated data with experimental observations, a DataTank script, Microscope_-

Simulator.tank, applies a three-dimensional point-spread function to the simulation data to 

simulate fluorescent microscopy images.

1. Download the script Microscope_Simulator.tank. Compile C++ script in 

“Microscope Simulator Code” module inside Microscope_Simulator.tank. Add 

the module as global via clicking the “support” dropdown box and choose 

“Create as Module…”. Now Microscope Simulator works as a global module 

and can be executed in all DataTank files.

2. To apply the simulator, create a “3D Mesh” variable by navigating to “Variable > 

3D > 3D Mesh.” Select “Microscope Simulator” in the dropdown box. Three 

input arguments are required. “Points” takes the list of points to simulate. 

“Bbox” indicates the bounding box. “Element” reads the mesh basis.

The pipeline outputs the simulated experimental 3D signal from simulation data. One can 

apply further analysis and compare with experimental observations. Since experimental 

observations are single image planes in most circumstances, use of the Slicing 3D signal is 

required (Fig. 2).

3.4.2 Community Detection—The transient cross-linking interactions of chromosome 

segments in the nucleolus have been shown to lead to a range of bead clustering behavior, 

tuned by the cross-linking affinity [12]. Whatever clustering in the nucleolus exists, the 

cluster membership of each bead over time can be computed using the clustering script. 

If there is no discernable clustering, each bead is its own cluster. In all cases, each bead 

is assigned to one cluster at each timestep, and the clustering algorithm accounts for both 

spatial proximity and persistence over time. The script applies the GenLouvain algorithm for 

multilayer modularity optimization ([13, 14], ). See [12] for more details on the application 

of this module to the simulation model.

Download Community_Detection_Analysis.tank and run the script. To configure, set the 

“Configuration > Matlab setup > matlabpath” variable to the path to a valid Matlab 

executable. Set “Configuration > Input” to a simulation data file (see Subheading 3.2). 

Ensure that all external executables required by the script have been compiled. Clustering 

parameters may be set in “Configuration > Parameters.” “Start time” and “End time” define 

the time interval over which clustering is computed. A distinct partition is computed on each 

of the course-grained time windows, whose widths are set in “Window size.” The variables 

“Gamma” and “Omega” define the resolution and interlayer coupling parameters. They may 

be left at the default values or altered to affect the spatiotemporal scale favored by the 

algorithm (see [12] for further details on these parameters). Specify the portion of beads to 
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be analyzed by community detection pipeline by setting the “Input Processing > Portion of 

Points on Var.”

The result of the clustering, with points labeled by cluster membership, can be accessed in 

the variable “Final output - points labeled by cluster.” Note that the cluster identities only 

change at a temporal frequency defined by the window size. The results can be visualized in 

the “Beads colored by cluster” drawing window.

4 Notes

1. For further help regarding DataTank, refer to documentations via “Help.” Online 

help is also available via “Help > Online Help.”

2. When compiling attached code through Xcode, issue may occur failing to 

compile due to outdated default C++ standard library. To solve this issue, click 

on the project icon, navigate to “Build Settings > Apple Clang – Language – C+

+ > C++ Standard Library,” and choose “libc++” with C++11 supported. Remote 

simulation may trigger similar issue because of outdated compiler on server.

3. ImageTank is another data visualization tool distributed by Visual Data 

Tool, Inc., also created by David Adalsteinsson, to further streamline data 

analysis https://visualdatatools.com/ImageTank/ [15]. In addition to all features 

of DataTank, ImageTank enhances the user interface, image processing, and 

computing.
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Fig. 1. 
Simulation result configuration in DataTank. Red chains correspond to chromosome 

arms. The green spherical shell represents the nuclear membrane. Dark small spheres 

on the membrane are tethering spots of all 16 chromosomes—the common centromere 

and six distal telomeres. The nucleolus region appears in the simulation as the solid 

blue sphere inside the nucleus. (a) Initial configuration. Each straight line is an initial 

superposition of the multiple chromosome arms sharing the same tethering spots. (b) 

Midterm configuration. (c) Equilibrium configuration. Chromosomes spread across the 

whole nucleus after undergoing entropic dynamics in G1 of interphase
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Fig. 2. 
Simulated chromosomal signal under the microscope by Microscope_Simulator.tank. This 

feature uses simulation data, labels specific regions to simulate the experimental observation 

approach using green fluorescent proteins for labeling, and then converts the simulation 

signal from the labeling region to a transformed signal. Vertical slices of the transformed 3D 

signal shown in the figure resemble what the eye or camera observes under the microscope
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