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Abstract

BACKGROUND: Schizophrenia spectrum disorders (SSDs) feature social cognitive deficits, 

although their neural basis remains unclear. Social cognitive performance may relate to neural 

circuit activation patterns more than to diagnosis, which would have important prognostic and 
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therapeutic implications. The current study aimed to determine how functional connectivity within 

and between social cognitive networks relates to social cognitive performance across individuals 

with SSDs and healthy control participants.

METHODS: Participants with SSDs (n = 164) and healthy control participants (n = 117) 

completed the Empathic Accuracy task during functional magnetic resonance imaging as well 

as lower-level (e.g., emotion recognition) and higher-level (e.g., theory of mind) social cognitive 

measures outside the scanner. Functional connectivity during the Empathic Accuracy task 

was analyzed using background connectivity and graph theory. Data-driven social cognitive 

networks were identified across participants. Regression analyses were used to examine network 

connectivity–performance relationships across individuals. Positive and negative within- and 

between-network connectivity strengths were also compared in poor versus good social cognitive 

performers and in SSD versus control groups.

RESULTS: Three social cognitive networks were identified: motor resonance, affect sharing, 

and mentalizing. Regression and group-based analyses demonstrated reduced between-network 

negative connectivity, or segregation, and greater within- and between-network positive 

connectivity in worse social cognitive performers. There were no significant effects of diagnostic 

group on within- or between-network connectivity.

CONCLUSIONS: These findings suggest that the neural circuitry of social cognitive 

performance may exist dimensionally. Across participants, better social cognitive performance was 

associated with greater segregation between social cognitive networks, whereas poor versus good 

performers may compensate via hyperconnectivity within and between social cognitive networks.

Individuals with schizophrenia spectrum disorders (SSDs) often experience persistent 

debilitating social cognitive deficits (1,2). Such impairments have been associated with 

poor community functioning and long-term disability (3,4) and have demonstrated stronger 

relationships with functional outcome than non-social-cognitive deficits (5,6). Social 

cognition is often divided into lower- and higher-level processes (7–9). Lower-level 

social cognition includes internal simulation of emotions and actions as well as emotion 

recognition and simple mental representation. These processes are believed to be subserved 

by a network including the inferior frontal gyrus, premotor cortex, supplementary motor 

area, inferior parietal lobule (IPL), and posterior superior temporal sulcus (pSTS) (10–12) as 

well as regions associated with emotional empathy including the anterior insula and anterior 

cingulate cortex (ACC) (13–15). Higher-level social cognition involves complex mental state 

representation (i.e., theory of mind) and is believed to depend on a mentalizing network 

composed of the medial prefrontal cortex, temporoparietal junction, and posterior cingulate 

cortex into the precuneus (16,17).

Functional magnetic resonance imaging (fMRI) studies have shown abnormal neural 

activation in regions of these circuits during social tasks in individuals with SSDs (1,18,19). 

However, little is known regarding how such regions interact during social cognitive 

processing. Existing studies of functional connectivity at rest (20–24) and the few studies 

of functional connectivity during social cognitive processing (25–28) in people with SSDs 

have yielded inconsistent results, showing hyperconnectivity, hypoconnectivity, and a lack 

of connectivity differences between social cognitive regions compared to healthy control 

Oliver et al. Page 2

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



participants. Furthermore, there is evidence that neural activation patterns during social 

processing relate to cognitive performance rather than diagnosis across people with SSDs 

and healthy control participants (29). In large heterogeneous samples, such as in people 

with SSDs and other psychiatric disorders, the observed range of behavior and neural circuit 

activation frequently shows overlap with healthy control participants. This could contribute 

to inconsistencies in case-control findings, highlighting the importance of examining 

dimensional brain–behavior relationships across patient and control groups (30–32). Indeed, 

deficit-specific biological markers might not necessarily be disorder specific (33,34). The 

inconsistency across studies also raises the question of whether brain network topology 

supports the division of higher- and lower-level social cognition.

The Empathic Accuracy (EA) task engages a range of social cognitive regions (35–37), 

making it ideal for investigating the interplay of social cognitive networks. The EA 

task is a naturalistic social task (35,38,39), aligning with the movement toward narrative 

naturalistic viewing during fMRI (40,41). It is also amenable to background connectivity 

analysis, which involves removing the stimulus-evoked response and focusing on residual 

activation, providing better discrimination of state-related functional connectivity versus 

stimulus-driven coactivation (42–44).

This paper reports findings from EA task fMRI data from the Social Processes Initiative in 

the Neurobiology of the Schizophrenia(s) (SPINS), a multicenter Research Domain Criteria 

study funded by the National Institute of Mental Health. SPINS is a rich multimodal 

neuroimaging and behavioral investigation designed to capture heterogeneity in social 

cognition across a large sample of people with SSDs and healthy control participants. 

Here, we used background connectivity and graph theoretical analyses during the EA task 

to identify data-driven social cognitive networks and determine how network connectivity 

relates to social cognitive performance and SSD versus healthy control status. We used 

regression analyses to examine the continuous relationship between social cognitive network 

connectivity and social cognitive performance across participants. We also compared within- 

and between-network connectivity in poor versus good social cognitive performance groups 

across people with SSDs and healthy control participants and in SSDs versus healthy control 

groups. We hypothesized that regression analyses would reveal relationships between 

network connectivity and social cognitive performance across participants with SSDs 

and healthy control participants. Accordingly, we hypothesized that within- and between-

network functional connectivity during the EA task would differ between good and poor 

social cognitive performers.

METHODS AND MATERIALS

Participants

Participants (164 with SSDs and 117 healthy individuals) were recruited for SPINS from 

the Centre for Addiction and Mental Health (Toronto, Ontario, Canada), Zucker Hillside 

Hospital (Glen Oaks, NY), and the Maryland Psychiatric Research Center (Baltimore, 

MD) from December 2014 to March 2018. Participants with SSDs met DSM-5 criteria 

for schizophrenia, schizoaffective disorder, schizophreniform disorder, delusional disorder, 

or psychotic disorder not otherwise specified, assessed using the Structured Clinical 
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Interview for DSM-IV-TR, and had no change in antipsychotic medication or decrement 

in functioning/support level during the 30 days prior to enrollment. Additional exclusion 

criteria included a history of head trauma resulting in unconsciousness, substance use 

disorder, intellectual disability, debilitating or unstable medical illness, or other neurological 

diseases (see Supplement for details and inclusion/exclusion criteria for controls). All 

participants signed an informed consent agreement, and the protocol was approved by the 

respective research ethics and institutional review boards. All research was conducted in 

accordance with the Declaration of Helsinki.

Clinical and Cognitive Assessment

Data collection occurred across 3 visits. Out-of-scanner social cognitive measures included 

the Penn Emotion Recognition Test (45), the Reading the Mind in the Eyes Test (46), and 

the Awareness of Social Inference Test–Revised (TASIT), parts 1, 2, and 3 (47). Psychiatric 

symptoms (SSD only), non-social cognition, and social functioning were also assessed (see 

Supplement).

MRI Data Acquisition

MRI scans were collected using harmonized scanning parameters on five 3T scanners (see 

Supplement). The EA task was part of a longer multimodal MRI protocol, as previously 

described (48). Three EA fMRI runs were acquired using an echo-planar imaging sequence 

(repetition time = 2000 ms, echo time = 30 ms, flip angle = 77°, field of view = 21.8°, 

in-plane resolution = 3.4 mm2, slice thickness = 4 mm). Anatomical T1-weighted scans were 

collected using a fastgradient sequence (repetition time = 650 ms, echo time = 3 ms, flip 

angle = 8°, field of view = 23°, in-plane resolution = 0.9 mm2, slice thickness = 0.9 mm).

Prior to analysis, all scans were quality checked by experienced research staff using an in-

house quality control system dashboard (https://github.com/TIGRLab/dashboard), including 

qualitative monitoring (e.g., detection of ghosting or ringing) and quantitative monitoring 

(e.g., framewise displacement, signal-to-noise ratio). Individual residual time series and 

connectivity matrices were also visually examined for abnormalities.

EA Task

The EA task (38,39) was completed during fMRI. In this task, participants watch 9 videos 

(120–150 seconds each), presented in three runs (~10 min/run), of individuals describing 

emotional autobiographical events and provide continuous ratings of how positive or 

negative the individuals in the videos are feeling (see Supplement).

fMRI Preprocessing

All scans were preprocessed using an in-house pipeline system, epitome (https://github.com/

josephdviviano/epitome), which uses FSL and AFNI, including slice-time correction, 

despiking, scaling, linear registration, nonlinear warping, and censoring of time points with 

framewise displacement >0.5 mm (49). A nuisance regression model was applied to the data, 

including thorough regression of head motion parameters (50) and tissue-specific regressors 

(51) but no global signal regression. The data were then smoothed and warped into Montreal 

Neurological Institute space (see Supplement). An amplitude-modulated general linear 
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model was performed using AFNI’s 3dDeconvolve. For each of the nine EA task videos, 

one hemodynamic response function was fit for the duration of the video as well as a 

second hemodynamic response function modulated by the participant’s EA score and a third 

hemodynamic response function modulated by the number of button presses made during 

the video. These regressors were fit to each voxel to model the stimulus-evoked response, 

and the residual activation was retained for background connectivity analysis.

Connectivity Matrix Construction

Background connectivity analysis involves removing the modeled stimulus-evoked response 

and correlating residual activation over time across regions of interest (ROIs). The focus 

is on state-related rather than stimulus-driven correlations given that stimuli can evoke 

synchronized activity in multiple brain regions regardless of whether they are interacting 

(42,43). This is ideal for continuous tasks, and for the EA task in particular, given that we 

were interested in the state of emotional understanding across videos rather than individual 

responses to video events.

ROIs were defined using the Shen atlas (52), a whole-brain data-driven parcellation based 

on resting-state connectivity data that has been used for network analysis (48,53). Cortical 

ROIs were selected if they included the following canonical and consistently identified 

areas involved in lower- and higher-level social cognition based on extant meta-analyses 

and reviews of the literature: the medial prefrontal cortex, temporoparietal junction, pSTS, 

precuneus, posterior cingulate, anterior insula, ACC, supplementary motor area, inferior 

frontal gyrus, premotor cortex, and/or IPL (11,12,15–17,54). A mean residual time series 

was calculated for each of 52 (26 bilateral) selected ROIs. Pearson correlation coefficients 

were calculated between the time courses of each pair of selected nodes and Fisher 

z transformed, generating a 52 × 52 connectivity matrix for each participant. Network 

topology was characterized using graph theoretical analyses (55), for which individual 

connectivity matrices remained weighted, signed, and undirected.

Data-Driven Social Cognitive Network Detection

Social cognitive networks were identified for each participant using the Louvain community 

detection algorithm for signed networks (56), which divides nodes into modules while 

maximizing within-module connections and minimizing between-module connections (57). 

This was done at network densities ranging from the top 20% to 70% of connections 

(5% intervals). Consensus clustering was then performed to generate individualized 

network partitions (58), and the process was repeated to produce a group-level consensus 

partition based on the most frequently assigned module across all consensus partitions (see 

Supplement).

Graph Metrics

Unthresholded connectivity matrices were split into positive and negative matrices for each 

participant to calculate graph metrics for each connection type. Graph metrics were then 

calculated at densities ranging from the top 20% to 50% of connections (5% intervals). 

A restricted range was used in comparison with that used for consensus clustering given 

that network density is inherently reduced by separating positive and negative connection 
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weights, with 50% being the maximum negative matrix density. For the networks identified 

via consensus clustering, positive and negative within-network connectivity strength (mean 

sum of connection weights between nodes within each network) and between-network 

connectivity strength (mean sum of connection weights between nodes in one network 

and nodes in another network) were calculated (59). Nodal within- and between-network 

connectivity strengths were calculated similarly.

Division of Sample Based on Social Cognitive Performance

Across all participants, good and poor performance subgroups were generated for both 

lower- and higher-level social cognition, based on median splits of behavioral factor scores. 

These lower- and higher-level factor scores were estimated for each participant (60) from 

observed social cognitive scores, based on our previous two-factor model of social cognition 

across individuals with SSDs and healthy control participants (6). We also tested this two-

factor model in the current sample using confirmatory factor analysis, confirming good fit 

for the data across participants (comparative fit index = .990, root mean square error of 

approximation = .042) (see Supplement). The lower-level social cognition factor includes 

the Penn Emotion Recognition Test, Reading the Mind in the Eyes Test, TASIT 3 Lies, and 

EA task scores, whereas the higher-level factor is composed of TASIT 2 Simple Sarcasm, 

TASIT 2 Paradoxical Sarcasm, and TASIT 3 Sarcasm [see Oliver et al. (6)].

Statistical Analysis

Data were analyzed using RStudio version 1.1.447 (61). Age, scanner, and sex were 

included as covariates in all analyses. Analyses were conducted at each density to ensure 

consistency (see Figure S1), and using the mean values across densities. Mean values and 

corresponding statistics are reported.

Regression Analyses Across Groups.—Regression analyses were run to interrogate 

dimensional relationships between connectivity strength and social cognitive performance. 

Separate multiple regressions were conducted for lower- and higher-level social cognition 

factor scores, including positive and negative within- and between-network connectivity 

strengths as predictors and false discovery rate (FDR) correction for multiple comparisons. 

Age, scanner, and sex were also included as nuisance variables in both models.

Group-Based Comparisons.—Group-based comparisons were used to examine whether 

connectivity profiles differ in poor versus good lower- and higher-level social cognitive 

performers and diagnostic groups. Connection type (positive or negative) by network (motor 

resonance, affect sharing, or mentalizing) analyses of covariance (ANCOVAs) were run for 

each group comparison (poor vs. good lower-level social cognition; poor vs. good higher-

level social cognition; SSDs vs. control) for within- and between-network connectivity 

strengths. Follow-up pairwise comparisons of estimated marginal means were conducted 

to interpret significant effects, including Greenhouse–Geisser correction for violations of 

sphericity where appropriate and FDR correction for multiple comparisons. Nodal within- 

and between-network connectivity strengths were also compared between groups using t 
tests in the braingraph package (62) for positive and negative connections, including FDR 

correction for multiple comparisons.
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Subanalyses on Prisma Scanners.—Regression analyses and group-based within- and 

between-network ANCOVAs were also conducted on a subsample of the data collected on 

Prisma scanners only (n = 85) to minimize potential scanner effects.

RESULTS

Participant demographic and clinical characteristics, as well as social cognitive factor scores, 

are presented in Table 1 (see Tables S1 and S2 for characteristics by performance-based 

groups).

Data-Driven Social Cognitive Network Detection

Across participants, community detection and consensus clustering revealed three data-

driven networks. These networks aligned with a motor resonance network, including the 

inferior frontal gyrus into premotor cortex, supplementary motor area, IPL, and pSTS; an 

affect sharing network, including the anterior insula, ACC, and regions of the IPL; and a 

mentalizing network, including the medial prefrontal cortex, ACC, temporoparietal junction, 

pSTS, and precuneus (Figure 1) (1). In addition, the same community detection procedure 

consistently identified three highly similar networks when run separately for good and poor 

lower- and higher-level social cognition groups, controls alone, and SSDs alone (κ = 0.74, p 
< .0001).

Network Connectivity

See Table 2 for the group-based main effect and interaction statistics described below, and 

see the Supplement for sample-wide effect details. See Figure S2 for connectivity strength 

distributions by groups.

Regression Analyses Across Groups.—Regression analyses including positive and 

negative within- and between-network connectivity strengths revealed that increased motor 

resonance–affect sharing negative connectivity, or segregation, was significantly associated 

with both greater lower-level (β = 0.29, p = .0034, R2 = 0.198) and higher-level (β = 0.27, p 
= .0094, R2 = 0.193) social cognition factor scores (Figure 2).

Lower-Level Social Cognitive Performance Groups.—Comparison of within-

network connectivity in poor versus good lower-level social cognitive performers revealed 

a significant main effect of performance group, characterized by poor performers showing 

greater overall within-network connectivity (across connection types) than good performers 

(t273 = 2.07, p = .039, d = 0.04) (Table 2 and Figure 3). However, there was also a 

significant connection type × group interaction. Follow-up comparisons with FDR correction 

demonstrated that poor performers showed greater positive within-network connectivity 

across all networks than good performers (t525 = 3.10, p = .002, d = 0.16) but showed no 

difference in negative within-network connectivity (t525 = 0.489, p > .10, d = −0.11). There 

were no significant network × group or network × connection type × group interactions.

The ANCOVA comparing between-network connectivity in poor versus good lower-level 

social cognitive performers also showed a significant connection type × group interaction. 

This was driven by reduced between-network negative connectivity or segregation (t428 
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= −2.03, p = .043, d = −0.17) and nonsignificantly greater between-network positive 

connectivity (t428 = 1.79, p = .074, d = 0.13) in poor versus good performers. There were no 

significant effects of performance group, network × group, or network × connection type × 

group.

Higher-Level Social Cognitive Performance Groups.—The ANCOVA comparing 

within-network connectivity in poor versus good higher-level social cognitive performance 

groups revealed a significant network × connection type × group interaction (Table 2 and 

Figure 4). Follow-up comparisons, including FDR correction, showed that this was driven by 

greater positive connectivity in the mentalizing network (t1433 = 3.09, p = .002, d = 0.32) 

and affect sharing network (t1433 = 2.27, p = .024, d = 0.16) in poor versus good performers 

but showed no between-group difference in motor resonance positive within-network 

connectivity (t1433 = −0.691, p > .10, d = 20.09). Poor performers also demonstrated greater 

positive connectivity in the mentalizing network than in the motor resonance network (t1055 

= 3.54, p = .0004, d = 0.25), but within-network positive connectivity in these two networks 

did not differ significantly in good performers (t1055 = −0.635, p > .10, d = −0.14). There 

were no significant effects of performance group, network × group, or connection type × 

group.

Comparison of between-network connectivity in poor versus good higher-level social 

cognitive performers also showed a significant network × connection type × group 

interaction. This was characterized by greater positive (t1129 = 2.02, p = .044, d = 
0.24) and lower negative (t1129 = −2.12, p = .034, d = −0.35) motor resonance–affect 

sharing connectivity as well as nonsignificantly lower positive mentalizing–motor resonance 

connectivity (t1129 = −1.91, p = .057, d = −0.15) in poor versus good performers. Poor 

performers also showed greater positive connectivity between the motor resonance network 

and the affect sharing network than the mentalizing network (t846 = 5.33, p <.0001, 

d = 0.46), whereas these between-network positive connectivity values did not differ 

significantly in good performers (t846 = 0.84, p <.10, d = 0.09). There were no significant 

effects of group, network × group, or connection-type × group.

Diagnostic Groups.—In contrast to the social cognitive performance–based group 

comparisons, there were no significant diagnostic group effects or interactions for within- or 

between-network connectivity (Table 2 and Figure 5).

Subanalyses on Prisma Scanners

The same ANCOVA analyses in the Prisma subsample revealed similar effects for the 

lower-level social cognition, higher-level social cognition, and diagnostic group comparisons 

(see Table S3).

Nodal Connectivity

See Table S4 for nodal within- and between-network connectivity results.
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DISCUSSION

In a large sample of people with SSDs and healthy control participants, we interrogated 

within- and between-network functional connectivity of three data-driven social cognitive 

networks using graph theory during the EA task, by lower- and higher-level social 

cognitive performance, and by diagnosis. For both lower- and higher-level social cognition, 

motor resonance–affect sharing negative connectivity was positively associated with social 

cognitive performance. Social cognitive performance–based group comparisons similarly 

demonstrated reduced between-network negative connectivity, and greater within-network 

positive connectivity in poor versus good performers. Taken together, these results suggest 

that network segregation may be particularly important for optimal social cognitive 

performance. Functional connectivity differences were associated with social cognitive 

performance but not with diagnostic group.

Although evidence suggests that social cognition is a multidimensional construct involving 

dissociable neural regions (7–9), the data-driven identification of three social cognitive 

networks aligning with motor resonance, affect sharing, and mentalizing provides unique 

evidence for the distinction of these networks during social cognitive processing. Examining 

connectivity within and between these networks, motor resonance–affect sharing negative 

connectivity was a significant dimensional predictor of both lower- and higher-level social 

cognitive performance across participants. Given that the EA task involves detecting 

how others are feeling but does not necessarily require emotional empathic responding 

(35), functional segregation of the motor resonance and affect sharing networks may 

facilitate more efficient task performance. Indeed, dynamic causal modeling has shown 

that mentalizing activity can be inhibited by emotional resonance in emotional situations 

(63). This may suggest that poorer performers use different neurocognitive strategies during 

the EA task, with mentalizing and motor resonance representing more efficient strategies 

than affect sharing. This finding also supports the suggestion that the brain is organized 

into anticorrelated functional networks that may subserve opposing representations or 

goals (64,65). Furthermore, loss of resting-state network segregation has been linked to 

psychopathological dimensions in a large sample of healthy youths (34).

The social cognition group comparisons provided further support for these dimensional 

findings and additional insight into social cognitive network connectivity differences 

between poor and good social cognitive performers rather than cases versus controls, 

which may have clinical utility for targeting these deficits. For lower-level social cognition, 

good versus poor performers showed greater anticorrelation between networks, which 

coincides with our regression results and may reflect increased functional segregation 

of these networks and efficient network use, as mentioned. However, this was observed 

across networks rather than being network specific. Such network-wide effects may have 

been less discernible in our regression analyses due to the inclusion of network-specific 

predictors in the models and could reflect the reduced complexity of lower-level abilities, 

which may more broadly engage these networks. In addition, good versus poor lower-

level social cognitive performers showed reduced within- and between-network positive 

connectivity across networks. This increased widespread positive connectivity could be 

compensatory in poorer performers, reflecting heightened synchronized activation in regions 
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extending beyond those that may be most task relevant (66–68). Accordingly, more 

extensive activation of the mentalizing and motor resonance networks has been seen during 

emotional imitation in poorer social cognitive performers across individuals with SSDs 

and healthy control participants (29,69). Widespread cortical–cortical connectivity states in 

schizophrenia (70) and resting-state hyperconnectivity in autism spectrum disorder (71) have 

also been associated with greater social impairments. However, more work is needed to 

determine whether such hyperconnectivity may be driven by broader neural recruitment to 

perform the same neurocognitive process or by qualitatively different processes.

The results from our dimensional analyses also directly align with those from the higher-

level social cognition group comparisons, with good versus poor performers showing 

greater motor resonance–affect sharing negative connectivity. Additional higher-level 

social cognition group-based findings support the suggestion that better social cognitive 

performers may exhibit network efficiency during the EA task, including reduced affect 

sharing network involvement. Specifically, increased positive connectivity within the affect 

sharing and mentalizing networks, and between the motor resonance and affect sharing 

networks, was seen in poor versus good higher-level social cognitive performers. Aligning 

with this, greater activation during the EA task in affect sharing regions has been 

associated with lower empathic accuracy in adolescents (37). Increased affect sharing 

network positive connectivity may be compensatory or may reflect greater emotional 

resonance (72). Similarly, hyperconnectivity between mentalizing regions, using resting-

state and dynamic connectivity during naturalistic fearful clips, has been correlated 

with greater symptom severity and lower theory of mind performance in SSDs (22,25). 

Greater positive mentalizing connectivity may be driven by overcompensation in poorer 

mentalizers or hypermentalizing (overattribution of intentionality), which has been posited 

and demonstrated in schizophrenia (1,73,74). Greater affect sharing network connectivity 

and reduced motor resonance–affect sharing functional segregation in worse performers, 

coinciding with our dimensional results, further emphasizes the importance of differential 

engagement of these networks during the EA task, and in network segregation more 

generally, for optimal social cognitive performance.

Notably, diagnostic groups did not appear to differ significantly in social cognitive network 

connectivity. The inclusion of a large sample of individuals with SSDs likely better captures 

the range and variability of social abilities in this population (Table 1) compared with more 

typical case-control studies. This aligns with dimensional work emphasizing the importance 

of shared patterns of neural structure (31,33) and function (29,30,34) with regard to outcome 

measures of interest and targeted treatment development. Identifying similar networks across 

people with SSDs and healthy control participants and connectivity differences, based on 

social cognitive performance, provides further justification for dimensional approaches 

within the Research Domain Criteria framework and could apply to other disorders with 

social cognitive impairments.

Social cognitive networks or seeds are often defined based on meta-analytic results of 

task-based activation, which might not reflect how social cognitive regions interact during 

naturalistic social processing. In the current paper, we uniquely defined networks using 

community detection across broadly selected cortical social cognitive ROIs. Interestingly, 
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the data-driven parcellation of regions into motor resonance (11,12), affect sharing 

or emotional empathy (15,54), and mentalizing (16,17) networks largely aligned with 

meta-analyses of fMRI studies. Notably, despite the benefits of examining online social 

processing, the chosen task could influence the generalizability of our findings. Participants 

provide valence ratings during the task, and it is possible that empathic accuracy for 

different emotion types may have different neural or behavioral correlates (75). However, 

the EA task involves dynamic, relatively naturalistic social cognitive processing, increasing 

its ecological validity, and the use of background connectivity analyses should reduce the 

impact of stimulus-specific responses. Similarly, although we have provided evidence for 

the construct validity of the lower- and higher-level social cognitive factor scores (6), the 

social cognitive tasks contributing to these scores have exhibited varying psychometric 

properties (76), which could influence performance-based group membership. In addition 

to harmonizing acquisition parameters across scanners, weekly phantom scans ensured 

sequence stability over time, and standardized operating procedures minimized inter-site 

variance. Our group has also provided objective evidence for intersite stability (77–79). 

Furthermore, demonstrating similar between-group findings in our Prisma subsample 

suggests that scanner effects did not drive these results. Lastly, although we did not control 

for medication or duration of illness, the finding that connectivity patterns differed by social 

cognitive performance-based groups, but not by diagnosis, suggests that these variables were 

likely not driving our effects.

To our knowledge, this study marks the first use of graph theory to detect social 

cognitive networks and interrogate within- and between-network connectivity during online 

social processing in SSDs. Furthermore, our large sample allowed for dimensional and 

performance-based analyses versus a categorical diagnostic approach, revealing functional 

connectivity differences based on social cognitive performance rather than diagnosis. Thus, 

the neural circuitry of social cognitive performance may exist dimensionally, which would 

have important prognostic and therapeutic implications because subgroups with overlapping 

brain–behavior relationships may be more homogeneous in etiology and treatment response. 

Our findings suggest that better social cognitive performers exhibit greater segregation 

between social cognitive networks, whereas worse social cognitive performers may 

compensate via hyperconnectivity within and between networks. The validation of such 

brain–behavior relationships could serve to guide targeted treatment development for those 

exhibiting particular social cognitive deficits.
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Figure 1. 
Social cognitive networks identified using community detection and consensus clustering 

across individuals with schizophrenia spectrum disorders and healthy control participants.
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Figure 2. 
Significant dimensional predictors of lower- and higher-level social cognition factor scores. 

Plots display the effect of motor resonance–affect sharing negative connectivity on lower-

level (A) and higher-level (B) social cognition factor scores from regression models with 

95% confidence intervals.
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Figure 3. 
Positive and negative within- and between-network connectivity strengths by lower-level 

social cognitive performance group. Connectivity strengths for poor and good lower-level 

social cognitive performance groups are shown. Edge width corresponds to the between-

group difference in connection weight. (A) Within-network positive (left) and negative 

(right) connectivity strengths for motor resonance, affect sharing, and mentalizing networks. 

Node size corresponds to the within-network connectivity strength of the node (sum of 

within-network connections to the node). (B) Between-network positive (left) and negative 
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(right) connectivity strengths for motor resonance, affect sharing, and mentalizing networks. 

Node size corresponds to the between-network connectivity strength of the node (sum of 

between-network connections to the node). See Figure 1 for abbreviations.
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Figure 4. 
Positive and negative within- and between-network connectivity strengths by higher-level 

social cognitive performance group. Connectivity strengths for poor and good higher-level 

social cognitive performance groups are shown. Edge width corresponds to the between-

group difference in connection weight. (A) Within-network positive (left) and negative 

(right) connectivity strengths for motor resonance, affect sharing, and mentalizing networks. 

Node size corresponds to the within-network connectivity strength of the node (sum of 

within-network connections to the node). (B) Between-network positive (left) and negative 
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(right) connectivity strengths for motor resonance, affect sharing, and mentalizing networks. 

Node size corresponds to the between-network connectivity strength of the node (sum of 

between-network connections to the node). See Figure 1 for abbreviations
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Figure 5. 
Positive and negative within- and between-network connectivity strengths by diagnostic 

group. Connectivity strengths for schizophrenia spectrum disorder (SSD) and control groups 

are shown. Edge width corresponds to the between-group difference in connection weight. 

(A) Within-network positive (left) and negative (right) connectivity strengths for motor 

resonance, affect sharing, and mentalizing networks. Node size corresponds to the within-

network connectivity strength of the node (sum of within-network connections to the node). 

(B) Between-network positive (left) and negative (right) connectivity strengths for motor 
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resonance, affect sharing, and mentalizing networks. Node size corresponds to the between-

network connectivity strength of the node (sum of between-network connections to the 

node). See Figure 1 for abbreviations
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Table 1.

Participant Demographic and Clinical Characteristics by Diagnostic Group

SSD Group (n = 164) Control Group (n = 117) P

Performance Groups, Good 54 (32.9%) 86 (73.5%) <.001

Sex, Male 112 (68.3%) 62 (53.0%) .013

Age, Years 31.79 (9.54) 32.05 (10.45) .830

Education, Highest Grade 13.62 (2.17) 15.50 (1.89) <.001

WTAR, Standard Score 107.38 (14.30) 112.41 (11.58) .012

BPRS Total 31.57 (8.22) - -

SANS Total 24.83 (12.79) - -

BSFS Total 136.2 (23.74) 177.17 (20.62) <.001

Lower-Level Social Cognition Score −0.28 (0.87) 0.47 (0.67) <.001

Higher-Level Social Cognition Score −0.33 (0.89) 0.55 (0.63) <.001

Values are presented as n (%) or mean (SD).

BPRS, Brief Psychiatric Rating Scale; BSFS, Birchwood Social Functioning Scale; SANS, Scale for the Assessment of Negative Symptoms; SSD, 
schizophrenia spectrum disorder; WTAR, Wechsler Test of Adult Reading.
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