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In the adult hippocampus, synaptic plasticity is important for information pro-

cessing, learning, and memory encoding. Astrocytes, the most common glial

cells, play a pivotal role in the regulation of hippocampal synaptic plasticity.

While astrocytes were initially described as a homogenous cell population,

emerging evidence indicates that in the adult hippocampus, astrocytes are

highly heterogeneous and can differentially respond to changes in neuronal

activity in a subregion-dependent manner to actively modulate synaptic plastic-

ity. In this review, we summarize how local neuronal activity changes regulate

the interactions between astrocytes and synapses, either by modulating the

secretion of gliotransmitters and synaptogenic proteins or via contact-mediated

signaling pathways. In turn, these specific responses induced in astrocytes medi-

ate the interactions between astrocytes and neurons, thus shaping synaptic com-

munication in the adult hippocampus. Importantly, the activation of astrocytic

signaling is required for memory performance including memory acquisition

and recall. Meanwhile, the dysregulation of this signaling can cause hippocam-

pal circuit dysfunction in pathological conditions, resulting in cognitive impair-

ment and neurodegeneration. Indeed, reactive astrocytes, which have

dysregulated signaling associated with memory, are induced in the brains of

patients with Alzheimer’s disease (AD) and transgenic mouse model of AD.

Emerging technologies that can precisely manipulate and monitor astrocytic

signaling in vivo enable the examination of the specific actions of astrocytes in

response to neuronal activity changes as well as how they modulate synaptic

connections and circuit activity. Such findings will clarify the roles of astrocytes

in hippocampal synaptic plasticity and memory in health and disease.
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Introduction

Throughout life, synapses remain plastic by altering

their structure and strength—a process termed ‘synap-

tic plasticity.’ Such synaptic adaptions in neuronal cir-

cuits are critically dependent on experience-driven

neuronal activity changes [1,2]. Synaptic plasticity has

multiple forms including Hebbian plasticity and home-

ostatic plasticity [1–3]. Hebbian plasticity is a positive

feedback mechanism that facilitates the reinforcement

of synaptic connections and includes two major forms:

long-term potentiation (LTP) and long-term depres-

sion (LTD) [4]. Meanwhile, homeostatic plasticity (also

known as ‘synaptic scaling’) is a negative feedback

mechanism whereby neurons counteract excessive exci-

tation or inhibition in response to prolonged neuronal

activity changes [5,6]. Different forms of synaptic plas-

ticity interact to facilitate the network functions of the

adult brain. Meanwhile, synaptic plasticity impairment

is implicated in several neurological and cognitive dis-

orders, notably Alzheimer’s disease (AD) [7,8].

The coordination of cellular events in different

forms of synaptic plasticity not only depends on the

bidirectional communication between pre- and postsy-

naptic neurons but also on the interactions between

neurons and their enveloping glia [9]. Notably, astro-

cytes, the most abundant glial cells in the central ner-

vous system, integrate into the neuronal circuitry via

their intricate processes and interact with pre- and

postsynaptic neurons to form tripartite structures

[10,11]. Through their interactions with synapses,

astrocytes monitor changes in synaptic activity and

modify the structures and functions of those synapses

accordingly, thereby shaping specific circuits—for

example, the hippocampal circuit during learning and

memory [9,12,13]. Concordantly, the disruption of

such astrocyte–synapse interactions in the adult mouse

brain leads to impaired synaptic plasticity in the hip-

pocampal circuits, which is considered a key contribu-

tor to the synaptic dysfunctions and memory deficits

in AD [14–17].
The hippocampus, which comprises the cornu

ammonis 1 (CA1), CA2, CA3, and dentate gyrus (DG)

subregions, is important for information encoding as

well as memory storage and retrieval. In particular,

during sensory experience, CA1 pyramidal neurons

receive excitatory synaptic inputs from CA3 pyramidal

neurons via the Schaffer collateral pathway or from

layer III pyramidal neurons in the entorhinal cortex

via the perforant pathway [18]. This sensory informa-

tion is subsequently processed and integrated by the

hippocampal CA1 pyramidal neurons and eventually

exits the hippocampus to other brain regions including

the subiculum, perirhinal cortex, prefrontal cortex, and

amygdala [19,20]. As the CA1 microcircuit is a major

output of the hippocampus, its activity is precisely

controlled by the synapse-interacting astrocytes, which

is essential for the storage and retrieval of most

hippocampus-dependent memories [21,22]. However,

the mechanisms underlying such astrocyte-mediated

synaptic remodeling in the adult hippocampal circuits

remain unclear.

Here, we review how astrocytes interact with

synapses to regulate neuronal activity-dependent

synaptic plasticity in the adult hippocampus. First, we

discuss how astrocytes specifically respond to the neu-

ronal activity changes in adult hippocampal circuits.

We then discuss how the astrocyte-derived signals

mediate activity-dependent hippocampal synaptic plas-

ticity. Next, we summarize recent studies that link

astrocytic signaling with hippocampus-dependent cog-

nitive processes. Finally, we discuss how astrocyte–sy-
napse interactions are altered as well as their roles in

pathological conditions, particularly AD.

Astrocytes regulate hippocampal
synaptic functions in a neuronal
activity- and circuit-dependent
manner

Astrocytes actively integrate into hippocampal circuits

through their neuronal activity-dependent interactions

with synapses—either by regulating the probability of

presynaptic release or through the modulation of post-

synaptic structures and functions.

Regulation of gliotransmitters and their

receptors

Notably, astrocytes express multiple ion channels, neu-

rotransmitter, and neuromodulator receptors, enabling

them to sense changes in neuronal activity. Sensing

such neuronal activity changes subsequently triggers

astrocytes to secrete various factors, such as gliotrans-

mitters and synaptogenic proteins, to act on neurons

[23–26]. The release of gliotransmitters including gluta-

mate, ATP (adenosine triphosphate), and D-serine [a

co-agonist of NMDA receptors (NMDARs)] from

astrocytes is mediated through two major mechanisms:

calcium-dependent exocytosis from storage organelles

and direct release from cytosol via membrane ion

channels [27,28]. Specifically, neuronal activity-

dependent vesicular exocytosis of gliotransmitters
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requires the actions of various neurotransmitter recep-

tors, vesicular transporters, and SNARE (soluble N-

ethylmaleimide-sensitive factor attachment protein

receptor) complexes [25,28–30]. Meanwhile, the

activity-induced gliotransmitter flux across the plasma

membrane of astrocytes is critically dependent on the

opening of distinct gliotransmitter-permeable ion chan-

nels [27].

Through such activity-dependent secretion of glio-

transmitters, astrocytes actively regulate synaptic

transmission and plasticity in the adult hippocampus

[28,31–33]. In particular, glutamate release by astro-

cytes in hippocampal subregions is differentially regu-

lated, which subsequently modulates synaptic

transmission in the hippocampal neurons in a circuit-

specific manner. For example, in the DG, glutamate

exocytosis processes are activated through the neu-

ronal activity-dependent stimulation of purinergic

P2Y1 receptors on astrocytes, which in turn increases

the probability of neurotransmitter release in sur-

rounding neurons via the activation of presynaptic

NMDAR 2B subunits [34]. On the other hand, in the

hippocampal CA3–CA1 synapses, such astrocytic glu-

tamate exocytosis-facilitated neurotransmitter release is

dependent on another mechanism, which requires the

activation of Ca2+ and SNARE proteins in astrocytes

and group I mGluRs (metabotropic glutamate recep-

tors) in neurons [35]. Besides conventional vesicular

exocytosis, hippocampal CA1 astrocytes directly

release glutamate via glutamate-permeable ion chan-

nels including the two-pore-domain potassium channel

TREK-1 (TWIK-related potassium channel 1) and the

calcium-activated anion channel Best-1 (Bestrophin-1)

[27,36,37]. Upon neuronal activity-stimulated activa-

tion of specific G protein-coupled receptors (GPCRs)

in CA1 astrocytes, TREK-1 and Best-1 channels regu-

late two distinct modes of astrocytic glutamate release.

Specifically, upon the activation of Gi-coupled GPCR,

TREK-1, which is expressed in the cell bodies and pro-

cesses of astrocytes, facilitates rapid glutamate release

and initiates neuronal mGluR signaling to impact

synaptic transmission [36]. Meanwhile, the activation

of the Gq family of GPCRs stimulates the action of

Best-1, which is localized at the microdomains of

astrocytes near synapses, to mediate calcium-

dependent slow glutamate release and activate synaptic

NMDARs [36,37]. These findings suggest that hip-

pocampal astrocytes employ multiple mechanisms to

regulate glutamate release in response to dynamic neu-

ronal activity changes at specific timescales, subcellular

locations, and synaptic receptors. Such neuronal

activity-dependent regulation of the interaction

between astrocytes and synapses enables hippocampal

neurons to specifically modulate their activity levels in

the adult hippocampal circuitry in response to distinct

physiological stimuli.

Moreover, depending on the basal or sustained neu-

ronal activity, astrocytes differentially regulate the

secretion of ATP to regulate the synaptic efficacy of

hippocampal CA3–CA1 synapses via the activation of

distinct adenosine receptor subtypes [25,38–41]. In

response to a minimal stimulus of a single presynaptic

fiber, astrocytic mGluR5-mediated ATP secretion acti-

vates adenosine A2A receptors, which subsequently

enhance basal synaptic transmission of CA3–CA1 exci-

tatory synapses [39]. Meanwhile, in response to a

strong tetanic stimulus, ATP is readily released by

astrocytes to activate both adenosine A2A and A1

receptors. Studies using specific pharmacological inhi-

bitors of different adenosine receptors revealed that

A2A receptors mediate sustained potentiation of excita-

tory synapses whereas adenosine A1 receptors regulate

synaptic depression [38,41,42]. Moreover, the excita-

tory A2A and inhibitory A1 receptors are enriched at

different synaptic compartments in excitatory hip-

pocampal neurons: A2A receptors are enriched at both

the pre- and postsynaptic terminals, whereas A1 recep-

tors are exclusively localized at presynaptic terminals

[43]. Thus, hippocampal astrocytes release ATP to

activate distinct adenosine receptors and specifically

regulate the pre- and postsynaptic signaling and func-

tions of CA3–CA1 synapses. Through the coordinated

regulation of A2A and A1 receptor-mediated signaling

pathways, hippocampal astrocytes can process differ-

ent forms of neuronal activity (i.e., basal or sustained)

and in turn actively modulate the capability of specific

synapses to express synaptic plasticity [25,38]. Accord-

ingly, the neuronal activity-dependent regulation of

ATP and its converted product adenosine has been

implicated in the regulation of synaptic plasticity (i.e.,

LTP) in the adult hippocampus [44–46]. Specifically,

the ATP released by astrocytes facilitates the recruit-

ment and activation of its neuronal receptors in hip-

pocampal excitatory synapses, which in turn regulates

the abundance of postsynaptic AMPA receptors

(AMPARs) to modulate synaptic strength via several

calcium-dependent signaling pathways [47,48]. Further-

more, a very recent study revealed that the release of

ATP by astrocytes in the adult hippocampus also

actively regulates the activity of CA1 pyramidal neu-

rons by stimulating their surrounding GABAergic

interneurons, which involves the activation of CRAC

(calcium release-activated calcium) channels encoded

by ORAI1 and STIM1 [30]. Accordingly, in response

to increased neuronal activity, astrocytic CRAC chan-

nels induce the cellular calcium signals upon the
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activation of metabotropic purinergic and protease-

activated receptors, which further triggers the secretion

of ATP to act on CA1 interneurons, thus modulating

the activity of hippocampal CA1 circuitry [30]. Collec-

tively, these results suggest that astrocytes play an

essential role in maintaining hippocampal network

activity by specifically regulating the secretion of glio-

transmitters. Through such mechanisms, astrocytes can

set a suitable threshold for the induction of activity-

dependent synaptic plasticity in different subregions of

the adult hippocampus in response to experience

[38,49].

Regulation of synaptogenic proteins

To regulate neuronal activity-dependent hippocampal

synaptic plasticity, astrocytes send synaptogenic signals

to neurons to rearrange the structures and modulate

the functions of excitatory synapses. The extracellular

matrix proteins TSP-1 and TSP-2 (thrombospondin 1

and 2, respectively) were the first astrocytic factors

shown to be important for synaptogenesis in hip-

pocampal neurons [50–52]. Astrocytes secrete TSPs to

promote the formation of structural glutamatergic

synapses in cultured hippocampal cells via the activa-

tion of the neuronal gabapentin receptor a2d1 [51] and

the adhesion molecule neuroligin-1 [52]. Moreover, in

response to neuronal activity changes, hippocampal

astrocytes secrete several cytokines that act on neurons

and regulate their synaptic structures. One of the best

characterized cytokines is TNF-a (tumor necrosis fac-

tor alpha). Accordingly, pharmacological deprivation

of neuronal activity in cultured hippocampal cells by

the sodium channel blocker tetrodotoxin (TTX)

increases the expression and secretion of TNFa, which
subsequently modulates the homeostatic plasticity of

both excitatory and inhibitory neurons [53,54].

Accordingly, one study prepared mixed cultures of

neurons and astrocytes from either TNFa-knockout or
wild-type hippocampi and demonstrated that astro-

cytic TNFa is required for such TTX-stimulated

increase of excitatory synaptic transmission [53].

Specifically, such astrocyte-derived TNFa acts on

postsynaptic TNF receptors to increase AMPARs at

existing excitatory synapses, thus actively regulating

homeostatic plasticity to rebalance network activity

[53,55,56]. The action of astrocyte-derived TNFa on

such postsynaptic receptor trafficking is dependent on

the activation of several kinases including p38 and

PI3K [57]. Further in vivo studies on germline TNFa-
knockout mice corroborate the role of TNFa in home-

ostatic adaptation in the cortical circuitry during sen-

sory deprivation, which is mediated by the regulation

of excitatory synapses in layer V pyramidal cells

[58,59]. Nonetheless, the precise mechanisms underly-

ing these activity-dependent, TNFa-mediated postsy-

naptic changes in the intact hippocampal circuitry are

unclear.

Our recent study demonstrates that another cyto-

kine, IL-33 (interleukin 33), is selectively regulated in

the astrocytes in the hippocampal CA1 subregion to

maintain network homeostasis during homeostatic

synaptic plasticity (Fig. 1) [60]. IL-33 acting as an alar-

min is released from damaged cells to maintain tissue

homeostasis [61]. Prolonged suppression of neuronal

activity in CA1 excitatory pyramidal neurons either by

TTX administration to hippocampal slices or by opto-

genetic stimulation of adult mouse hippocampi

increases the local expression and release of IL-33 in

neighboring astrocytes. Astrocyte-secreted IL-33 subse-

quently serves as a negative feedback signal to increase

excitatory synaptic transmission to maintain hip-

pocampal network homeostasis during homeostatic

synaptic plasticity [60]. Of note, blockade of the global

neuronal activity of hippocampal slices by TTX can

induce IL-33 protein only in CA1 astrocytes [60], sug-

gesting that CA1 astrocytes distinctly respond to neu-

ronal activity changes to perform their synaptic

plasticity-related functions.

A recent single-cell RNA sequencing study showed

that hippocampal astrocytes exhibit a unique, region-

specific molecular signature [62]. Characterizing the

astrocytic transcriptional program in response to neu-

ronal activity blockade will help uncover how the

activity-dependent regulation of astrocytic functions

potentiates synaptic transmission and synaptic plastic-

ity. Of note, genome-wide transcriptome profiling of

neuronal cultures treated with TTX revealed that long-

term activity blockade leads to the activation of a

transcriptional program in neurons during homeostatic

synaptic plasticity [63]. In that study, among the

upregulated genes identified in neurons after TTX

administration, Nptx1 (neuronal pentraxin-1) in partic-

ular was shown to be important for synaptic upscaling

by enhancing the clustering of AMPARs. While our

RNA sequencing analysis revealed that in addition to

increasing the expression of TNFa and IL-33, neu-

ronal activity blockade of cultured hippocampal cells

by TTX increases a panel of genes encoding astrocyte-

secreted proteins including two synaptogenic factors—
Sparcl1 and Chrdl1—which are well known to regulate

synaptic development (Table 1) [60,64–66]. SPARCL1

(SPARC-like protein 1, also known as Hevin) acts as

an astrocytic signal to promote the formation of struc-

tural glutamatergic synapses via their interactions with

neuronal adhesion molecules [65,67,68]. Meanwhile,

2205The FEBS Journal 289 (2022) 2202–2218 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Y. Wang et al. Astrocytes regulate hippocampal synaptic plasticity



astrocyte-secreted CHRDL1 (chordin-like 1) regulates

the maturation of excitatory synapses through the

upregulation of the GluA2-containing AMPARs at

synapses [64,66]. Thus, neuronal activity blockade may

stimulate transcriptional reprogramming in hippocam-

pal neurons and astrocytes in a subregion-specific

manner. Further single-cell transcriptome profiling of

hippocampal astrocytes would elucidate their func-

tional specialization in the homeostatic upregulation of

synaptic strength.

To understand how the transcriptional program of

hippocampal astrocytes is activated upon neuronal

activity blockade, it is critical to identify which tran-

scription factors control this program. Accordingly,

various neuronal activity-regulated transcription fac-

tors in cortical neurons, such as SRF, CREB,

MEF2A, and MEF2D, as well as their roles in

transcription have been well characterized [63,69].

However, the specific transcription factor(s) that con-

trols the region-specific functions of astrocytes has yet

to be investigated. While distinct transcription factors

have been identified in astrocytes in different brain

regions, no enriched transcription factors have been

identified in the hippocampus [70]. Nevertheless, a

recent study elegantly demonstrates that the transcrip-

tion factor NFIA (nuclear factor I-A) is important for

astrocyte–synapse interactions and functions in the

hippocampus [71]. Interestingly, brain-wide genetic

deletion of the NFIA gene specifically in adult astro-

cytes alters the morphology, physiology, and gene

expression signatures of astrocytes only in the hip-

pocampus; almost no such changes are observed in

other brain regions. NFIA exerts its actions in this

selective control of the properties of hippocampal

Fig. 1. Astrocyte-derived IL-33 regulates homeostatic synaptic plasticity at hippocampal CA3–CA1 excitatory synapses in a negative

feedback manner. In response to the inhibition of hippocampal neuronal activity (1), astrocytes in the CA1 stratum radiatum region undergo

transcriptional reprogramming to increase IL-33 expression (2). The synthesized IL-33 is then secreted from astrocytes (3) and binds to the

neuronal postsynaptic receptor complex ST2/IL-1RAcP (4), which further promotes the synaptic accumulation of PSD-95 as well as

subsequent synaptogenesis in CA1 pyramidal neurons (5). AMPAR, AMPA receptor; CA, cornu ammonis; DG,dentate gyrus; EAAT,

excitatory amino acid transporter; NMDAR, NMDA receptor.

Table 1. Neuronal activity blockade increases the expression of specific astrocyte-secreted synaptogenic factors [60]. RNA sequencing

analysis was performed on mixed hippocampal neuron–glia cultures after treatment with TTX (1 lM) or vehicle (Con) for 24 h. FPKM,

fragments per kilobase million.

Gene name Log2 fold change Adjusted P value Mean_FPKM_Con Mean_FPKM_TTX Mean_Count_Con Mean_Count_TTX

Il33 0.56 4.70E-30 19.30 28.73 3164 4895

Tnf 2.23 2.20E-04 N/A N/A 5 23

Sparcl1 0.23 5.62E-12 1059.67 1252.64 188 307 233 055

Chrdl1 0.28 3.55E-05 6.60 8.10 1811 2311
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astrocytes through its region-specific DNA-binding

capacity and gene regulation. This NFIA-mediated

transcriptional mechanism is required for the dynamic

astrocyte–synapse interactions and the subsequent

induction of synaptic plasticity in the adult hippocam-

pus. Moreover, transcriptional reprogramming is regu-

lated by dynamic chromatin modulation: the

regulation of chromatin accessibility at gene regulatory

regions and the alteration of their binding affinity to

transcription factors ultimately lead to gene regulation

[72]. Indeed, emerging studies have identified that

specific chromatin regulators are involved in activity-

dependent gene regulation and synaptic scaling [73,74].

Accordingly, further characterization of epigenomic

profiling will uncover the epigenetic and transcrip-

tional control molecules that function in hippocampal

astrocytes during synaptic scaling.

In addition to the neuronal activity-dependent regu-

lation of IL-33 in CA1 astrocytes, its specific action in

CA1 hippocampal synaptic scaling is attributed to the

selective expression and activation of IL-33 receptors

in hippocampal CA1 neurons. Accordingly, in vivo

two-photon imaging of CA1 pyramidal neurons

revealed that IL-33 administration promotes excitatory

synapse formation in young adult mice. Such signaling

is mediated through the activation of the synaptoso-

mally enriched IL-33 neuronal receptor complex,

ST2/IL-1RAcP, followed by the phosphorylation-

dependent synaptic accumulation of PSD-95 and sub-

sequent recruitment of AMPARs (Fig. 1). Meanwhile,

conditional knockout of IL-33 in CA1 astrocytes

locally decreases the number of excitatory synapses

[60,75,76]. In addition, IL-33 signaling can regulate

the number of excitatory synapses by promoting

microglial synapse engulfment during circuit develop-

ment [77] or enhancing synaptic plasticity in the DG

and promoting memory consolidation through the

microglial engulfment of the extracellular matrix [78].

Nevertheless, it remains to be investigated whether IL-

33 can regulate CA1 synapse formation by modulating

the clearance functions of microglia during homeo-

static synaptic plasticity.

Regulation of contact-mediated signaling

Besides the selective secretion of astrocyte-derived fac-

tors and activation of their cognate receptors at

synapses, astrocytes can regulate synaptic plasticity via

their direct contacts with neurons. Accordingly, astro-

cytic processes encapsulate synapses, enabling astro-

cytes to communicate with neurons. The neurexin/

neuroligin and ephrin/Eph receptor-mediated contacts

between astrocytic processes and synaptic terminals

have been reported to regulate astrocyte-mediated

synaptic plasticity [79–84]. Of note, the deletion of

Nrxn1 (neurexin-1) in astrocytes but not in neurons

suppresses AMPAR-mediated excitatory postsynaptic

currents (EPSCs) in CA1 pyramidal neurons of acute

hippocampal slices, suggesting that astrocytic Nrxn1

interacts with neuronal neuroligins to regulate excita-

tory synaptic transmission through the modulation of

AMPAR response [84]. Meanwhile, ephrins expressed

by astrocytes regulate dendritic spine formation and

elimination as well as synaptic plasticity through the

activation of neuronal Eph receptors (Fig. 2)

[80,82,85,86]. For example, astrocyte-specific deletion

of ephrin-B1 in mice enhances the formation of den-

dritic spines in hippocampal CA1 neurons induced by

learning, while ephrin-B1 overexpression in astrocytes

using an adeno-associated virus (AAV) approach abol-

ishes dendritic spine formation in activated hippocam-

pal neurons during memory recall following fear

conditioning. Thus, such astrocytic ephrin-B1 signaling

might compete with presynaptic ephrin-B1 to act on

postsynaptic neurons and trigger the neuronal activity-

dependent elimination of EphB receptor-containing

excitatory synapses [82,83]. These lines of evidence

suggest that the astrocyte-mediated ephrin-B1 contact

signaling negatively regulates excitatory synapse for-

mation in neurons during learning and memory. This

raises the intriguing possibility that local changes in

synaptic activity might regulate the expression of

ephrin-B1 in certain astrocytes and in turn control the

formation and removal of excitatory synapses on

specific neurons or dendrites during learning; such a

process potentially underlies memory encoding and

consolidation in the adult hippocampus. Interestingly,

the activation of CA1 neurons enhances the astrocytic

coverage of these CA3–CA1 synapses, which subse-

quently regulates synaptic transmission [39,87]. As

such, these contact-mediated astrocyte–neuron signals

can specifically regulate the neuronal activity-

dependent synaptic responses in the hippocampal

CA3–CA1 circuit.

In addition, the interaction between astrocytic

ephrins and EphA4 in postsynaptic CA1 neurons is

important for hippocampal synaptic plasticity (Fig. 2)

[80,85]. Of note, postsynaptic EphA4 signaling induces

hippocampal LTP and homeostatic downregulation of

excitatory synaptic strength in a neuronal activity-

dependent manner [86]. Accordingly, the ephrin/Eph

receptors coordinate multiple signaling pathways to

regulate the structure and functions of excitatory

synapses, including actin cytoskeleton regulators, glu-

tamate transporters, and the ubiquitin–proteasome sys-

tem [86,88,89]. For example, the activation of
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postsynaptic EphA4 signaling stimulates dendritic

spine retraction, which involves astrocyte–neuron
interaction: ephrins in astrocytes bind to postsynaptic

EphA4 to initiate downstream Rho guanine nucleotide

exchange factor ephexin-1/RhoA GTPase-dependent

actin dynamics [88]. Moreover, neuron–astrocyte com-

munication via EphA4/ephrin A3 plays an important

role in hippocampal LTP. Accordingly, in either

EphA4- or ephrinA3-knockout mice, the induction of

LTP at hippocampal CA3–CA1 synapses is impaired

and accompanied by increased expression and

enhanced activity of glial glutamate transporters in the

hippocampal CA1 stratum radiatum subregion. Phar-

macological inhibition of glial glutamate transporters

in these knockout mice rescues such LTP defects

[80,85]. These findings suggest that in response to neu-

ronal activity changes, neuron–astrocyte EphA4/

ephrinA3 signaling is activated to inhibit the glial glu-

tamate uptake process near the CA3–CA1 excitatory

synapses via the regulation of glial glutamate trans-

porters; thus, such neuron–astrocyte communication

facilitates the activity-induced synaptic transmission

and plasticity in the adult hippocampal circuit. Fur-

thermore, postsynaptic EphA4 signaling regulates

Fig. 2. Astrocytic ephrin signaling regulates neuronal activity-dependent hippocampal CA3–CA1 synaptic responses in a feedback regulatory

manner. Lower left panel: A negative regulatory role of astrocytic ephrin-B1 in the control of synaptogenesis in the CA3–CA1 circuit during

learning and memory. During contextual memory recall (1), dendritic spines form in the activated c-Fos-expressing CA1 pyramidal neurons

(2). The astrocytic ephrin-B1 forward signaling is subsequently activated in these neurons (3), which inhibits such learning-induced synaptic

PSD-95 targeting and formation of dendritic spines (4). Lower right panel: Neuron–astrocyte communication via EphA4/ephrin A3 mediates

activity-dependent hippocampal synaptic plasticity. Upon chronic elevation of neuronal activity (1), the activation of neuronal EphA4 forward

signaling via astrocytic ephrin A3 (2) causes reduction of synaptic AMPARs and the retraction of dendritic spines (3) during homeostatic

plasticity. Meanwhile, the activation of ephrin A3 reverse signaling in astrocytes by postsynaptic EphA4 (2) might decrease the expression

of glutamate transporters in astrocytes (4), which further impacts astrocytic functions and the LTP induction at CA3–CA1 synapses.

AMPAR, AMPA receptor; CA, cornu ammonis; DG, dentate gyrus; EAAT, excitatory amino acid transporter; NMDAR, NMDA receptor.
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synaptic strength during hippocampal homeostatic

plasticity through the degradation of AMPAR sub-

units via the ubiquitin ligase APC (anaphase-

promoting complex)-dependent pathway. Meanwhile,

knockdown of neuronal EphA4 abolishes the decrease

in excitatory synaptic transmission induced by chroni-

cally elevated neuronal activity [86]. Taken together,

astrocytic ephrin–neuronal Eph interaction is an

important mechanism that integrates different forms of

activity-dependent synaptic plasticity in the hippocam-

pus.

Regulation of lipid homeostasis

Lipid metabolic crosstalk between astrocytes and

synapses is essential for neuronal activity-dependent

synaptic modulation and functioning [90,91]. Of note,

astrocyte-derived ApoE (apolipoprotein E) is a key

molecule for this lipid-mediated astrocyte–synapse
communication during neuronal activity changes

[92,93]. During enhanced neuronal activity, the activa-

tion of hippocampal neurons leads to the buildup and

secretion of fatty acids via small dense carriers. Mean-

while, nearby astrocytes reuptake these excess fatty

acids from neurons via an ApoE-associated mechanism

to protect hyperactive neurons against fatty acid toxic-

ity [94]. Through this process, astrocytes might store

energy in the form of lipid droplets to protect against

hyperactivity-induced synaptic toxicity, which is

important for maintaining hippocampal functions.

Moreover, lipoprotein-enriched astrocytes are essential

for the activity-dependent remodeling of synaptic

structures; this is because the synaptogenesis requires

massive cholesterol production and delivery, which are

critically dependent on ApoE-containing lipoproteins

in astrocytes [65,95]. Accordingly, a very recent study

revealed that a distinct class of microRNAs in

astrocyte-derived ApoE particles specifically inhibits

the neuronal cholesterol biosynthesis pathways upon

their uptake by nearby neurons; this consequently pro-

motes histone acetylation in these neurons, which initi-

ates the transcription of certain genes. Of note, such

epigenetic modification facilitated by the treatment of

ApoE particles is required for the expression of multi-

ple neuronal immediate early genes during the learning

process, which subsequently enhances memory consoli-

dation in mice [96]. Meanwhile, depriving hippocampal

astrocytes of ApoE abolishes the neuronal histone

acetylation, leading to the inhibition of the transcrip-

tional activation of neuronal activity-induced genes in

hippocampal neurons; this ultimately results in synap-

tic dysfunctions and memory deficits in adult mice

[96–98].

Regulation of indirect astrocyte–synapse
interactions

Astrocytes maintain the functioning of hippocampal

circuits not only by directly interacting with synapses

but also by communicating with other neural cells

including microglia and endothelial cells. Interestingly,

microglia can regulate neuronal activity through their

response to ATP [99]. Specifically, in response to

increased neuronal activity, neurons and astrocytes

secrete ATP, which triggers microglial recruitment to

the activated synapses in the adult striatum [99].

Microglia then convert the secreted ATP into adeno-

sine; the subsequent binding of adenosine to the neu-

ronal adenosine A1 receptors inhibits further synaptic

transmission by limiting presynaptic neurotransmitter

release and suppressing postsynaptic responses, thus

protecting the brain against excessive activation

[99,100]. Concomitantly, conditional knockout of

microglia P2Y12 receptors (P2Y12Rs) in the adult hip-

pocampus induces abnormally elevated neuronal activ-

ity in CA1 neurons, suggesting that microglia directly

regulate CA1 neuronal excitability via their P2Y12R-

mediated responses to ATP in the hippocampal cir-

cuitry [101]. Given that neuronal activation in the

adult hippocampus is associated with local neuronal

and astrocytic ATP secretion [32,38,39,99], astrocytes

might communicate with microglia via ATP to modu-

late neuronal activity levels to maintain hippocampal

network homeostasis. Such a feedback mechanism

demonstrates the wide range of crosstalk among astro-

cytes, microglia, and neurons during learning-induced

neuronal activity changes.

In addition, astrocytes interact with vascular

endothelial cells via their perivascular end-feet to form

the blood–brain barrier [102–105]. In response to

changes in neuronal activity, elevated astrocytic Ca2+

leads to the secretion of several vasodilators, which

facilitate activity-induced microcirculation. Through

this mechanism, astrocytes serve as exchange sites for

ions, metabolites, and energy substrates from the

blood to the brain, thereby maintaining the activity

and functioning of the hippocampal circuitry [103,104].

RNA sequencing analysis revealed that the activation

or inhibition of glutamatergic neurons via chemoge-

netic approaches significantly regulates the expression

of genes associated with blood–brain barrier efflux

transport and circadian rhythms in brain endothelial

cells [106]. Given the close anatomical proximity

between endothelial cells and perivascular astrocytes at

the blood–brain barrier, astrocytes probably sense

changes in neuronal activity and send signals to

endothelial cells to induce such activity-dependent
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transcriptional changes. Hence, astrocytes are likely

the key mediators that induce the neuronal activity-

dependent changes in microglia and endothelial cells,

which in turn act on neurons to control the activity

and functioning of the adult hippocampal circuitry.

Subregion-specific regulation of
astrocyte–synapse interactions in the
adult hippocampal circuits

Heterogeneity of hippocampal astrocytes

The astrocyte–synapse interactions in the adult hip-

pocampus are highly dynamic, and specific astrocytic

signaling is regulated only in certain hippocampal

subregions or circuits. The heterogeneity of such

astrocytic responses is attributed to their distinct

activity-dependent morphological and transcriptional

changes. Accordingly, astrocytes within different hip-

pocampal subregions exhibit distinct transcriptomic

signatures, which are regulated by specific transcrip-

tion factors such as NFIA as well as the modulation

of dynamic chromatin modifications. Such regulation

subsequently contributes to the distinct differential

functional responses of hippocampal astrocytes upon

neuronal activity changes [62,107]. Moreover, com-

pared to CA3 astrocytes, the processes of hippocam-

pal CA1 astrocytes have closer contacts with

excitatory synapses [25]. Therefore, astrocytes in the

CA1 and CA3 subregions respond differently to neu-

ronal activity: a single synaptic stimulation is suffi-

cient to stimulate a calcium signal in CA1 stratum

radiatum astrocytes [39,108], whereas a stronger stim-

ulus (e.g., a tense burst of action potential) is

required to activate CA3 stratum lucidum astrocytes

[109]. These distinct features of hippocampal astro-

cytes might lead to the differential expression of

specific factors in response to neuronal activity

changes. Even in the CA1 subregion, astrocyte–sy-
napse interactions only occur in some defined

synapses and astrocytic processes [87,110], suggesting

that astrocytes can sense neuronal activity changes in

a synapse-specific manner. Thus, such distinct regula-

tion of astrocytic responses might explain how astro-

cytes regulate specific learning-related structural

rearrangements in the hippocampal CA3–CA1

synapses. Further analysis of the functional, morpho-

logical, and transcriptomic properties of different hip-

pocampal astrocytes at the single-cell level will

advance our understanding of the activity-dependent,

region-specific interactions between astrocytes and

synapses in the hippocampal circuits.

CA1 astrocytes in memory

The importance of astrocytes in long-term synaptic

plasticity and normal memory performance is well

established. One key finding is that the interruption of

astrocytic activity impairs memory responses [13,111].

Of note, studies using chemogenetic GPCR platforms

have shown that astrocyte activation is sufficient to

enhance synaptic plasticity and improve memory perfor-

mance. Accordingly, Gq-stimulated activation of hip-

pocampal astrocytes in the CA1 subregion is sufficient

to potentiate synaptic transmission at CA3–CA1 excita-

tory synapses and consequently enhances recent mem-

ory acquisition in rodents when coupled with learning

[112]. Meanwhile, modulating the activity of CA1 astro-

cytes by Gi activation, which mimics their response to

GABAergic stimuli [113], selectively impairs remote

(but not recent) memory recall by affecting the func-

tional connectivity of CA1 to the anterior cingulate cor-

tex (a frontal cortical region) [111]. This finding

suggests that CA1 astrocytic activity is important for

the coordinated activities of the hippocampus and cor-

tex during remote memory acquisition. Given that the

activation of different GPCRs (i.e., Gq and Gi) in hip-

pocampal astrocytes is associated with distinct modes

of glutamate release via astrocytic ion channels [36],

these chemogenetically stimulated astrocytes might reg-

ulate hippocampal synaptic transmission and plasticity

via glutamate-dependent mechanisms during such

experience-driven memory processes. Hence, astrocytes

specifically modulate different aspects of hippocampus-

dependent memory processes in the adult brain.

Dysregulation of astrocyte–synapse
signaling in Alzheimer’s disease

Synaptic dysfunction is believed to be a key mecha-

nism that leads to hippocampus-dependent memory

impairment in AD along with the deposition of mis-

folded beta-amyloid (Ab) peptides and the formation

of neurofibrillary tau tangles. Studies involving tran-

scriptomic analysis have identified reactive astrocyte

populations involved in synaptic pathology during AD

progression [114–120], namely a neurotoxic reactive

astrocyte population in AD, termed ‘A1 astrocytes’

[16,121,122]. More recently, a single-nucleus RNA

sequencing study of hippocampal cells identified a new

and unique astrocyte population in the AD transgenic

model mice (5xFAD), termed ‘disease-associated astro-

cytes’ [123]. The signature genes of these disease-

associated astrocytes are associated with specific path-

ways including metabolic pathways (i.e., lipid and

cholesterol pathways), inflammatory responses, and
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complement cascades [123]. Of note, our RNA

sequencing results revealed that 67 of 239 disease-

associated astrocyte signature genes are highly regu-

lated by neuronal activity in cultured hippocampal

cells [60,123]. Specifically, 10 of these genes encode

secreted proteins: Lgals1, Timp2, Cst3, Igfbp5,

Mmp16, Smpdl3a, Agt, Itm2b, Serpina3n, and Vwa1

(Table 2) [124]. This disease-associated astrocyte popu-

lation also exhibits reduced expression of some impor-

tant genes involved in neuronal support and

communication, such as Slc7a10 and Trpm3 [121,123],

which might further contribute to the dysregulated

astrocyte–synapse interactions in AD. Concomitantly,

patients with mild cognitive impairment (who have an

increased risk of developing AD) exhibit aberrant exci-

tatory neuronal activity in the hippocampus [125,126],

which might cause the observed changes in astrocyte

signatures in the early stage of AD. As such, it will be

interesting to determine whether the dysregulation of

activity-dependent astrocyte–synapse interactions con-

tributes to hippocampal synaptic pathology in AD.

Dysregulation of complement protein C3

signaling

Studies involving transcriptomic analysis have revealed

that the expression of complement protein C3 is elevated

in disease-associated astrocytes in AD transgenic model

mice (including APP/TTA and PS2APP mice) and

patients with AD [16,121,127]. Specifically, astrocyte-

secreted C3 disrupts dendritic morphology and network

functioning in the adult mouse hippocampus via the

postsynaptic C3 receptor during AD progression [16].

Moreover, during development, C3 is recognized by the

microglial C3 receptor, which is required for microglia-

mediated synaptic elimination, termed ‘synaptic pruning’

[128,129]. Hence, the dysregulated expression of

complement molecules in disease-associated astrocytes

might be responsible for the aberrant synaptic pruning

by microglia during AD progression, which would

partly explain the synaptic loss and cognitive decline

observed in AD [127,130,131]. Accordingly, inhibiting

such abnormal C3 signaling by administration of C3

receptor antagonists into APP/TTA transgenic mice

improves cognitive performance [16].

Dysregulation of ApoE4 signaling

APOE is another top candidate gene identified in

disease-associated astrocytes. APOE has three major

alleles in the human brain: APOE-e2, APOE-e3, and

APOE-e4. The APOE-e4 variant is a well-known

genetic risk factor for AD that reportedly increases the

risk of AD by 3–15 times compared to noncarriers

[116,117]. Other than coding variants, we also identi-

fied several noncoding variants that reside in regions

near APOE that confer APOE-independent AD risk

and potentially modify brain APOE expression [132].

In AD, ApoE is thought to play an important role

related to Ab clearance: ApoE4 significantly attenuates

Ab clearance compared to that with ApoE3 or ApoE2,

thus accelerating the amyloid pathology. Indeed, dif-

ferent APOE alleles also differentially control the rate

of astrocyte-mediated synaptic pruning in the brain:

knock-in of APOE-e2 and APOE-e4, respectively,

potentiate and prevent efficient synapse phagocytosis

by astrocytes in vivo through the regulation of the

phagocytic capacity of astrocytes [133]. A very recent

study on induced pluripotent stem cell-derived orga-

noids from patients with AD also supports the notion

that ApoE4 is involved in the synaptic loss and neu-

rodegeneration observed in AD, while conversion of

ApoE4 to ApoE3 in these organoids would attenuate

the AD-related phenotypes [134].

Table 2. RNA sequencing analysis of disease-associated astrocyte signature genes that encode secreted factors regulated by neuronal

activity [60,123]. FPKM, fragments per kilobase million.

Gene name Log2 fold change Adjusted P value Mean_FPKM_Con Mean_FPKM_TTX Mean_Count_Con Mean_Count_TTX

Lgals1 0.78 4.18E-42 37.15 64.39 1253 2262

Timp2 0.59 1.74E-59 209.14 318.25 23 071 36 745

Cst3 0.56 8.27E-43 3109.66 4636.78 150 318 233 906

Igfbp5 0.48 1.25E-07 105.91 149.30 11 548 16 873

Mmp16 0.45 2.32E-40 13.67 18.87 3210 4646

Smpdl3a 0.43 2.04E-25 44.46 60.57 4915 6998

Agt 0.40 1.73E-05 69.59 92.49 9020 12 453

Itm2b 0.39 2.55E-55 608.37 806.41 71 250 98 791

Serpina3n �1.04 4.12E-05 22.90 11.28 3093 1625

Vwa1 �1.70 7.64E-111 11.49 3.55 1779 582
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Dysregulation of IL-33/ST2 signaling

Human genetic mapping has identified additional

astrocyte-enriched genes in AD [114–120]. For exam-

ple, IL-33/ST2 signaling is closely associated with AD

progression: patients with AD exhibit decreased tran-

script levels of IL-33 in the brain [114], while levels of

soluble ST2 (the IL-33 decoy receptor) are elevated in

patients with mild cognitive impairment [135]. Given

the importance of astrocytic IL-33 signaling in neu-

ronal activity-dependent excitatory synapse formation

[60], a decrease in such IL-33/ST2 signaling is likely to

impair activity-induced synaptic adaption, causing

imbalanced synaptic activity in AD. Concordantly,

replenishing IL-33 ameliorates synaptic plasticity defi-

cits and cognitive impairment in the APP/PS1 trans-

genic mouse model of AD [135].

Dysregulation of TSP-1 signaling

Besides IL-33, a panel of astrocyte-secreted synapto-

genic factors is also dysregulated in AD [123,136,137].

For example, TSP-1, a matrix protein synthesized and

released by astrocytes that is well known as a regulator

of synaptogenesis [50], exhibits reduced expression in

the brains of both AD model mice (i.e., Tg2576 and

5XFAD mice) and patients with AD [137]. Accordingly,

administration of TSP-1 into the brains of these AD

model mice rescues synaptic deficits in AD, including

decreased dendritic spine density and reduced synaptic

activity in hippocampal neurons, through the activation

of the TSP-1 neuronal receptor a2d1 [137]. Concor-

dantly, a more recent study revealed a protective role of

TSP-1 in Ab-induced mitochondrial damage in hip-

pocampal cells [138]. Given that synaptic deficits in AD

are closely associated with mitochondrial disruptions

[139], the impaired astrocytic TSP-1 signaling observed

in AD might contribute to the synaptic pathology of

AD not only because of its important roles in astro-

cyte–synapse interactions but also because of its

involvement in balancing mitochondrial dynamics.

Conclusion and perspectives

Here, we have summarized the literature showing how

astrocytes respond to changes in experience and regu-

late neuronal activity-dependent synaptic plasticity in

the hippocampus as well as the literature elucidating

how altered astrocyte–synapse interactions contribute

to neurodegenerative diseases. Further studies are war-

ranted to define the molecular mechanisms underlying

the neuronal activity-dependent interactions between

astrocytes and neurons in the hippocampus—for

example, single-cell transcriptome profiling of hip-

pocampal astrocytes. In addition, two-photon imaging

and optogenetic approaches in live animals might help

link the dynamic changes in hippocampal astrocytes

with the experience-driven synaptic changes in specific

hippocampal circuits. Furthermore, the involvement

of astrocytes in information processing during

hippocampus-dependent memory is only beginning to

be unraveled. With the development of better tech-

nologies and experimental protocols, future studies will

advance our understanding of the astrocyte-specific

responses during different learning and cognitive pro-

cesses.

In addition, emerging studies indicate that astrocytic

dysfunctions might contribute to the synaptic failure

and impaired synaptic plasticity in neurodegenerative

diseases. Therefore, a better understanding of the dys-

regulation of the neuronal activity-dependent astro-

cyte–synapse interactions in the hippocampus during

neurodegeneration and the resultant imbalanced net-

work stability will provide insights into the pathologi-

cal mechanisms underlying the synaptic dysfunctions

in these diseases.
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