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1  |  INTRODUC TION

In recent years, epigenetic studies, in particular those linking DNA 
methylation to trait variation, have become an essential aspect of 
many key questions in ecology and evolution, such as the adaptation 

of natural populations to novel environments or mechanisms of 
nongenetic inheritance (Sepers et al., 2019; Stajic & Jansen, 2021; 
Verhoeven et al., 2016). Epigenetic modifications of the DNA se-
quence can affect the transcription of genes and consequently the 
expression of phenotypes (Suzuki & Bird, 2008). The most studied 
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Abstract
The profiling of epigenetic marks like DNA methylation has become a central aspect 
of studies in evolution and ecology. Bisulphite sequencing is commonly used for as-
sessing genome-wide DNA methylation at single nucleotide resolution but these data 
can also provide information on genetic variants like single nucleotide polymorphisms 
(SNPs). However, bisulphite conversion causes unmethylated cytosines to appear as 
thymines, complicating the alignment and subsequent SNP calling. Several tools have 
been developed to overcome this challenge, but there is no independent evaluation 
of such tools for non-model species, which often lack genomic references. Here, we 
used whole-genome bisulphite sequencing (WGBS) data from four female great tits 
(Parus major) to evaluate the performance of seven tools for SNP calling from bisul-
phite sequencing data. We used SNPs from whole-genome resequencing data of the 
same samples as baseline SNPs to assess common performance metrics like sensitiv-
ity, precision, and the number of true positive, false positive, and false negative SNPs 
for the full range of variant and genotype quality values. We found clear differences 
between the tools in either optimizing precision (Bis-SNP), sensitivity (biscuit), or a 
compromise between both (all other tools). Overall, the choice of SNP caller strongly 
depends on which performance parameter should be maximized and whether ascer-
tainment bias should be minimized to optimize downstream analysis, highlighting the 
need for studies that assess such differences.
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epigenetic modification is DNA methylation, which constitutes the 
addition of a methyl-group to a cytosine within the DNA sequence. 
The methylation and demethylation of cytosines within the DNA 
sequence is a common event in eukaryotes making the methylome 
more dynamic than the nucleotide sequence (Laird, 2010), but it 
is unclear how independent variation in DNA methylation is from 
genetic variation (Guerrero-Bosagna, 2020; Kilpinen et al., 2013). 
When both data on methylation status and data on genetic variants, 
such as single nucleotide polymorphisms (SNPs), are available, we 
can identify the genetic variants that underly local and distant vari-
ation in DNA methylation (e.g., Dubin et al., 2015; Höglund et al., 
2020). For this, bisulphite sequencing constitutes a promising ap-
proach as it provides information on the methylation status at single 
base pair resolution and, at the same time, can potentially be used 
for SNP calling. Whole-genome bisulphite sequencing (WGBS) con-
stitutes the current gold standard for methylation profiling and cap-
tures about 90% of the methylation events throughout the genome 
(Lister et al., 2009).

WGBS and other bisulphite sequencing techniques are based on 
a bisulphite treatment that converts unmethylated cytosines (Cs) 
into thymines (Ts) and as a consequence complicates SNP calling in 
several ways (Liu et al., 2012). First, the assumption of strand com-
plementarity, which is made by all SNP calling algorithms, is violated 
as the two strands of bisulphite treated reads are not complementary 
at the unmethylated loci. Second, true C->T SNPs cannot necessarily 
be distinguished from bisulphite-mediated C->T conversion and thus 
C->T SNPs might be misidentified as unmethylated cytosines. Given 
that almost 80% of SNPs at CpG sites are C->T substitutions (Tomso 
& Bell, 2003), this constitutes an important error source for SNP call-
ing as well as methylation calling.

Whether C->T SNPs can be differentiated from unmethylated Cs 
depends on the protocol used for library preparation; directional bi-
sulphite sequencing protocols are strand-specific, which means that 
guanines (G) on the strand opposing a C are not affected by the bi-
sulphite conversion (Krueger et al., 2012). Consequently, reads that 
map to a C can be used to quantify the methylation level of that C 
but yield no information on a potential C->T SNP, while reads that 
map to the other strand do not yield information of the methylation 
status of that C but can be used to identify the C->T SNPs, as an 
adenine (A) corresponds to a C->T SNPs while a G corresponds to a 
bisulphite-mediated C->T conversion (Liu et al., 2012). This way, the 
directional bisulphite sequencing protocols can prevent the misiden-
tification of C->T SNPs as unmethylated cytosines.

Tools for SNP calling from bisulphite sequencing data that im-
plement solutions for bisulphite-induced error sources are freely 
available and frequently used (Dubin et al., 2015; Gugger et al., 
2016; Liew et al., 2020; Wang et al., 2020; Xu et al., 2019), but an 
independent and intensive evaluation of their performance using 
data from a non-model species that often lack genomic references 
is not available. Here we evaluate the performance of seven tools 
for SNP calling from bisulphite sequencing data using WGBS and 
whole-genome resequencing data of whole blood samples from four 
female great tits (Parus major). The great tit is an important model 

species for ecology and evolution (Gosler, 1993) and, more recently, 
has been used for molecular ecological studies. Currently the great 
tit has a reference genome, 650k SNP chip, and transcriptomes and 
methylomes for various tissues (Derks et al., 2016; Kim et al., 2018; 
Laine et al., 2016). Using SNPs called from whole-genome rese-
quencing data as baseline lists, we assessed common performance 
metrics such as precision and sensitivity, and the number of true 
positive, false positive and false negative SNPs of seven tools for 
SNP calling from bisulphite sequencing data. Overall, we found clear 
differences between the tools in performance metrics and poten-
tial for bisulphite-induced ascertainment bias. Hence, the choice of 
SNP caller strongly depends on whether maximal precision, maximal 
sensitivity, or a compromise between both is required for optimized 
downstream analysis highlighting the need for studies that assess 
such differences.

2  |  MATERIAL S AND METHODS

2.1  |  Samples used for sequencing

Here, we use whole blood samples of four female great tits for 
whole-genome resequencing and WGBS. Whole blood constitutes 
mostly of erythrocytes (>90%, Verhulst et al., 2016), which are nu-
cleated in avian species and hence are well suitable for isolation of 
genomic DNA. The four females were part of a genomic selection 
experiment for early and late timing of breeding (Gienapp et al., 
2019; Verhagen et al., 2019) and were sequenced together with 
other samples from this experiment to test for genetic and epige-
netic differentiation between the F3  generation of the selection 
experiment (unpublished data). Whole blood samples for sequenc-
ing were collected from females during their first year of breeding 
in 2017. Breeding pairs were housed in half-open aviaries during 
the breeding season and repeatedly blood sampled from the jugu-
lar vein (up to 150 μl every two weeks). The experiment was per-
formed under approval by the Animal Experimentation Committee 
of the Royal Academy of Sciences (DEC-KNAW), Amsterdam, The 
Netherlands, protocol NIOO 14.10. Here, we selected WGBS data of 
two females from the early and two females from the late selection 
line of the F3 generation from four different families. DNA was ex-
tracted from whole blood samples taken closest to the first of June 
using FavorPrep DNA extraction kit (Bio-Connect, The Netherlands) 
following the manufacturer's instructions.

2.2  |  Whole-genome resequencing

Library preparation and sequencing of the four samples used in this 
study was performed by Novogene Company Limited (UK). The 
genomic DNA was randomly fragmented by sonication, after which 
DNA fragments were end polished, A-tailed, ligated with the full-
length Illumina adapters, and followed by further PCR amplifica-
tion with P5 and indexed P7 oligos. These PCR products as the final 
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construction of the libraries were purified with AMPure XP system. 
Libraries were then checked for size distribution by Agilent 2100 
Bioanalyser (Agilent Technologies) and quantified by real-time PCR 
(to meet the criteria of 3 nM). Libraries were sequenced on one lane 
from both ends of the 150  bp fragments (i.e. paired-end) using a 
NovaSeq 6000. See Table S1 for unique read counts per sample.

2.3  |  Whole-genome bisulphite sequencing

The preparation and sequencing of whole-genome bisulphite li-
braries of the four samples used in this study was performed by 
the Roy J. Carver Biotechnology Centre (University of Illinois at 
Urbana-Champaign, USA) together with the other samples of the 
experiment (see above). Shotgun genomic libraries (with read length 
of 150 nucleotides) were prepared with the Hyper Library con-
struction kit from kapa Biosystems (Roche) and treated with the 
EZ DNA Methylation Lightning kit from Zymo Research. Libraries 
were pooled, quantitated by qPCR and each pool was sequenced for 
151 cycles from both ends of the fragments (i.e., paired-end) on a 
S4 flow cell using a NovaSeq 6000. Samples selected for this study 
were sequenced on the same lane. Because WGBS data showed 
high duplication rates (Table S2), library preparation and sequencing 
were performed twice for all samples and data from both runs were 
merged. See Table S2 for unique read counts per sample and run.

2.4  |  Bioinformatic processing

We created the pipelines with snakemake v5.17.0 (Koster & Rahmann, 
2012) and used R v4.0.1 (R Core Team, 2017) for additional scripts 
within the pipeline, data formatting, and graphical visualization. 
In addition to base R packages, we used dplyr v1.0.0 (Wickham 
et al., 2020), tidyr v1.1.0 (Wickham & Henry, 2020), stringr v1.4.0 
(Wickham, 2019), ggplot2 v3.3.2 (Wickham, 2016), cowplot v1.1.0 
(Wilke, 2020), RColorBrewer v1.1.2 (Neuwirth, 2014), and R 
Markdown v2.5 (Allaire et al., 2021; Xie et al., 2018, 2020). Software 
packages used within the snakemake pipelines were mostly built 
and managed with conda v4.8.4 (Anaconda Software Distribution, 
2016). All pipelines and conda environments are publicly accessible 
on gitHub (https://github.com/MLind​ner0/lindn​er_et_al-2021-mer-
snps_from_bs_data). For both the bioinformatic processing of the 
whole-genome resequencing data and the WGBS data, we used the 
Parus major reference genome build (https://www.ncbi.nlm.nih.gov/
assem​bly/GCF_00152​2545.3).

2.5  |  Bioinformatic processing of the whole-
genome resequencing data

We used SNPs called from the whole-genome resequencing data as 
a baseline list of SNPs to evaluate SNPs called from the WGBS data. 
For the bioinformatic processing of whole-genome resequencing 

data we followed the “GATK best practice” guidelines for model 
(Auwera et al., 2013) and non-model species (https://evodi​fy.com/
gatk-in-non-model​-organ​ism/). Our snakemake pipeline included 
quality control, data trimming, alignment, recalibration of base-
quality-scores, variant calling, and variant filtering and was executed 
such that samples were processed in parallel where applicable. 
Please note that in contrast to the GATK pipeline, in which SNPs 
and genotypes are called in separate steps, the tools for SNP calling 
from bisulphite sequencing data provide SNP and genotype calling 
in one step and hence we here refer to SNP calling as the calling of 
SNPs and genotypes.

For the initial quality control we used FastQC v0.11.9 (Andrew, 
2010), FastQ Screen v0.11.1 (Wingett & Andrews, 2018), and 
MultiQC v1.7 (Ewels et al., 2016) in default settings but allowed par-
allel processing of samples by FastQC. Results are presented in Table 
S1. We trimmed the data and removed adapters using TrimGalore 
v0.6.5 (https://github.com/Felix​Krueg​er/TrimG​alore) in default set-
tings for paired-end data, but set a NovaSeq specific quality cutoff 
of 20 (by specifying --2coulor 20) accounting for NovaSeq specific 
over-representation of Gs (poly-G), and enabled the production of 
a FastQC output for the trimmed data. We completed the second 
quality control by running MultiQC for the trimmed data.

We prepared the Parus major reference genome for further pro-
cessing of the trimmed whole-genome resequencing data by build-
ing a BWA index using bwa v0.7.17 (Li & Durbin, 2010), a samtools 
fasta file index using samtools v1.3.1 (Li et al., 2009), and a sequence 
dictionary using Picard v2.18.29 (https://github.com/broad​insti​
tute/picard). We performed the alignment of paired-end sequencing 
reads to the Parus major reference genome using BWA mem using 
eight threads per sample and adding sample-specific read groups to 
the aligned reads. Alignments were coordinate-sorted and dedupli-
cated using picard. We assessed the number of mapped reads, aver-
age coverage depth, and breadth of coverage using samtools (Table 
S3). The breadth of coverage was calculated as the number of bases 
with a minimum coverage of 10 divided by the bases within the great 
tit genome (i.e., genome length; calculated using Bowtie2 (Langmead 
& Salzberg, 2012) “inspect”). We used a minimum coverage thresh-
old of 10 throughout the manuscript and hence the breadth of 
coverage conditional on a minimum coverage of 10 will be most in-
formative here. We performed base quality (BQ) score recalibration 
using GATK BaseRecalibrator and GATK ApplyBQSR in default settings 
with 523,640 SNPs of 3344 great tits (415 males and 2929 females) 
derived from a high-density SNP-chip (Kim et al., 2018) as a list of 
known SNPs (da Silva et al., 2018; Verhagen et al., 2019). Finally, we 
removed reads mapping to the Z chromosome or mitochondrial DNA 
using samtools.

For SNP calling we used gatk v4.2.0 (DePristo et al., 2011; 
McKenna et al., 2010). We called the raw variants for each sample 
using the GATK HaplotypeCaller specifying “GVCF” as the mode 
for emitting reference confidence scores and “emit all confident 
sites” as the output mode. We combined sample-specific variants 
using GATK CombineGVCFs and genotyped variants using GATK 
GenotypeGVCFs specifying a minimum phred-scaled confidence 

https://github.com/MLindner0/lindner_et_al-2021-mer-snps_from_bs_data
https://github.com/MLindner0/lindner_et_al-2021-mer-snps_from_bs_data
https://www.ncbi.nlm.nih.gov/assembly/GCF_001522545.3
https://www.ncbi.nlm.nih.gov/assembly/GCF_001522545.3
https://evodify.com/gatk-in-non-model-organism/
https://evodify.com/gatk-in-non-model-organism/
https://github.com/FelixKrueger/TrimGalore
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
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threshold of 30 for genotyping of variants and a heterozygosity 
value of 0.003 following Hayes et al. (2020). We selected SNPs and 
visually inspected the quality of SNPs called (Figures S1 and S2) 
to determine appropriate filter thresholds. We hard-filtered SNPs 
with mapping quality (MQ) smaller than 40.00, sequencing bias (in 
which one DNA strand is favoured over the other, SOR) larger than 
4.00, variant confidence standardized by depth (QD) smaller than 
2.00, strand bias (in support for REF vs. ALT allele calls, FS) larger 
than 60.00, Rank sum test for mapping qualities of REF versus ALT 
reads (MQRankSum) smaller than –12.50 or larger than 12.50, and 
rank sum of read position (i.e., are all SNPs located near the end of 
reads, ReadPosRankSum) smaller than –10.00 or larger than 10.00 
following the “GATK best practice” guidelines for non-model species 
(https://evodi​fy.com/gatk-in-non-model​-organ​ism/). We set geno-
types to “no call” for SNPs with sample-specific coverage below 10 
(5th percentile) and above 75 (99th percentile). We split the SNPs 
by sample and removed nonvariant sites to create sample-specific 
baseline lists of SNPs.

2.6  |  Bioinformatic processing of the whole-
genome bisulphite sequencing data

We tested five tools for SNP calling and two tools that perform 
alignment and SNP calling (Table S4); Bis-SNP v1.0.1 (Liu et al., 2012), 
biscuit v0.3.16 (https://github.com/zhou-lab/biscuit), BS-SNPer v1.0 
(Gao et al., 2015), CGmapTools v0.1.2 (Guo et al., 2018), EpiDiverse-
SNP pipeline v1.0 (Nunn et al., 2021), MethylExtract v1.9.1 (Barturen 
et al., 2014), and gemBS v3.5.1 (Merkel et al., 2019). Our pipelines 
included quality control, data trimming, alignment, recalibration of 
base-quality-scores (for Bis-SNP) or a double-masking procedure 
(for EpiDiverse-SNP pipeline) of alignments, variant calling, and variant 
filtering.

For the initial quality control we used FastQC, FastQ Screen, and 
MultiQC in default settings but allowed parallel processing of sam-
ples by FastQC. Results are presented in Table S2. We trimmed the 
data using TrimGalore in paired-end mode and set a NovaSeq spe-
cific quality cutoff of 20 (by specifying --2coulor 20) accounting for 
NovaSeq specific overrepresentation of Gs (poly-G). After trimming, 
we repeated the quality control with FastQC and MultiQC.

To reduce aligner-related variation between SNPs called, we per-
formed alignments with Bismark v0.22.3 (Krueger & Andrews, 2011) 
which utilizes Bowtie2 where possible. For gemBS and biscuit, that 
is, tools that include alignment and SNP calling, we used the tool-
specific aligner which utilize GEM3 (Marco-Sola et al., 2012) and 
BWA-mem (Li, 2013), respectively. All aligners were so called “three 
letter aligners”, but see Grehl et al. (2020) or Kunde-Ramamoorthy 
et al. (2014) for explanation and comparison of different aligner 
types for bisulphite treated DNA.

We prepared the Parus major reference genome for the respec-
tive aligner; we bisulphite converted and indexed the reference ge-
nome for Bismark alignments and indexed the reference genome for 
gemBS alignments. We performed the alignments with Bismark twice, 

using the new flag values (implemented since Bismark v0.8.3, default) 
and using the old flag values which are required for SNP calling with 
CGmapTools. For the Bismark alignments with new flag values we 
aligned the paired-end reads with default settings but set the num-
ber of threads to eight. We used the percentage of CHH methylation 
from the Bismark alignment reports to calculate the minimal bisul-
phite conversion efficiency as 100% - %CHH methylation. For the 
Bismark alignments with old flag values we additionally specified “--
old_flag” and “--no_dovetail”. We deduplicated the alignments using 
Bismark and added sample-specific read groups to the aligned reads 
using picard. We merged the alignments of the two sequencing runs 
for each sample using picard and assessed the number of mapped 
reads, average coverage depth, and breadth of coverage using sam-
tools. Finally, we removed reads mapping to the Z chromosome 
or mitochondrial DNA using samtools. For the biscuit alignments 
we aligned the paired-end reads with default settings but set the 
number of threads to eight. Using picard we deduplicated the align-
ments, added sample-specific read groups to the aligned reads, and 
merged the alignments of the two sequencing runs for each sample. 
We assessed the number of mapped reads, average coverage depth, 
and breadth of coverage using samtools and finally removed reads 
mapping to the Z chromosome or mitochondrial DNA using sam-
tools. GemBS requires a metadata-file that provides the connection 
between sample name and sequencing data files and a configuration 
with all pipeline parameters. All samples are processed in parallel for 
which we set the number of threads to 20. Alignment was performed 
with default settings for stranded libraries and included the merging 
of the alignments of the two sequencing runs for each sample. We 
assessed the number of mapped reads, average coverage depth, and 
breadth of coverage using samtools. In contrast to the other tools, 
duplicates were removed during SNP calling and SNPs located on 
the Z chromosome and mitochondrial DNA were removed after SNP 
calling using samtools.

We used the Bismark alignments with the new flag values to 
call SNPs with Bis-SNP, BS-SNPer, EpiDiverse-SNP pipeline, and 
MethylExtract, Bismark alignments with the old flag values to call 
SNPs with CGmapTools, and tool-specific alignments to call SNPs 
with gemBS and biscuit. Prior to SNP calling with Bis-SNP, we per-
formed a BQ score recalibration of the alignments using default 
settings and 523,640 SNPs of 3344 great tits (415 males and 2929 
females) derived from a high-density SNP-chip as a list of known 
SNPs (da Silva et al., 2018; Verhagen et al., 2019) (we used Bis-SNP 
v0.82 for this step as the BQ score recalibration was not available in 
the newest release of Bis-SNP). For the recalibration, we used the 
Bismark alignments prior to removal of reads mapping to the Z chro-
mosome or mitochondrial DNA and removed those reads after BQ 
score recalibration. To aid comparison between tools and because 
not all non-model species have a list of known SNPs, we performed 
SNP calling with Bis-SNP from the recalibrated and nonrecalibrated 
alignments setting the maximal coverage to 1000 (default 250, for 
better calculation of the 99th percentile of coverage), heterozygos-
ity to 0.003 following Hayes et al. (2020), and standard minimum 
confidence threshold for calling to 0 (to allow for a larger range of 

https://evodify.com/gatk-in-non-model-organism/
https://github.com/zhou-lab/biscuit
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variant and genotype quality). We called SNPs with BS-SNPer in 
default settings but setting the minimal and maximal coverage to 1 
and 1000, respectively (for better calculation of the 99th percentile 
of coverage). We used Nextflow v20.07.1 (Di Tommaso et al., 2017) 
to run the EpiDiverse-SNP pipeline in default settings but specifying 
the “--variants” flag. We called SNPs with MethylExtract using the 
default setting for paired-end reads, specified Bismark-specific new 
flag values, and set the minimal coverage to 1 (for better calculation 
of the 99th percentile of coverage). For SNP calling with CGmapTools 
we used the Bismark alignments with the old flag values, converted 
the alignments into ATCGmaps, and removed the overlap of read pairs. 
Using the ATCGmaps we called SNPs with CGmapTools’ Bayesian and 
binomial wildcard strategy in default settings. In contrast to the pre-
vious five tools, biscuit and gemBS provide a whole pipeline which in-
volves alignment. Hence, tool-specific alignments were used to call 
SNPs. For SNP calling with biscuit we used the default settings but 
specifying eight threads and that cytosines in overlapping read pairs 
must not be counted twice. For SNP calling with gemBS we used the 
default settings for WGBS data but specified the removal of dupli-
cates (which for all other tools is done prior to SNP calling).

We filtered the resulting lists of SNPs from different tools tested 
for depth such that all SNPs with depth lower than ten and higher 
than the tool-specific 99th per centile of depth were removed 
(Figures S3–S11 and Table S5). Most of the parameters used for hard-
filtering of the SNPs called with GATK from the whole-genome rese-
quencing data (MQ, SOR, QD, FS, MQRankSum, ReadPosRankSum), 
were not given in the output files of the tools for SNP calling from 
bisulphite sequencing data. The only exception was MQ, which was 
provided in the MethylExtract output. Some of the tools (Bis-SNP, 
biscuit, BS-snper, gemBS, and MethylExtract) provided the option to 
filter for BQ and/or MQ during the SNP calling, but as not all tools 
provided this option, we used the tool-specific default settings. The 
output files of all tools tested for SNP calling provided values for 
the variant quality (QUAL) and most tools provided values for the 
genotype quality (GQ). The range of QUAL and GQ values, however, 
strongly varied between tools (Figure S3–S11 and Table S5).

2.7  |  Evaluation of SNP calls from whole-genome 
bisulphite sequencing data

To evaluate the tools for SNP calling from bisulphite sequencing 
data, we compared the SNPs called with the seven different tools 
to baseline lists of true SNPs (i.e., SNPs called from whole-genome 
resequencing data of the same samples) using rtgTools (Cleary et al., 
2014). RtgTools provides common performance metrics such as the 
number of false positives (SNPs called that are not in the baseline list 
of true SNPs), false negatives (SNPs in the baseline list of true SNPs 
that are not called), true positives (SNPs called that are in the base-
line list of true SNPs), precision, sensitivity, and f-measure, which is 
the harmonic mean of precision and sensitivity. Precision was calcu-
lated as the number of SNPs called divided by the sum of the number 
of SNPs called and the number of false-positive SNPs and sensitivity 

was calculated as the number of SNPs in the baseline lists of true 
SNPs divided by the sum of the number of SNPs in the baseline lists 
of true SNPs and the number of false-negative SNPs called. Note 
that rtgTools operates on the level of local haplotypes such that a 
SNP (in diploid genome) is only considered a true positive SNP if 
both alleles of the genotype also match in order. Furthermore, we 
used rtgTools to estimate the performance metrics for each value of 
QUAL and GQ across the full range of the respective parameter to 
assess the effect of QUAL or GQ on the performance metrics. Please 
note that the range of QUAL and GQ values as well as the number of 
values within the respected parameter range differed between tools 
to such a degree that there is no QUAL or GQ value that is present 
within the respective parameter range of all tools tested.

3  |  RESULTS

3.1  |  Alignment statistics and bisulphite conversion 
efficiency

Mapping efficiency for the four samples ranged from 48%–53% for 
Bismark (irrespective of whether new or old flag values were used), 
from 96%–105% for biscuit, and from 186%–188% for gemBS. Higher 
values for biscuit and gemBS can be explained by multimapping (biscuit 
and gemBS) and the presence of duplicated reads (gemBS). In line with 
this, biscuit and especially gemBS alignments also showed a higher av-
erage coverage depth than Bismark; 23.89–29.93 for Bismark, 39.07–
48.34 for biscuit, and 80.31–97.01 for gemBS. Breadth of coverage 
was overall high ranging from 78–89% for Bismark, 87%–94% for bis-
cuit, and 95%–97% for gemBS. Alignment statistics including number 
of mapped reads, average coverage depth, and breadth of coverage 
are presented in Table S6. To ensure that bisulphite conversion was 
successful, we calculated the bisulphite conversion efficiency which 
was >99.1% for all samples and both sequencing runs (Table S7).

3.2  |  Evaluation of SNP calls from whole-genome 
bisulphite sequencing data

Here, we assessed performance metrics of SNPs called with the 
seven tools tested for SNP calling from bisulphite sequencing data. 
The performance metrics were estimated for each value of QUAL 
and GQ across the full range of the respective parameter (Table S8). 
This allowed us to assess how the relationship between sensitivity 
and precision varied across parameter values of QUAL and GQ for 
the tools tested. Ideally, tools would reach high precision and high 
sensitivity (i.e., located in the upper right quadrant of the plotting 
space in Figure 1). Most tools tested here showed high precision 
(>0.8), but rather low levels of sensitivity (<0.6, Figure 1 and Figures 
S12 and S13). Especially Bis-SNP showed a high precision (>0.9) 
but low sensitivity (<0.4, in particular when SNPs were called from 
the BQ score recalibrated alignments), while biscuit showed high 
sensitivity (up to almost 0.9) but comparably low precision (<0.8, 
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Figure 1). Especially for the range of QUAL values (Figure 1a), the 
other tools showed intermediate precision (i.e., higher than biscuit 
but lower than Bis-SNP) and sensitivity (i.e., lower than biscuit but 
higher than Bis-SNP).

While sensitivity and precision give a good indication of the per-
formance of a tool, they provide little information on the magnitude 
of SNPs called. Thus, we assessed the number of true positive, false 
positive, and false negative SNPs called with the seven tools tested 
at the threshold value of QUAL that maximized the f-measure, 
the sensitivity or the precision. The number of true positive, false 
positive, and false negative SNPs differed between the maximized 
performance metrics and there were clear tool-specific patterns 
(Figure 2, Figures S14–S16 and Tables S9–S11). Bis-SNP showed the 
lowest maximal f-measure (0.42–0.51) and sensitivity (0.27–0.35) 
but highest maximal precision (0.89–0.95) based on a low number of 
true positive and false positive SNPs and high number of false nega-
tive SNPs. In contrast, biscuit showed the highest maximal f-measure 
(0.77–0.82) and sensitivity (0.78–0.86) but lowest maximal precision 
(0.78–0.83) based on a high number of true positives and false pos-
itives SNPs and low number of false negative SNPs. The other five 
tools showed intermediate patterns and specifically CGmapTools, 
the EpiDiverse pipeline, gemBS, and MethylExtract showed high max-
imal precision. For the EpiDiverse pipeline, gemBS, and MethylExtract, 
however, high maximal precision was accompanied by low num-
bers of true positive SNPs (Figure 2c). BS-SNPer and CGmapTools 
showed slightly lower maximal f-measure and sensitivity than the 
EpiDiverse pipeline, gemBS, and MethylExtract based on a lower num-
ber of true positive and false positive SNPs and a higher number of 
false negative SNPs (Figure 2a,b). Especially the Bayesian strategy 
with CGmapTools showed a low number of false positive SNPs, while 
showing a comparably high number of true positive SNPs irrespec-
tive of which performance metric is maximized.

To understand whether substitution contexts affected by the 
bisulphite treatment (i.e., A->G, C->T, G->A, and C->T substitu-
tions) are prone to bias during SNP calling, we visually inspected the 

tool-specific distributions of false negative (Figure S17) and false 
positive SNPs (Figure 3) over substitution contexts relative to the 
distribution of baseline SNPs over substitution contexts. The tool-
specific distributions of false negative SNPs over substitution con-
texts closely followed the baseline distribution for all tools tested 
and hence did not indicate an enrichment of false negative SNPs for 
substitution contexts affected by the bisulphite treatment. In con-
trast, we found tool-specific deviations between the distributions of 
false positive SNPs over substitution contexts and the distribution 
of baseline SNPs. There are four distinct patterns, (1) tool-specific 
distributions of SNPs that roughly followed the distribution of base-
line SNPs (binomial strategy with CGmapTools), (2) tool-specific dis-
tributions of SNPs that constituted a mixture of the distribution of 
baseline SNPs and an uniform distribution (Bis-SNP with BQ recali-
bration and the Bayesian strategy with CGmapTools), (3) tool-specific 
distributions of SNPs that showed an enrichment for A->G and C->T 
substitutions relative to the baseline distribution of SNPs (Bis-SNP 
without BQ recalibration, biscuit, EpiDiverse-SNP pipeline, gemBS, and 
MethylExtract), and (4) tool-specific distributions of SNPs that fol-
lowed the distribution of baseline SNPs but show an enrichment for 
A->G, C->T, G->A, and C->T substitutions relative to the baseline dis-
tribution of SNPs (BS-SNPer). To better understand these patterns, 
we inspected the tool-specific distributions of false positive SNPs 
over substitution contexts but differentiated between homozygous 
and heterozygous SNPs (Figures S18–S21). Especially tools with false 
positive SNPs that showed an enrichment for A->G and C->T substi-
tutions (3) or for A->G, C->T, G->A, and C->T substitutions (4) also 
showed a strong enrichment for heterozygous SNPs at these sub-
stitution contexts with a percentage of heterozygous SNPs of false 
positive SNPs up to 97.25% for Bis-SNP without BQ recalibration, 
92.94% for biscuit, 99.56% for BS-SNPer, 72.35% for EpiDiverse-SNP 
pipeline, 97.70% for gemBS, and 92.05% for MethylExtract (Table S12). 
This excess of heterozygous SNPs largely contributed to observed 
deviations between the tool-specific distributions of false positive 
SNPs over substitution contexts and the distribution of baseline 

F I G U R E  1  Relationship between precision and sensitivity for SNPs called from whole-genome bisulphite sequencing data of one 
sample (F3_E_BD_27272) relative to a list of known SNPs derived from whole-genome resequencing data of the same sample. Precision 
and sensitivity were calculated using rtgTools with (a) QUAL and (b) QG as score fields, which means that the performance metrics (here 
precision and sensitivity) were calculated across the full range of a parameter values for QUAL and GQ. Thus, the number of data points per 
tool, varied with the tool-specific and parameter-specific range of parameter values. If the parameter value is not given, the performance 
metrics were calculated for the full SNP list (resulting in one data point) and if the full range of a parameter value was longer than 20 values, 
we reduced the length of a parameter range to 20 equally spaced values across the full range of parameter values. Here, only one sample is 
displayed, but see Figures S12–13 for plots with all samples
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SNPs. The binomial strategy with CGmapTools also showed an en-
richment of heterozygous SNPs for false positive SNPs at substitu-
tion contexts affected by the bisulphite treatment, but to a much 
smaller extent (up to 49.02%). Bis-SNP with BQ recalibration and the 
Bayesian strategy with CGmapTools showed a strong enrichment of 
heterozygous SNPs (up to 92.12% for Bis-SNP with BQ recalibration 
and up to 72.90% for the Bayesian strategy with GCmapTools), but 
not specifically for substitution contexts affected by the bisulphite 
treatment.

4  |  DISCUSSION

The study of epigenetics and in particular DNA methylation has re-
ceived much attention in ecology and evolution (Verhoeven et al., 2016) 
and bisulphite sequencing data used for DNA methylation profiling can 
also be utilized to detect genetic variants such as SNPs. When evalu-
ating seven tools for SNP calling using WGBS and whole-genome re-
sequencing data of four whole blood samples from female great tits, 
we found clear differences between the tools in performance metrics 
and the potential for bisulphite-induced ascertainment bias. Overall, the 
choice of tools strongly depends on the downstream analysis, but for 
most applications the Bayesian strategy with CGmapTools or Bis-SNP 
with BQ score recalibration will constitute the best choice (Table 1).

4.1  |  Evaluation of performance metrics

The clear differences in performance metrics between tools highlight 
that the tool choice for SNP calling has clear impacts on the resulting 
SNP list. Which tool is most suitable for a certain data set, however, 
strongly depends on the downstream analysis. In some analyses, where 
we care most about the individual SNPs rather than the combined ef-
fect of all SNPs, such as for genome-wide association studies, we might 
want to maximize precision (or minimize the number of false positive 
SNPs) while caring less about the total number of SNPs called. In such 
a scenario Bis-SNP and CGmapTools (specifically the Bayesian strategy) 
provide the optimal output. Albeit Bis-SNP called fewer false positive 
SNPs than CGmapTools, it also called considerably fewer true positive 
SNPs and hence CGmapTools might constitute a better compromise 
between the number of false positive and the number of true positive 
SNPs. Furthermore, Bis-SNP performs best when a list of known SNPs 
is available for the recalibration of BQ scores prior to SNP calling and 
hence might not be a good option for species or populations where 
this is not the case. When on the other hand we care most about the 
combined effect of all SNPs rather than the effect of individual SNPs, 
such as when inferring relatedness between individuals or F-statistics 
between populations (but see 4.2 below), a tool that constitutes a com-
promise between precision and sensitivity and that reduces (bisulphite-
induced) potential for ascertainment bias might be the best choice. In 
such a scenario, CGmapTools constitutes the best choice followed by the 
EpiDiverse-SNP pipeline, gemBS, MethylExtract and lastly BS-SNPer. When 
focusing on the maximal f-measure as an indication for a good com-
promise between precision and sensitivity, biscuit clearly has the lead, 
but also showed a considerably higher number of false positive SNPs 
compared to any other tool and a high potential for (bisulphite-induced) 
ascertainment bias, which can negatively impact downstream analysis.

4.2  |  Potential for bisulphite-induced 
ascertainment bias

In addition to common performance metrics like sensitivity and 
precision, it is also important to assess potential bias on the allele 

F I G U R E  2  Number of false negative (teal), false positive (green), 
and true positive (yellow) SNPs called (bars and left y-axis) with the 
different tools tested for SNP calling from bisulphite sequencing 
data for one sample (F3_E_BD_27272). Performance metrics 
are based on the evaluation with rtgTools and we here show the 
performance metrics for which the f-measure (a), sensitivity (b), and 
(c) precision is maximized when using QUAL as score fields (white 
diamonds and right y-axis). Note that the QUAL values for which 
f-measure, sensitivity, or precision are maximized differ between 
tools and that precision is maximized on the condition that at least 
1,000,000 SNPs were called. Here, only one sample is displayed, 
but see Figures S14–16 for plots with all samples [Colour figure can 
be viewed at wileyonlinelibrary.com]
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frequency spectrum (AFS) of SNPs called from bisulphite sequencing 
data. The AFS constitutes a simple summary of the allele frequen-
cies across loci in a population and is the basis of many estimates in 

population genetics. Deviations from the true AFS (i.e., ascertain-
ment bias) can introduce strong bias in population genetic inferences 
potentially leading to wrong conclusions (Han et al., 2014).

F I G U R E  3  Distribution of SNPs over substitution contexts (alternative and reference allele) for the baseline list of true SNPs derived from 
whole-genome resequencing data (a) and the tool-specific lists of false positive SNPs (b). Samples are differentiated by colour (teal-yellow) 
and plots in (b) have tool-specific plot titles
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Calling SNPs from bisulphite sequencing data potentially re-
sults in ascertainment bias at positions affected by the bisulphite 
conversion. Partially or unmethylated Cs are difficult to differenti-
ate from true C->T SNPs (heterozygous or homozygous) potentially 
leading to an enrichment of false positive and false negative SNPs in 
such substitution contexts. Strand-specificity can be used to avoid 
such misidentifications as Gs on the strand opposing Cs are not af-
fected by the bisulphite conversion (Krueger et al., 2012). The tools, 
however, differ in how to make use of this information and avoid 
such misidentifications. Bis-SNP and gemBS use similar GATK-based 
Bayesian inference models that consider C->T SNPs either as po-
tential errors based on the BQ score or as a bisulphite conversion 
with the probability of observing a bisulphite conversion depending 
on the underlying methylation status and the bisulphite conversion 
error (Liu et al., 2012; Merkel et al., 2019). In addition, Bis-SNP in-
volves a GATK-based and bisulphite sequencing adapted BQ score 
recalibration of the alignment prior to SNP calling to improve the 
Bayesian inference model (Liu et al., 2012). The EpiDiverse-SNP pipe-
line involves a double-masking procedure of the alignment to facil-
itate SNP calling with conventional tools such as gatk or Freebayes 
(Garrison & Marth, 2012; Nunn et al., 2021). The double-masking 
procedure manipulates specific nucleotides and BQ scores of the 
alignment and, this way, imposes an indirect strand-specificity on 
potential SNP calls to dissociate them from the effect of bisulph-
ite conversion. CGmapTools provides two methods for SNP calling 
that are based on the introduction of wildcard genotypes (Guo 
et al., 2018). Due to the bisulphite treatment (conversion of C to T 
if C is unmethylated), the presence of Ts might indicate either Ts or 
Cs in the unconverted genome resulting in ambiguous genotypes. 
Wildcards are used to denote this ambiguity in predicted genotypes 
with Y referring to either T or C and R referring to either A or G. 
When both strands have high coverage, this ambiguity can be re-
solved and an exact genotype can be computed. CGmapTools pro-
vides two strategies that implement the wildcards; a Bayesian model 
and a binomial model. In the Bayesian model the posterior is noted 
as the product of the posteriors of each observed genotype and the 

genotype with the highest posterior from the exact genotype set 
and the wildcard genotype set is selected as the predicted genotype. 
In the binomial strategy, the genotype is predicted using a binomial 
distribution. MethylExtract relies on an approach in which positions 
with low BQ scores (indicative for sequencing errors) and reads with 
at least 90% of presumably unconverted cytosines in non-CpG con-
texts (indicative for bisulphite conversion errors) are removed prior 
to SNP calling.

Due to our small sample size, we could not reliably infer the AFS 
and assess ascertainment bias. To get at least an indication of the 
potential for bisulphite-induced ascertainment bias, we assessed 
whether the distributions of false negative and false positive SNPs 
over substitution contexts were biased towards substitution contexts 
affected by the bisulphite treatment when compared to the distribu-
tion of baseline SNPs over substitution contexts. Regardless of the 
tool used, we did not find strong deviations between the distribution 
of false negative SNPs and the distribution of baseline SNPs indicat-
ing that false negative SNPs are not biased towards substitution con-
texts affected by the bisulphite treatment. For false positive SNPs, 
however, we found substantial differences between tools in respect 
to deviations from the distribution of baseline SNPs. Interestingly, 
BS-SNPer showed an enrichment for all four substitution contexts 
affected by the bisulphite treatment, while Bis-SNP without BQ 
score recalibration, biscuit, the EpiDiverse-SNP pipeline, gemBS, and 
MethylExtract only showed an enrichment of T->C and A->G SNPs 
(i.e., no enrichment for C->T and G->A SNPs). Furthermore, SNPs in 
these substitution contexts are strongly enriched for heterozygous 
SNPs and especially for biscuit, the EpiDiverse-SNP pipeline, gemBS, and 
MethylExtract heterozygous SNPs seem to drive the enrichment of 
T->C and A->G SNPs. These findings might indicate that tools have 
difficulties to differentiate between partially methylated Cs and het-
erozygous SNPs in substitution contexts affected by the bisulphite 
treatment. Cs are not necessarily completely methylated or com-
pletely unmethylated at the tissue level, but can have intermediate 
methylation level, which means that only a part of the reads covering 
a C will be converted to Ts by the bisulphite treatment. Such partial 

TA B L E  1  Number of true positive SNPs (low-high), number of false positive SNPs (low-high), potential for (bisulphite-induced) 
ascertainment bias (low-high), and additional requirements for SNP calling for the seven tools tested

Tool name (strategy)
Number of true 
positive SNP

Number of false 
positive SNP

Potential for 
ascertainment bias Requirement

Bis-SNP (BQ score recalibration) Low Low Medium List of known SNPs

Bis-SNP (no BQ score 
recalibration)

Low Low High

biscuit High High High

BS-SNPer Medium Medium High

CGmapTools (Bayesian strategy) Medium Low Medium

CGmapTools (binomial strategy) Medium Medium Medium

Epidiverse Medium Medium High

MethylExtract Medium Medium High

gemBS Medium Medium High

Abbreviation: BQ, base quality.
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methylation might be difficult to differentiate from heterozygous 
C->T SNPs. In directional libraries, however, the opposite strand is 
not affected by the bisulphite treatment and hence the position on 
the opposite strand is either an A (for C->T SNP) or a G (for bisulph-
ite converted C) and in theory provides information to differentiate 
unmethylated or partially methylated Cs from homozygous or het-
erozygous SNPs (Liu et al., 2012). The high enrichment of T->C sub-
stitutions is more remarkable. As Ts are not expected to be affected 
by the bisulphite treatment (<1% bisulphite conversion efficiency 
for T; Holmes et al., 2014), these positions might constitute a homo-
zygous T->C SNP that was partially methylated and hence wrongly 
genotyped as heterozygous T->C SNP.

In addition to bisulphite-induced ascertainment bias, BS-SNPer 
removed SNPs with low minor allele frequency (default 0.1, Gao 
et al., 2015), which will induce ascertainment bias in the AFS. Also, 
the general enrichment of false positive SNPs for heterozygous 
SNPs in all tools is likely to induce ascertainment bias in the AFS 
and bias downstream population genetic analyses. Our study, how-
ever, lacks the sample size needed to properly asses ascertainment 
bias in the AFS and hence future studies with much larger sample 
sizes are needed for assessing such bias for SNPs called from bisul-
phite sequencing data and the consequences for population genetic 
analyses.

4.3  |  Effect of aligner on SNP calling

We here used three different three letter aligners and previous stud-
ies have shown that there are differences between the aligners that 
are designed for bisulphite sequencing data in genomic coverage and 
quantitative accuracy (Grehl et al., 2020; Kunde-Ramamoorthy et al., 
2014). In general, the choice of aligner can also affect the accuracy 
of SNP calling and hence our findings are conditional on the aligners 
we used. While most tools use Bismark alignments as input for SNP 
calling, biscuit and gemBS are “whole-pipeline-tools” that utilize their 
own aligners. Consequently the comparison of biscuit and gemBS 
with any other tool should be interpreted with caution, especially as 
the tool-specific aligner of biscuit and gemBS allow for multimapping 
and show a much higher mapping percentage than the Bismark align-
ments. Here, we cannot explain whether the high number of false 
positive SNPs called with biscuit is associated to the biscuit SNP caller 
or to (the high mapping percentage of) the biscuit aligner. However, 
gemBS alignments also had a high mapping percentage but showed a 
similar performance as the EpiDiverse-SNP pipeline and MethylExtract, 
indicating that a high mapping percentage does not per se increase 
the number of false positives SNPs.

4.4  |  Ecological and evolutionary applications for 
SNPs from WGBS data

Assessing to what extend genetic variation underlies variation in DNA 
methylation is of high scientific interest and has been investigated in 

a variety of species such as Arabidopsis thaliana (Dubin et al., 2015), 
maize (Xu et al., 2019), reef-building corals (Liew et al., 2020), inter-
crosses between wild derived red junglefowl and domestic chickens 
(Höglund et al., 2020), and humans (Heyn et al., 2013). For example, in 
Arabidopsis thaliana variation in CHH methylation at transposons was 
strongly associated with genetic variants both in cis and trans (Dubin 
et al., 2015). In intercrosses between wild derived red junglefowl and 
domestic chickens over 46% of mapped trans quantitative trait loci 
for hypothalamus methylation were genotypically controlled by only 
five loci mainly associated with increased methylation in the red jun-
glefowl genotype (Höglund et al., 2020). This large dependency of 
most DNA methylation variants on genetic variation also implies that 
more closely related individuals are more similar in their methylation 
patterns than unrelated individuals (Lea et al., 2017; van Oers et al., 
2020; Viitaniemi et al., 2019). Depending on the experimental design, 
it therefore is important to infer and account for relatedness when 
analysing methylation data (e.g., Lindner et al., 2021).

5  |  CONCLUSION

Bisulphite sequencing offers the potential to analyse variation in 
both the genome and DNA methylation. However, the decision of 
which tools to use is crucial as the performance can be compro-
mised by the bisulphite treatment and in turn affect downstream 
analysis. We found clear differences between the tools in perfor-
mance metrics and the potential for bisulphite-induced ascertain-
ment bias and for most downstream analyses the Bayesian strategy 
with CGmapTools or Bis-SNP with BQ score recalibration (if list of 
known SNPs is available) will constitute the best choice (Table 1). 
Our results highlight the need to assess the performance of tools to 
understand tool-specific sources of bias and to choose a tool that 
optimizes the performance of SNP calling in respect to the down-
stream analysis. Lastly, our findings and pipelines will provide other 
molecular ecologists with a useful resource to choose appropriate 
tools for reliable SNP calling from bisulphite sequencing data of their 
own study systems.
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