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Purpose: To externally validate a deep learning pipeline (AutoMorph) for automated
analysis of retinal vascular morphology on fundus photographs. AutoMorph has been
made publicly available, facilitating widespread research in ophthalmic and systemic
diseases.

Methods: AutoMorph consists of four functional modules: image preprocessing, image
quality grading, anatomical segmentation (including binary vessel, artery/vein, and
optic disc/cup segmentation), and vascular morphology feature measurement. Image
quality grading and anatomical segmentation use the most recent deep learning
techniques.Weemploy amodel ensemble strategy to achieve robust results andanalyze
the prediction confidence to rectify false gradable cases in image quality grading. We
externally validate the performance of each module on several independent publicly
available datasets.

Results: The EfficientNet-b4 architecture used in the image grading module achieves
performance comparable to that of the state of the art for EyePACS-Q, with an F1-score
of 0.86. The confidence analysis reduces the number of images incorrectly assessed as
gradable by 76%. Binary vessel segmentation achieves an F1-score of 0.73 on AV-WIDE
and 0.78 on DR HAGIS. Artery/vein scores are 0.66 on IOSTAR-AV, and disc segmentation
achieves 0.94 in IDRID. Vascular morphology features measured from the AutoMorph
segmentation map and expert annotation show good to excellent agreement.

Conclusions: AutoMorph modules perform well even when external validation data
show domain differences from training data (e.g., with different imaging devices). This
fully automated pipeline can thus allow detailed, efficient, and comprehensive analysis
of retinal vascular morphology on color fundus photographs.

TranslationalRelevance:BymakingAutoMorphpublicly available andopen source,we
hope to facilitate ophthalmic and systemicdisease research, particularly in the emerging
field of oculomics.

Introduction

The widespread availability of rapid, non-invasive
retinal imaging has been one of the most notable
developments within ophthalmology in recent decades.

The significance of the retinal vasculature for assess-
ing ophthalmic disease is well known; however, there
is also growing interest in its capacity to provide
valuable insights into systemic disease, a field that
has been termed “oculomics.”1–4 Narrowing of the
retinal arteries is associated with hypertension and

Copyright 2022 The Authors
tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution 4.0 International License.

mailto:pearse.keane1@nhs.net
https://doi.org/10.1167/tvst.11.7.12
http://creativecommons.org/licenses/by/4.0/


AutoMorph: Automated Retinal Vascular Morphology Quantification TVST | July 2022 | Vol. 11 | No. 7 | Article 12 | 2

atherosclerosis,5–8 and dilation of the retinal veins is
linked with diabetic retinopathy.9–11 Increased tortu-
osity of the retinal arteries is also associated with
hypercholesterolemia and hypertension.12–14 Consider-
ing that manual vessel segmentation and feature extrac-
tion can be extremely time consuming, as well as poorly
reproducible,15 there has been growing interest in the
development of tools that can extract retinal vascular
features in a fully automated manner.

In recent decades, a large body of technical work
has focused on retinal vessel map segmentation. Perfor-
mance has improved dramatically by employing a
range of techniques, from unsupervised graph- and
feature-basedmethods16–20 to supervised deep learning
models.21 Despite this progress, the widespread use of
these techniques in clinical research has been limited by
a number of factors. First, technical papers21–25 often
focus on performing a single function while ignoring
upstream and downstream tasks, such as preprocess-
ing24,25 and featuremeasurement.21–23 Second, existing
techniques often perform poorly when applied to real-
world clinical settings limited by poor generalizability
outside of the environment in which they were devel-
oped.26,27

Although some software has been utilized for
clinical research, most of it is only semi-automated,
requiring human intervention for correcting vessel
segmentation and artery/vein identification.6,24,25,28,29
This limits process efficiency and introduces subjec-
tive bias, potentially influencing the final outcomes.
Further, most existing software has not integrated
the crucial functions required for such a pipeline—
namely, image cropping, quality assessment, segmenta-
tion, and vascular feature measurement. For example,
poor-quality images in research cohorts often must
be manually filtered by physicians, which generates
a considerable workload. There is also the potential
to improve the performance of underlying segmenta-
tion algorithms by employing the most recent advances
in machine learning, thus enhancing the accuracy of
vascular feature measurements.

In this study, we explored the feasibility of a
deep learning pipeline providing automated analysis
of retinal vascular morphology from color fundus
photographs. We highlight three unique advantages of
the proposed AutoMorph pipeline:

• AutoMorph consists of four functional modules,
including (1) retinal image preprocessing; (2)
image quality grading; (3) anatomical segmen-
tation (binary vessel segmentation, artery/vein
segmentation, and optic disc segmentation); and
(4) morphological feature measurement.

• AutoMorph alleviates the need for physician inter-
vention by addressing two key areas. First, we
employ an ensemble technique with confidence
analysis to reduce the number of ungradable
images that are incorrectly classified as being
gradable (false gradable images). Second, accurate
binary vessel segmentation and artery/vein identi-
fication reduce the need for manual rectification.
• AutoMorph generates a diverse catalog of retinal
feature measurements that previous work indicates
has the potential to be used for the exploration of
ocular biomarkers for systemic disease.

Perhaps most importantly, we made AutoMorph
publicly available with a view to stimulating break-
throughs in the emerging field of oculomics.

Methods

The AutoMorph pipeline consists of four modules:
(1) image preprocessing, (2) image quality grading, (3)
anatomical segmentation, and (4) metric measurement
(Fig. 1). Source code for this pipeline is available from
https://github.com/rmaphoh/AutoMorph.

Datasets

The datasets used for development and external
validation of the deep learning models described in
this work are summarized in Table 1 and Supple-
mentary Material S1. For model training, we chose
publicly available datasets that contain a large quantity
of annotated images.30 Importantly, a diverse combi-
nation of public datasets was used in order to enhance
external generalizability. Some image examples are
shown in Supplementary Figure S1. To validate the
models, we externally evaluated the performance of
those trained models on datasets distinct from those
on which they were trained (e.g., imaging devices,
countries of origin, types of pathology). All of
the datasets provide the retinal fundus photographs
and the corresponding expert annotation. For image
quality grading datasets (using EyePACS-Q as an
example), two experts grade each image into three
categories: good, usable, and reject quality, determined
by image illumination, artifacts, and the diagnosability
of the general eye diseases to the experts. For anatom-
ical segmentation datasets, such as the Digital Retinal
Images for Vessel Extraction (DRIVE) dataset for the
binary vessel segmentation task, two experts annotate
each pixel as vessel or background, thus generating
a ground-truth map with the same size of the retinal
fundus photographs, where a white color indicates

https://github.com/rmaphoh/AutoMorph
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Figure 1. Diagram of the proposed AutoMorph pipeline. The input is color fundus photography, and the final output is the measured
vascularmorphology features. Imagequality grading and anatomical segmentationmodules use deep learningmodels. Confidence analysis
decreases false gradable images in the image quality grading module.

vessel pixels and a black color the background. More
details can be found in Supplementary Material S1.

Modules

Image Preprocessing
Retinal fundus photographs often contain superflu-

ous background, resulting in dimensions that deviate
from a geometric square. To account for this, we
employed a technique that combines thresholding,
morphological image operations, and cropping31 to
remove the background so that the resulting image
conforms to a geometric square (examples are shown
in Supplementary Fig. S2).

Image Quality Grading
To filter out ungradable images that often fail in

segmentation and measurement modules, AutoMorph
incorporates a classification model to identify ungrad-
able images. The model classifies each image as good,
usable, or reject quality. In our study, good and usable
images were considered to be gradable; however, this
decision may be modified in scenarios with suffi-
cient data to include only good-quality images. We
employed EfficientNet-B448 as the model architec-
ture and performed transfer learning on EyePACS-Q.
Further details are outlined in SupplementaryMaterial
S2 and Supplementary Figure S3.

Anatomical Segmentation
Vascular structure is thin and elusive especially

against low-contrast backgrounds. To enhance binary
vessel segmentation performance, AutoMorph uses
an adversarial segmentation network.23 Six public
datasets were used for model training (Table 1).
Accurate artery/vein segmentation is a long-standing
challenge. To address this, we employed an informa-
tion fusion network22 tailored for artery/vein segmen-
tation. Three datasets were used for training. Parapap-

illary atrophic changes, which can be a hallmark
of myopia or glaucoma, can cause large errors in
disc localization and segmentation. To counter this,
AutoMorph employs a coarse-to-fine deep learning
network,49 which achieved first place for disc segmen-
tation in the MICCAI 2021 GAMMA challenge.45,46
Two public datasets were utilized in model training.
Further detailed information is provided in Supple-
mentary Material S3.

Vascular Morphology Feature Measurement
AutoMorph measures a series of clinically relevant

vascular features, as summarized in Figure 2 (compre-
hensive list in Supplementary Fig. S13). Three differ-
ent calculation methods for vessel tortuosity are
provided, including distance measurement tortuos-
ity, squared curvature tortuosity,50 and tortuosity
density.51 The fractal dimension value (Minkowski–
Bouligand dimension)52 provides a measurement of
vessel complexity. The vessel density indicates the
ratio between the area of vessels to the whole image.
For vessel caliber, AutoMorph calculates the central
retinal arteriolar equivalent (CRAE) and central retinal
venular equivalent (CRVE), as well as the arteriolar–
venular ratio (AVR).53–55 AutoMorph measures the
features in standard regions, including Zone B (the
annulus 0.5–1 optic disc diameter from the discmargin)
andZoneC (the annulus 0.5–2 optic disc diameter from
the disc margin).29 Considering that Zone B and Zone
C of macular-centered images may be out of the circu-
lar fundus, the features for the whole image are also
measured.

Ensemble and Confidence Analysis

In model training, 80% of the training data is used
for model training and 20% is used to tune the train-
ing hyperparameters, such as scheduling the learn-
ing rate. In retinal image grading, we ensemble the
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Table 1. Characteristics of the Training and External Validation Data

Type of Data Dataset Name Country of Origin Image Quantitya Device (Manufacturer)

Image Quality Grading

Training data EyePACS-Q-train30,31 USA 12,543 (NR, more than
99%)

A variety of imaging devices, including DRS
(CenterVue, Padova, Italy); iCam (Optovue,
Fremont, CA); CR1/DGi/CR2 (Canon, Tokyo,
Japan); Topcon NW 8 (Topcon, Tokyo, Japan)

Internal validation
data

EyePACS-Q-test30,31 USA 16,249 (NR, more than
99%)

—

External validation
data

DDR test32 China 4,105 (100%) 42 types of fundus cameras, mainly Topcon
D7000, Topcon TRC NW48, D5200 (Nikon,
Tokyo, Japan), and Canon CR 2 cameras

Binary Vessel Segmentation

Training data DRIVE33 Netherlands 40 (100%) CR5 non-mydriatic 3CCD camera (Canon)
STARE34 USA 20 (100%) TRV-50 fundus camera (Topcon)

CHASEDB135 UK 28 (0%) NM-200D handheld fundus camera (Nidek,
Aichi, Japan)

HRF36 Germany and Czech
Republic

45 (100%) CF-60UVi camera (Canon)

IOSTAR37 Netherlands and
China

30 (53.3%) EasyScan camera (i-Optics, Rijswijk,
Netherlands)

LES-AV38 NR 22 (0%) Visucam Pro NM fundus camera (Carl Zeiss
Meditec, Jena, Germany)

External validation
datab

AV-WIDE19,39 USA 30 (100%) 200Tx Ultra-widefield Imaging Device (Optos,
Dunfermline, UK)

DR HAGIS40 UK 39 (100%) TRC-NW6s (Topcon), TRC-NW8 (Topcon), or
CR-DGi fundus camera (Canon)

Artery/Vein Segmentation

Training data DRIVE-AV33,41 Netherlands 40 (100%) CR5 non-mydriatic 3CCD camera (Canon)
HRF-AV36,42 Germany and Czech

Republic
45 (100%) CF-60UVi camera (Canon)

LES-AV38 Nauru 22 (9%) Visucam Pro NM fundus camera (Zeiss)
External validation
data

IOSTAR-AV37,43 Netherlands and
China

30 (53.3%) EasyScan camera (i-Optics)

Optic Disc Segmentation
Training data REFUGE44 China 800 (100%) Visucam 500 fundus camera (Zeiss) and CR-2

camera (Canon)
GAMMA45,46 China 100 (100%) —

External validation
datac

IDRID47 India 81 (100%) VX-10α digital fundus camera (Kowa, Las Vegas,
NV)

External validation data are unseen formodel training andwere purely used to evaluate the trainedmodel performance on
out-of-distribution data with different countries of origin and imaging devices. EyePACS-Q is a subset of EyePACS with image
quality grading annotation. NR, not reported.

aImage quantity indicates the image number used in this work and the parentheses show the proportion of macula-
centered images.

bAlthoughwe have evaluated the binary vessel segmentationmodel on the ultra-widefield retinal fundus dataset AV-WIDE,
we recommend using AutoMorph on retinal fundus photographs with a 25° to 60° FOV, as all of the deep learning models are
trained using images with FOV equals to 25° to 60°, and the preprocessing step is tailored for images with this FOV.

cEvaluated on disc due to no cup annotation.

output from eight trained models with different subsets
of training data, as it generally gives a more robust
result.56 Moreover, the average value and standard
deviation (SD) of the eight possibilities are calculated

for confidence analysis. Average probability indicates
the average confidence of prediction. Low average
cases are prone to false predictions, such as Figure 3c.
Meanwhile, SD represents the inconsistency between
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Figure 2. Features measured by AutoMorph, including tortuosity, vessel caliber, disc-to-cup ratio, and others. For each image, the optic
disc/cup information is measured, including the height and width, as well as cup-to-disc ratio. For binary vessels, the tortuosity, fractal
dimension, vessel density, and average width are measured. In addition to these features, arteries/veins are also used for measuring the
caliber features CRAE, CRVE, and AVR by Hubbard and Knudtson methods.

models. High inconsistency likely corresponds to a
false prediction, as shown in Figure 3d. The images
with either low average probability or high SD are
automatically recognized as low-confidence images and
rectified as ungradable. False gradable images can fail
the anatomical segmentation module, thus generating
a large error in vascular feature measurement. The
confidence analysis economizes physician intervention
and increases the reliability of AutoMorph by filter-
ing these potential errors. To our knowledge, this is the
first report of a confidence analysis combined with the
model ensemble integrated within the vessel analysis
pipeline. An average threshold corresponds to a change
of operating point and SD threshold involved in uncer-
tainty theory. In this work, we set an average thresh-
old of 0.75 and a SD threshold of 0.1 to filter out
false gradable images. Specifically, the average proba-
bility lower than 0.75 or SD larger than 0.1 were recti-
fied as ungradable images. The rationale for select-
ing these threshold values is based on the probability
distribution histogramon tuning data.More details are
described in Supplementary Material S2 and Supple-
mentary Figure S4.

Statistical Analyses and Compared Methods

For deep learning functional modules, the well-
established expert annotation is used as a reference
standard to quantitatively evaluate the module perfor-
mance. We calculated sensitivity, specificity, positive
predictive value (precision), accuracy, area under the
receiver operating characteristic (AUC-ROC) curve,
F1-score, and intersection of union (IoU) metrics to
verify the model performance. These metric definitions

are

Accuracy = TP + TN
TP + FP + TN + FN

Sensitivity = TP
TP + FN

Speci f icity = TN
TN + FP

Precision = TP
TP + FP

F1 = 2 × Sensitivity × Precision
Sensitivity + Precision

where TP, TN, FP, and FN indicate true positive,
true negative, false positive, and false negative, respec-
tively. AUC-ROC curve is a performance measure-
ment for classification problems at various threshold
settings; it tells how much the model is capable of
distinguishing between classes. In segmentation tasks,
IoUmeasures the overlap degree between ground-truth
maps and segmentation maps. Following the same
setting,31,39,57–59 we set the ungradable images as the
positive class in image quality grading. The probabil-
ity of the ungradable category equals that of reject
quality, and the probability of the gradable category is
the sum of good quality and usable quality. As intro-
duced in the discussion on confidence analysis, we used
a mean value of 0.75 and SD of 0.1 as thresholds
to obtain the final rectified gradable and ungradable
categories. For binary vessel segmentation, each pixel
of the retinal fundus photograph corresponds to a
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Figure 3. Confidence analysis for image quality grading. M1 to M8 represent the eight ensemble models. For each image, the predicted
category is transferred as gradable or ungradable (good and usable are as gradable, reject as ungradable). The average probability and SD
are calculated for the predicted category. (a, b) Two image cases with high confidence in prediction. The case shown in (c) is classified as
gradable qualitywith lowaverageprobability of 0.619, and the case in (d) has a high SDof 0.191,which are defined as low-confidence images
in our work. Although (c) and (d) are preliminarily classified as gradable, the final classification is rectified as ungradable with the confidence
threshold.

binary classification task. The vessel pixel is positive
class and the background pixel is negative. The proba-
bility range for each pixel is from 0 to 1, where a larger
value indicates a higher probability of being a vessel
pixel. We thresholded the segmentation map with 0.5,
which is a standard threshold for binary medical image
segmentation tasks. Optic disc segmentation is similar
to binary vessel segmentation, but the difference is that
the positive class is the optic disc pixel. For artery/vein
segmentation, each pixel has a four-class probability of
artery, vein, uncertain pixel, and background. Follow-
ing standard settings for multiclass segmentation tasks,
the category with the largest probability across the four
classes is the thresholded pixel category.More informa-
tion is listed in Supplementary Material S3.

We conducted the quantitative comparison to other
competitive methods to characterize the generalizabil-
ity of AutoMorph using external validation. We used
internal validation results from other published work
to provide a benchmark for a well-performing model.
These methods used a reasonable proportion of data
for model training and the remainder for internal

validation (e.g., fivefold validation that means 80% of
images are used for training and tuning and 20% are
used for validating the trained model), and claimed
that they have achieved state-of-the-art performance.
As introduced in Table 1, the models of AutoMorph
are trained on several public datasets and externally
validated on separate datasets, whereas the compared
methods39,57–59 are trained in the same domain data as
the validation data but with fewer training images. The
goal of the comparison was not to prove the techni-
cal strengths of AutoMorph over recent methods, as
this has already been verified in previously published
work.22,23,47,48 Rather, we aimed to demonstrate that,
due to the diversity of its training data, AutoMorph
performs well on external datasets, even when these
datasets include pathology and show large domain
differences from the training data. Additionally, to
demonstrate the technical superiority of this method,
we have provided the internal validation of AutoMorph
in Supplementary Table S1.

Considering that we employ standard formu-
las29,50–52 to measure vascular morphology features,
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the measurement error only comes from inaccu-
racy of anatomical segmentation. In order to evalu-
ate measurement error that occurs as a result of
vessel segmentation, we respectivelymeasure the vascu-
lar features based on AutoMorph segmentation and
expert vessel annotation, and then we draw Bland–
Altman plots. Following the same evaluation,3,60 intra-
class correlation coefficients (ICCs) are calculated
to quantitatively show agreement. Additionally, the
boxplots of differences between the vascular features
from AutoMorph segmentation and expert annotation
are shown in Supplementary Figures S9–S11.

Results

Results for external validation of AutoMorph are
summarized in Table 2.

Image Quality Grading

The internal validation is on EyePACS-Q test data.
For fair comparison,31 we evaluated the image quality
grading performance of categorizing good, usable,
and reject quality. The quantitative results are listed
in Table 2. The classification F1-score achieved 0.86,
on par with the state-of-the-art method with a F1-

score of 0.86.31 The prediction was transferred to
gradable (good and usable quality) and ungradable
(reject quality), and the resulting confusion matrix of
validation on the EyePACS-Q test is shown in Figure 4.
We learned that confidence thresholding brings a trade-
off in performance metrics, suppressing false gradable
ratio but simultaneously increasing false negative. False
gradable images are prone to fail the anatomical
segmentation module and generate large errors and
outliers in vascular feature measurement. Although
this thresholding filters out some adequate quality
images, it maintains the reliability of AutoMorph.

The external validation is on the general-purpose
diabetic retinopathy dataset (DDR) test data. As
DDR includes only two categories in image quality
annotation (gradable and ungradable), we first trans-
ferred the AutoMorph prediction of good and usable
quality as gradable and reject quality as ungradable
and then evaluated the quantitative results. Although
the difference in the annotation might underestimate
the AutoMorph image quality grading capability, the
performance was satisfactory compared to the internal
group, as shown in Table 2. The confusion matrix and
AUC-ROC curve are shown in Supplementary Figure
S5. All ungradable images were correctly identified,
which is significant with regard to the reliability of
AutoMorph.

Table 2. Validation of Functional Modules and Comparison With Other Methods
Image Quality Grading Artery/Vein Segmentation

EyePACS-Q Test DDR Test IOSTAR-AV

AutoMorph (Internal) Comparison31 (Internal) AutoMorph (External) Comparisona (Internal) AutoMorph (External) Comparison58 (Internal)

Sensitivity 0.85 0.85 1 0.93 0.64 0.79
Specificity 0.93 NR 0.89 0.97 0.98 0.76
Precision 0.87 0.87 0.6 0.73 0.68 NR
Accuracy 0.92 0.92 0.91 0.99 0.96 0.78
AUC-ROC 0.97 NR 0.99 0.99 0.95 NR
F1-score 0.86 0.86 0.75 0.82 0.66 NR
IoU — — — — 0.53 NR

Binary Vessel Segmentation Optic Disc

Ultra-widefield: AV-WIDE Standard Field: DR HAGIS IDRID

AutoMorph (External) Comparison39 (Internal) AutoMorph (External) Comparison57 (Internal) AutoMorph (External) Comparison59 (Internal)

Sensitivity 0.71 0.78 0.84 0.67 0.9 0.9
Specificity 0.98 NR 0.98 0.98 0.95 NR
Precision 0.75 0.82 0.73 NR 0.94 NR
Accuracy 0.96 0.97 0.97 0.97 0.99 0.99
AUC-ROC 0.96 NR 0.98 NR 0.95 NR
F1-score 0.73 0.8 0.78 0.71 0.94 NR
IoU 0.57 NR 0.64 NR 0.91 0.85

“Internal”indicates that the validation and trainingdata are from the samedataset but isolated. “External”means that valida-
tion data are from external datasets. The comparisons are with competitivemethods of image quality grading,31 binary vessel
segmentation,39,57 artery/vein segmentation,58 and optic disc segmentation.59 NR, not reported.

aDue to no comparisonmethod on theDDR test, we comparedAutoMorph (external) to the same architecture, EfficientNet-
b4, that is trained with DDR train data (internal).
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Figure 4. The confusionmatrix of the grading results on EyePACS-Q test data. (a) The results before confidence thresholding; (b) the results
after thresholding. The value is normalized in rows. The diagonal includes the correct classification ratio. The red box indicates false gradable
(i.e., ungradable images arewrongly classifiedasgradable), and thegreenbox shows thepercentageof falseungradable (i.e., gradable images
are wrongly categorized as ungradable). The false gradable of (b) is reduced by 76.2% compared with that of (a), but the false ungradable
increases in (b).

Figure5. Visualization results of anatomical segmentation, includingbinary vessel (first two columns), artery/vein (third column), andoptic
disc (final column).

Anatomical Segmentation

Visualization results are presented in Figure 5,
and quantitative results are listed in Table 2. For
binary vessel segmentation, the two public datasets
AV-WIDE and the diabetic retinopathy, hyperten-
sion, age-related macular degeneration, and glaucoma
image set (DR HAGIS) are employed in model valida-
tion. The binary vessel segmentation model works
comparably to SOTA performance on the fundus
photography data (DR HAGIS) and moderately so
on ultra-widefield data (AV-WIDE). For artery/vein
segmentation, the performance is validated on the

IOSTAR-AV dataset. Compared with the most recent
method,58 AutoMorph achieves lower sensitivity but
much higher specificity. The visualization results of
two challenging cases from Moorfields Eye Hospi-
tal and the Online Retinal Fundus Image Dataset
for Glaucoma Analysis and Research (ORIGA) are
shown in Supplementary Figure S6. For optic disc
segmentation, we validated the performance on the
dataset Indian Diabetic Retinopathy Image Dataset
(IDRID). The performance is on the par with the
comparedmethod,59 and the F1-score is slightly higher.
Although pathology disturbs, the segmentation disc
shows robustness.
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Table 3. Agreement Calculation of Measured Vascular Features Between AutoMorph and Expert Annotation

ICC (95% Confidence Interval)

Zone B Zone C Whole Image

DR HAGIS
Fractal dimension 0.94 (0.88–0.97) 0.98 (0.95–0.99) 0.94 (0.88–0.97)
Vessel density 0.98 (0.96–0.99) 0.97 (0.94–0.99) 0.94 (0.88–0.97)
Average width 0.95 (0.89–0.98) 0.96 (0.93–0.98) 0.97 (0.95–0.99)
Distance tortuosity 0.80 (0.59–0.91) 0.85 (0.69–0.93) 0.86 (0.73–0.93)
Squared curvature tortuosity 0.68 (0.34–0.85) 0.88 (0.75–0.94) 0.84 (0.68–0.92)
Tortuosity density 0.89 (0.77–0.95) 0.70 (0.38–0.86) 0.87 (0.74–0.93)

IOSTAR-AV
CRAE (Hubbard) 0.81 (0.56–0.92) 0.82 (0.57–0.91) —
CRVE (Hubbard) 0.8 (0.54–0.91) 0.78 (0.52–0.89) —
AVR (Hubbard) 0.87 (0.69–0.94) 0.81 (0.66–0.92) —
CRAE (Knudtson ) 0.76 (0.45–0.9) 0.75 (0.44–0.89) —
CRVE (Knudtson) 0.85 (0.67–0.94) 0.86 (0.58–0.9) —
AVR (Knudtson) 0.85 (0.66–0.94) 0.82 (0.51–0.91) —

The agreement of vessel caliber was validated on the IOSTAR-AV dataset, other metrics with the DR HAGIS dataset. Because
caliber features rely on the six largest arteries and veins in Zones B and C, there is no caliber feature for the whole image level.

Vascular Feature Measurement

The ICCs between AutoMorph features and expert
features are listed in Table 3. For binary vessel
morphology, the fractal dimension, vessel density, and
average width metrics all achieve excellent reliability
(ICC > 0.9). The other metrics show good consistency.
Bland–Altman plots for Zone B are shown in Figure 6.
All features show agreement. For the fractal dimension,
the mean difference (MD) is –0.01, with 95% limits of
agreement (LOA) of –0.05 to 0.03; for vessel density,
the MD is 0.001, with 95% LOA of 0 to 0.002; for the
average width, the MD is 1.32 pixels, with 95% LOA
of 0.44 to 2.19; for distance tortuosity, the MD is 0.02,
with 95% LOA of –2.18 to 2.22; for squared curva-
ture tortuosity, the MD is –1.02, with 95% LOA of –
14.59 to 12.56; for tortuosity density, the MD is 0.02,
with 95% LOA of –0.09 to 0.13; for CRAE Hubbard,
the MD is –0.13, with 95% LOA of –2.49 to 2.24; for
CRVEHubbard, theMD is 0, with 95%LOAof –2.9 to
2.9; and for AVRHubbard, the MD is –0.03, with 95%
LOA of –0.17 to 0.11. The results at Zone C and the
whole image are provided in Supplementary Figures S7
and S8. Note that for the metrics CRAE, CRVE, and
average width, measurements are presented in pixels, as
resolution information is unknown. Some images with
large errors are listed in Supplementary Figure S12.

Running Efficiency and Interface

The average running time for one image is about
20 seconds using a single graphics processing unit

(GPU) Tesla T4 graphic card, from preprocessing
to feature measurement. To ensure accessibility for
researchers without coding experience, we have made
AutoMorph compatible with Google Colaboratory
(free GPU) (Fig. 7). The process involves placing
images in a specified folder and then clicking the
“run” command. All results will be stored, including
segmentation maps and a file containing all measured
features.

Discussion

In this report, the four functional modules of the
AutoMorph pipeline achieved comparable, or better,
performance compared with the state of the art for
both image quality grading and anatomical segmenta-
tion. Furthermore, our approach to confidence analy-
sis decreased the number of false gradable images by
76%, greatly enhancing the reliability of our pipeline.
Hence, we have learned that, by using a tailored combi-
nation of deep learning techniques, it is practical to
accurately analyze the retinal vascular morphology in
a fully automated way. Although we have evaluated
the binary vessel segmentation model on the ultra-
widefield retinal fundus dataset AV-WIDE, we recom-
mend usingAutoMorph on retinal fundus photographs
with a 25° to 60° field of view (FOV), as all of the
deep learning models are trained using images with
FOVs equal to 25° to 60°, and the preprocessing step
is tailored for images with this FOV.
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Figure 6. Bland–Altman plots of vascular feature agreement between expert annotation and AutoMorph segmentation at Zone B. The first
two row features (e.g., tortuosity, fractal dimension) were calculated with the binary vessel segmentation map from DR HAGIS; the last row
features (caliber) weremeasuredwith the artery/vein segmentationmap from IOSTAR-AV. In each subplot, the central line indicates themean
difference and two dashed lines represent 95% limits of agreement. The unit of average width, CRAE, and CRVE is the pixel, as resolution was
unknown.

AutoMorph maintains computation transparency
despite the use of deep learning techniques. Recently,
similar systems have used deep learning models to
skip intermediary steps and instead directly predict
morphology features. For example, the Singapore I
vessel assessment (SIVA) deep learning system (DLS)
predicts vessel caliber from retinal fundus images
without optic disc localization or artery/vein segmen-
tation.3 Another work directly predicts CVD factors
from retinal fundus images in an end-to-end manner.61
Although these designs provide some insight into
the applications of deep learning to ophthalmology,
the end-to-end pipeline sacrifices transparency and
raises interpretability concerns, representing a poten-
tial barrier to clinical implementation.62,63 Specifically,
considering that some formulas are empirically defined

(e.g., CRAE and CRVE are calculated based on the
six widest arteries and veins), it is difficult to verify
whether a model can learn this type of derivation.
In contrast, the AutoMorph pipeline maintains trans-
parency, as the individual processes can be decom-
posed. Models are initially employed for anatomical
segmentation before vascular features are measured
with traditional formulas. This process is consistent
with the typical pipeline of human computation, thus
improving the credibility of feature measurements.

The study cohort is selected by the image quality
grading module. In this work, being different from
previous work with only good-quality images, we tried
to explore the effectiveness of usable images. Although
purely including good-quality images can avoid poten-
tially challenging cases for anatomic segmentation
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Figure 7. Interface of AutoMorphonGoogle Colaboratory. After uploading images and clicking the “run”button, all processes are executed
and results stored, requiring no human intervention. The left side shows the files directory, and the right bottom lists five examples with parts
of features.

models (e.g., imageswith gloomy illumination), it filters
out usable images that can contribute to a more general
conclusion with a larger study cohort. Also, in clinical
practice, a considerable number of images are usable
quality but may not qualify as perfectly good quality.
The pipeline developed in an environment similar to
clinical reality is more prone to be deployed in the
clinic. In image quality grading, the confidence analy-
sis has recognized a considerable proportion of false
gradable images and corrected them as reject quality
by thresholding, as shown in Figures 3 and 4. This
avoids some reject quality images failing the anatom-
ical segmentation and then generating large errors
in feature measurement. Although this thresholding
increased the false ungradable cases (Fig. 4b, green
box), the priority of recognizing the false gradable
images is secured. Of course, it is acceptable to include
only the good-quality images in the research cohorts,
the same as previous work, when the quantity of good-
quality images is large.

Although this work demonstrates the effectiveness
of a deep learning pipeline for analyzing retinal vascu-
lar morphology, there are some challenges remain-
ing regarding technique and standardization. First,
annotating retinal image quality is subjective and lacks
strict guidelines; therefore, it is difficult to bench-
mark external validation performance. Second, there
is still room for improving anatomical segmentation,
especially for artery/vein segmentation. Third, consid-
ering that the agreement varies across various vascu-
lar features (Table 3), it is necessary to compare the

robustness of these features and understand the pros
and cons of each one. Finally, a uniform protocol
for validating retinal analysis pipelines is required,
because existing software (e.g., RA28, IVAN,6 SIVA,29
VAMPIRE25) shows high variation in feature measure-
ment.64,65 These four challenges exist in the field of
oculomics, presenting an impediment tomore extensive
research.

We have made AutoMorph publicly available to
benefit research in the field of oculomics, which
studies the association between ocular biomarkers and
systemic disease. We designed the AutoMorph inter-
face using Google Colaboratory to facilitate its use by
clinicians without coding experience. In future work,
we will investigate solutions dedicated to the above
challenges in oculomics research. Also, the feasibility
of automatic pipeline can be extended to other modal-
ities, such as optical coherence tomography (OCT) and
OCT angiography.
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